USB: виды разъемов и кабелей для смартфона. Виды USB разъемов – основные отличия и особенности Устройстве реализован интерфейс подключения usb

Содержит две пары проводов: одну для сигнальных цепей (D+ и D-) и одну пару для схемной земли (GND) и подачи питания +5 В (Vbus). Допустимая длина сегмента (кабеля от устройства до хаба) — до 5 м. Ограничения на длину сегмента диктуются затуханием сигнала и вносимыми задержками. Задержка распространения сигнала по кабельному сегменту не должна превышать 26 нс, так что при большой погонной задержке допустимая длина кабеля может сократиться. Максимальное удаление устройства от хост-контроллера определяется задержкой, вносимой кабелями, промежуточными хабами и самими устройствами.

В кабеле USB 1.x для сигнальных цепей используется витая пара проводов калибра 28AWG с импедансом 90 Ом. Характеристики кабеля нормированы в частотном диапазоне до 16 МГц. Для питания используется неперевитая пара проводов калибра 20AWG-28AWG. Требований к экранированию кабелей в USB 1.x не выдвигалось. Для низкой скорости может использоваться кабель с неперевитой парой сигнальных проводов (он дешевле и тоньше), но его длина не должна превышать 3 м.

В кабелях USB 2.0 используются провода тех же калибров, но в спецификации описана конструкция кабеля, в которую входит обязательный экран и связанный с ним дополнительный проводник. Такой кабель пригоден для работы на любых скоростях, включая и HS (480 Мбит/с).

Разъемы USB сконструированы с учетом легкости подключения и отключения устройств. Для обеспечения возможности «горячего» подключения разъемы обеспечивают более раннее соединение и позднее отсоединение питающих цепей по отношению к сигнальным. В USB определено несколько типов разъемов:

  • тип «A»: гнезда (рисунок а) устанавливаются на нисходящих портах хабов, это стандартные порты подключения устройств. Вилки типа «A» устанавливаются на шнурах периферийных устройств или восходящих портов хабов;
  • тип «B»: используются для шнуров, отсоединяемых от периферийных устройств и восходящих портов хабов (от «мелких» устройств — мышей, клавиатур и т. п. кабели, как правило, не отсоединяются). На устройстве устанавливается гнездо (рисунок б), на кабеле — вилка;
  • тип «Mini-B» (рисунок в): используются для отсоединяемых шнуров малогабаритных устройств;
  • тип «Mini-A»: введен в спецификации OTG, вилки используются для подключения устройств к портам малогабаритных устройств с гнездом «mini-AB».
  • тип «Mini-AB»: гнезда введены в спецификации OTG для портов двухролевых устройств, которые могут вести себя как хост (если в гнездо вставлена вилка miniA) или как периферийное устройство (если в гнездо вставлена вилка mini-B).

Назначение выводов разъемов USB приведено в таблице, нумерация контактов показана на рисунке выше. Штырьковые разъемы, устанавливаемые на системной плате (рисунок г), предназначены для кабелей-«выкидышей», которыми подключаются дополнительные разъемы USB, устанавливаемые на передней или задней стенках корпуса компьютера (иногда и на боковых). На эти разъемы порты выводятся парами, причем у разных производителей подход к универсальности и защите от ошибочных подключений различен. Подключение «выкидыша», не подходящего к разъему, приводит к неработоспособности порта (к счастью, как правило, временной). Ошибка в подключении цепей GND и +5V может приводить к нагреванию кабелей и разъемов из-за короткого замыкания питающей цепи.

Все кабели USB «прямые» — в них соединяются одноименные цепи разъемов, кроме цепи ID, используемой для идентификации роли устройства в OTG. На вилке mini-A контакт 4 (ID) соединен с контактом 5 (GND), что заставляет порт, к которому подсоединена такая вилка, взять на себя роль нисходящего порта хаба. На вилке miniB такого соединения нет.

Ошибка в полярности подводимого питания может повредить подключаемое устройство (и необратимо). По этой причине наиболее безопасными для подключаемого устройства являются внешние разъемы USB, запаянные на системной плате или карте контроллера USB.

Для передачи сигналов используются два провода D+ и D-. На каждой стороне интерфейса (порте хаба и подключенного устройства, см. рисунок ниже) имеются:

  • дифференциальный приемник, выход которого используется при приеме данных;
  • управляемый (отключаемый) дифференциальный FS/LS-передатчик — источник напряжения, позволяющий кроме дифференциального сигнала формировать и «линейный 0» (SE0), а также отключаться для обеспечения полудуплексного обмена;
  • линейные приемники, сообщающие текущее состояние каждого сигнального провода;
  • резисторы, подтягивающие уровни сигналов для обнаружения подключения устройства:
    - Rd1, Rd2 (15 кОм) у хаба;
    - Ruf (у FS/HS-устройства) или Rul (у LS-устройства);
  • Дополнительные элементы для работы на высокой скорости (только для устройств HS):
    - коммутатор, отключающий резистор Ruf при выборе высокой скорости;
    - последовательные резисторы Rz1 и Rz2 на выходах дифференциального передатчика, обеспечивающие согласование с линией и нагрузку;
    - управляемый дифференциальный источник тока;
    - детектор амплитуды сигнала;
    - детектор отключения (только на нисходящих портах хабов).

Уровни сигналов передатчиков FS/LS в статическом режиме должны быть ниже 0,3 В (низкий уровень) или выше 2,8 В (высокий уровень). Приемники должны выдерживать входное напряжение в пределах -0,5...+3,8 В. Чувствительность дифференциальных приемников — 200 мВ при синфазном напряжении 0,8-2,5 В. Линейные приемники должны обладать гистерезисом с нижним порогом 0,8 В и верхним порогом 2 В.

Передача по двум проводам USB не ограничивается лишь дифференциальными сигналами. Приемники и передатчики позволяют использовать множество состояний линий и команд, используемых для организации аппаратного интерфейса. При этом учитываются не только уровни электрических сигналов, но и время нахождения их в том или ином состоянии. По уровням напряжения на входах приемников различают сигналы:

  • Diff0 : (D+) - (D-) > 200 мВ при (D+) > 2 В;
  • Diff1 : (D-) - (D+) > 200 мВ при (D-) > 2 В;
  • SE0 (single-ended zero): (D+) < 0,8 В и (D-) < 0,8 В.

Для передачи данных используются сигналы Diff0 и Diff1, они кодируют состояния J (Data J State) и K (Data K State). На полной и высокой скорости состояние J соответствует сигналу Diff1, состояние K — сигналу Diff0. На низкой скорости назначение обратное: J — Diff0 и K — Diff1. Последовательная передача информации ведется с использованием кодирования NRZI (см. рисунок ниже): при передачи нулевого бита в начале битового интервала состояние сигнала (J или K) меняется на противоположное; при передаче единичного — не меняется. Длительность битового интервала определяется номинальной частотой передачи: 0,666… мкс для низкой скорости (LS, 1,5 Мбит/с); 83,3… нс для полной (FS, 12 Мбит/с) и 2,0833… нс для высокой (HS, 480 Мбит/с).

Состояние покоя (Bus Idle) на FS/LS соответствует длительному состоянию J, а на HS — состоянию SE0.

Признаком начала пакета является переход из состояния покоя в состояние K, что является первым битом синхропоследовательности (Sync), — последовательности нулей, которая в NRZI кодируется переключением состояний (J и K) в начале каждого битового интервала. Синхропоследовательность позволяет приемнику настроиться на нужною частоту и фазу синхронизации. Синхропоследовательность завершает единичный бит (нет смены состояния), последующие за ним биты относятся к идентификатору и телу пакета. На HS начальная часть синхропоследовательности может быть потеряна хабом (из-за задержки реакции на детектор сигнала). С учетом этого синхросполедовательность для HS удлинена до 32 бит (включая последний единичный бит). Проходя через 5 хабов, каждый из которых может потерять до 4 синхробит, синхропоследовательность может оказаться сокращенной до 12 бит.

Для того чтобы синхронизация не терялась на монотонном сигнале (при передаче длинной последовательности единиц), применяется техника вставки бит (bit stuffing): после каждых 6 подряд следующих единиц передатчик вставляет «0», приемник эти вставленные биты удаляет. Если принимается более 6 единиц подряд, это считается ошибкой вставки бит.

Конец пакета (EOP) на FS/LS обозначается сигналом SE0, длящимся 2 битовых интервала, за которым следует переход в состояние покоя (Bus Idle). На HS для признака EOP используется нарушение правила вставки бит. Здесь в качестве EOP используется передача последовательности 01111111 без вставки бит. Прием седьмой единицы вызовет индикацию ошибки вставки бит, которая на HS и является признаком конца пакета. Нормальный пакет при этом от действительно ошибочного будет отличаться целым количеством принятых байт (это условие может и не проверяться) и верным значением CRC. Начальный нолик (вызывающий смену состояния) в EOP облегчает точное определение границы тела пакета. В пакетах SOF поле EOP удлинено до 40 бит для обнаружения отключения устройства.

Высокая скорость (480 Мбит/с — всего в 2 раза медленнее, чем Gigabit Ethernet) требует тщательного согласования приемопередатчиков и линий связи. На этой скорости может работать только кабель с экранированной витой парой для сигнальных линий. Для высокой скорости аппаратура USB должна иметь дополнительные специальные приемопередатчики. К разводке проводов на печатной плате устройства от интерфейсной микросхемы USB до разъема (или подключения кабеля) предъявляют жесткие требования (максимальная длина, совпадение длин сигнальных проводников, удаленность от других сигнальных цепей, окружение «землей»).

В отличие от формирователей потенциала для режимов FS и LS передатчики HS являются источниками тока, ориентированными на наличие резисторов-терминаторов на обеих сигнальных линиях. Роль терминаторов играют резисторы Rz1 и Rz2 (см. рис. 12.2): при работе на HS дифференциальный передатчик FS/LS формирует SE0, то есть оба его выхода заземляются и эти резисторы оказываются нагрузками для линий D+ и D-. Их сопротивление (с учетом выходного импеданса передатчика) составляет 2×45 = 90 Ом, что и обеспечивает согласование с волновым сопротивлением линии (90 Ом). Устройство и хаб включают свои HS-терминаторы (и отключают Ruf) после успешного взаимного подтверждения режима HS, выполняемого в процессе сброса устройства.

Дифференциальные токовые передатчики формируют импульсы тока с номинальным значением 17,78 мА, который протекает через нагрузку 22,5 Ом (два нагрузочных резистора на обоих концах каждой сигнальной линии соединяются параллельно). При передаче сигнала J ток пропускается в линию D+, при K — в D-. Таким образом обеспечивается дифференциальный сигнал передачи около ±400 мВ.

На вход дифференциального приемника сигнал придет ослабленным; чтобы исключить влияние шумов, в схему устройства введен детектор амплитуды сигнала с порогом 100-150 мВ. Сигнал с дифференциального приемника игнорируется, пока не сработает детектор амплитуды сигнала (в спецификации USB этот прием называется receiver squelch). От срабатывания детектора амплитуды до включения дифференциального приемника может быть задержка до 4 bt, но это приведет лишь к сокращению длины принятой синхропоследовательности в начале пакета.

К статическим (уровни) и динамическим (длительности и время нарастания и спада) параметрам сигналов на HS предъявляются жесткие требования, и существуют специальные шаблоны (Eye Pattern), в которые должны укладываться сигналы. Для тестирования могут быть использованы широкополосные (не уже 1 ГГц) дифференциальные осциллографы и генераторы; выпускаются и специализированные тестеры устройств USB 2.0. Для тестирования HS-устройств (включая и хабы) в USB 2.0 определены специальные управляющие запросы, переводящие выбранный порт в тестовый режим. В стандартных запросах определены следующие тесты:

Хаб обнаруживает подключение устройства по уровням напряжения на линиях D+ и D-:

  • при отключенном устройстве на линиях D+ и D- уровни сигнала низкие (состояние SE0), что обусловлено резисторами Rd1 и Rd2 хаба;
  • при подключении LS-устройства повышается уровень сигнала D- за счет резистора Rul в устройстве (переход в состояние LS-Idle);
  • при подключении FS/HS-устройства повышается уровень сигнала D+ за счет резистора Rul в устройстве (переход в состояние FS-Idle).

Последовательность обнаружения подключения и сброса устройств FS и LS приведена на рисунках а и б соответственно. Хаб следит за сигналами нисходящего порта и сигнализирует об их смене. После обнаружения смены состояния системное ПО выжидает около 100 мс (время на успокоение сигналов) и проверяет состояния порта. Обнаружив факт подключения и тип устройства (LS или FS/HS), ПО дает для этого порта команду сброса шины.

Для выполнения сброса шины (команда Bus Reset) хаб опускает уровень поднятого устройством сигнала (D+ или D) на 10-20 мс (то есть подает сигнал SE0 в течение 10-20 мс). Считается, что через 10 мс после этого сброса устройство должно быть готово к конфигурированию (отзываться только на обращения к EP0 по нулевому адресу устройства).

Сброс шины для устройства HS запускает протокол согласования скорости. При подключении, как и по сигналу сброса, HS-устройство устанавливает свои схемы в состояние FS (отключая терминаторы и включая Ruf). Таким образом, поначалу HS-устройство выглядит для хаба как FS-устройство. Для согласования скорости используется так называемое «чириканье» (chirp-sequence): в ответ на состояние SE0, введенное хабом для сброса (заземлением линии D+), HS-устройство своим дифференциальным токовым передатчикам вводит состояние «chirp-K» (пуская импульс тока в линию D-). На этот импульс HS-хаб ответит импульсом на линии D+, так что получится состояние «chirp-J». Такой обмен импульсами повторяется еще дважды; после успеха согласования и устройство и хаб принимают режим работы HS (и резистор Ruf отключается). Все это «чириканье» занимает 10-20 мс, после чего шина переходит в состояние покоя HS-Idle (длительный сигнал SE0). Теперь хосту надо снова опросить состояние порта хаба, чтобы уточнить режим подключенного устройства (FS или HS). Если HS-устройство подключено к FSпорту, хаб на «чириканье» устройства не ответит.

Отключение устройств FS/LS обнаруживается хабом просто по длительному (более 2 мкс) состоянию SE0. Этот факт хаб доводит до сведения системного ПО (USBD), чтобы устройство было вычеркнуто из всех рабочих списков. Отключение устройств HS таким способом обнаружить не удается, поскольку состояние шины (SE0) при отключении устройства не изменится. Для обнаружения отключения HS-устройства используют эффект отражения сигнала при потере согласованности линии. Специально для этих целей в схему хаба введен дополнительный детектор отключения, а в маркере микрокадра SOF признак EOP (0111…111) удлинен до 40 битовых интервалов. Транслируя SOF на высокоскоростной порт, детектор отключения следит за уровнем сигнала J, и если он превышает порог (625 мВ дифференциального сигнала), значит, нагрузки на другой стороне нет, то есть устройство отключено. Удлинение EOP необходимо, поскольку устройство может отключиться внутренне, и из-за задержки в кабеле устройства (2×26 нс) отраженный сигнал может задержаться до 25 нс. С целью сокращения накладных расходов это удлинение EOP сделали только для пакетов SOF, появляющихся всего раз в 125 мкс.

Команду приостановки устройства — Suspend хаб сигнализирует длительным состоянием покоя (Bus Idle). При этом он должен переставать транслировать все кадры, включая и маркеры микрокадров на порты, для которых подается эта команда. На порты, работающие в LS-режиме, маркеры кадров не транслируются; чтобы LS-устройство не приостанавливалось при отсутствии полезного трафика, ему вместо маркеров SOF хаб с тем же периодом посылает сигнал LS-EOP (SE0 в течении 1,33 мкс). Приостановка делается не менее чем на 20 мс — за это время устройство должно успеть перейти в приостановленное состояние и стать готовым к получению сигнала возобновления.

Команду приостановки HS-порта хаб сигнализирует покоем (SE0) в течение 3 мс, после чего переключает свои цепи в режим FS (отключает терминаторы), но помнит, что порт находится в режиме HS. Для HS-устройства команда приостановки поначалу неотличима от сброса. Чтобы их различить, через 3-3,125 мс непрерывного состояния SE0 HS-устройство переключает свои цепи в режим FS (отключает терминаторы и включает Ruf). Далее, через 100-875 мкс устройство проверяет состояние линий. Если обе лини D+ и D- оказались в низкоуровневом состоянии, значит, хаб подал команду сброса (и устройство должно выполнить chirp-последовательность). Если уровень D+ высокий, а D- низкий (FS-Idle), то это сигнал к приостановке. Таким образом, по состоянию сигналов на шине приостановка выглядит как покой LS/FS — то есть состояние J.

Сигналом к возобновлению работы (resume) является перевод шины в состояние K на длительное время (20 мс), достаточное для «оживления» устройств, после чего хаб посылает сигнал LS-EOP (SE0 в течение 1,33… мкс). После этого шина переходит в состояние покоя соответствующей скорости и начинает передаваться трафик. Сигнал возобновления может подать как хаб, так и приостановленное устройство; последний случай называется удаленным пробуждением. По сигналу возобновления устройство, работавшее в HS-режиме, и его порт хаба переключают свои цепи в HS-режим без всякого согласования (они помнят свой режим).

Удаленное пробуждение — Remote Wakeup — это единственный случай на USB , когда сигнальную инициативу проявляет устройство (а не хост). Сигнал пробуждения может подать только приостановленное устройство, для которого шина находится в FS/LS-состоянии J (резисторами подтягивается вверх D+ или D-). Для сигнализации пробуждения устройство на некоторое время (1-15 мс) формирует состояние K, которое воспримется хабом как сигнал Resume и транслируется им на восходящий порт и на все разрешенные нисходящие порты, включая и тот порт, с которого пришел данный сигнал.

Новый стандарт USB Type-C до сих пор недостаточно широко развит на рынке, однако производители постепенно принимают свежую технологию. В смартфоностроении USB-C уже можно назвать новым трендом, потому что это не только усовершенствованный разъем для зарядки, но и средство для отказа от традиционного 3,5-миллиметрового порта для наушников. Сегодня мы более детально поговорим о USB Type-C, и данная статья расскажет вам, что это такое.

Сегодня практически все электронные устройства оснащаются разъемом USB. От настольных компьютеров до смартфонов и разнообразных накопителей с ноутбуками. USB является повсеместным стандартом, когда дело доходит до подключения периферии или передачи данных между устройствами. Последнее крупное обновление USB вышло в 2013 году с выходом USB 3.1, сопровождающегося релизом нового разъема Type-C. Как видите, с тех пор прошло уже почти 4 года, а Type-C так и не прижился.

В настоящее время на рынке можно по пальцам пересчитать устройства, использующие технологию USB Type-C. Среди компьютеров это последние ноутбуки от Apple, от Google, линейка от Samsung и еще несколько гибридных устройств. Среди смартфонов - в основном флагманы уходящего года: , и .

Так почему USB Type-C лучше, чем предшественники? Давайте выясним.

Что такое USB Type-C


USB Type-C - это новый и в настоящее время активно развивающийся отраслевой стандарт передачи данных для компьютеров и мобильных устройств. Главным и самым значительным нововведением Type-C является измененный разъем - универсальный, симметричный, способный работать любой стороной. Разъем USB-C был придуман USB Implementers Forum - группой компаний, которая разработала и сертифицировала новый стандарт USB. В нее также входят крупнейшие технологические компании, а именно Apple, Samsung, Dell, HP, Intel и Microsoft. К слову, это важно знать, ведь поэтому USB Type-C был легко принят большинством производителей ПК.

USB-C - это новый стандарт

В первую очередь нужно знать, что USB Type-C является новым стандартом для индустрии. Точно так же, как когда-то ими были USB 1.1, USB 2.0, USB 3.0 или самый последний USB 3.1. Только предыдущие поколения USB больше были сосредоточены на увеличении скорости передачи данных и различных других улучшениях, тогда как Type-C с физической точки зрения меняет конструкцию разъема аналогично модификациям технологии - MicroUSB и MiniUSB. Однако, решающее различие в данном случае заключается в том, что, в отличие от MicroUSB и MiniUSB, Type-C направлен на замену абсолютно всех стандартов, причем с обеих сторон (пример USB-MicroUSB).

Основные характеристики:

  • 24 сигнальных вывода
  • Поддержка USB 3.1
  • Альтернативный режим для реализации сторонних интерфейсов
  • Скорость до 10 Гбит/с
  • Передача энергии до 100 Вт
  • Габариты: 8,34х2,56 мм

USB Type-C и USB 3.1

Одним из возможных вопросов незнающих о USB Type-C может быть нечто подобное: какое отношение USB 3.1 имеет к USB Type-C? Дело в том, что USB 3.1 является основным протоколом передачи данных для Type-C. Скорость версии 3.1 составляет 10 Гбит в секунду - в теории это в 2 раза быстрее, чем USB 3.0. Еще USB 3.1 может быть представлен в оригинальном формате разъема - такой порт называется USB 3.1 Type-A. Но сегодня гораздо проще встретить USB 3.1 с универсальным разъемом нового типа Type-C.

Версии USB

Чтобы лучше понять, почему Type-C станет заменой традиционным версиям USB, в первую очередь необходимо понимать разницу между ними. Существуют различные версии USB, а также даже разные коннекторы - например, Type-A и Type-B.

Версии USB относятся к общему стандарту, но их различие состоит в максимальной скорости передачи данных и мощности работы. Конечно, есть и многие другие факторы.

USB 1.1
Хотя USB 1.0 технически является первой версией USB, она не смогла полноценно выйти на рынок. Вместо нее была выпущена новая версия USB 1.1 - как раз она стала первым стандартом, к которому мы все привыкли. USB 1.1 может передавать данные на скорости 12 Мбит в секунду и максимально потребляет 100 мА тока.

USB 2.0
Вторая версия USB была представлена в апреле 2000 года. Она обеспечила стандарт значительным приростом в максимальной скорости передачи данных - до 480 Мбит в секунду. Также USB 2.0 стал мощнее, потребляя 1,8А на 2,5В.

USB 3.0
Выход USB 3.0 принес с собой не только ожидаемые улучшения в скорости передачи данных и мощности, но и новые типы разъемов. Более того, USB 3.0 даже получил свой цвет - новую версию стандарта обозначили синим, чтобы доблестно отличать его от старых поколений USB. USB 3.0 может работать со скоростью до 5 Гбит в секунду, беря для своего функционирования 5В на 1,8А. Кстати, эту версию представили в ноябре 2008 года.

USB 3.1
Новейшая и самая лучшая версия USB была выпущена в июле 2013 года, хотя до сих пор она не используется повсеместно. USB 3.1 может обеспечить пользователей пропускной способностью до 10 Гбит в секунду с максимальным потреблением энергии в 5В/1А, либо опционально 5А/12В (60 Вт) или 20В (100 Вт).

Type-A
Type-A является классическим интерфейсом USB. Короткий и прямоугольный штепсель стал оригинальным дизайном для USB и по сей день остается стандартным разъемом для использования в конце хоста USB-кабеля. Есть также некоторые вариации Type-A - Mini Type-A и Micro Type-A, но они никогда не были широко принятыми общественностью в связи со сложнохарактерным гнездом. В настоящее время обе эти вариации Type-A признаны устаревшими.


Type-B
Если Type-A стал одной стороной привычного для нас USB-кабеля, то Type-B является другой. Оригинальный Type-B - это высокий разъем со скошенными верхними углами. Обычно встречается на принтерах, хотя сам по себе является расширением стандарта USB 3.0 для введения новых возможностей соединения. Классические MiniUSB и MicroUSB тоже есть в версии Type-B, наряду с абсолютно неуклюжим MicroUSB 3.0, в котором используются дополнительные штекеры.

Type-C
Таким образом, спустя Type-A и Type-B мы подошли, очевидно, к новейшему Type-C. Версии Type-A и Type-B должны были работать совместно друг с другом посредством обратной совместимости, однако прибытие Type-C полностью разрушило эти планы, поскольку USB-C предполагает полную замену устаревших технологий USB-соединения. Также Type-C был разработан специальным образом, чтобы дополнительные варианты типа Mini или Micro не понадобилось выпускать вообще. Это, опять же, связано с намерениями заменить все нынешние разъемы на USB Type-C.


Главной особенностью стандарта Type-C является универсальность или симметричность разъема. USB-C можно использовать обеими сторонами подобно технологии Apple Lightning - больше никаких специальных сторон для соединения, которые к тому же еще и в темноте сложно найти. Также версия Type-C основана на USB 3.1, что означает поддержку всех преимуществ последней версии, включая высочайшую скорость.

USB-C по-прежнему является обратно совместимым с существующими вариантами USB, но для такого сценария использования, конечно, понадобятся адаптеры.


Недостатки USB Type-C

Проблемы у нового стандарта USB Type-C, естественно, тоже имеются. Одним из главных и самых серьезных опасений последней версии технологии называют физическую конструкцию разъема - она очень хрупкая ввиду симметричного дизайна. Apple, несмотря на такую же универсальность своего Lightning, использует прочный металлический штекер, который является гораздо более устойчивым к внешним воздействиям.

Еще более актуальной и вызывающей значительное беспокойство проблемой USB Type-C является нерегулируемая работа коннектора, что привело к ряду опасных поступающих в продажу аксессуаров. Некоторые из таких аксессуаров за счет использования неподдерживаемых уровней напряжения способны «поджарить» подключенное устройство. Например, так было с великолепным на старте флагманом , который впоследствии начал сперва воспламеняться, а потом и вовсе взрываться в руках, брюках, машинах и квартирах своих владельцев.


Данная проблема привела к очевидному и единственному решению - массовому запрету на производство и продажу неоригинальных аксессуаров с поддержкой USB Type-C. Так, если аксессуар не будет соответствовать стандартным спецификациям USB Implementers Forum Inc., то продукт не будет допущен к продаже. Также для проверки рабочего состояния и подлинности различных сторонних аксессуаров компания USB-IF представила защищенное 128-битным шифрованием ПО, которое позволит устройствам с данным разъемом осуществлять автоматическую проверку подключенного устройства или аксессуара с USB-C.

Минусы:

  • Конструкция. Дизайн USB Type-C хорош, но пострадала конструкция - она довольно хрупкая. Apple в своем Lightning использует цельнометаллический штекер, когда в Type-C используется овальная форма с размещением сигнальных выводов в центральной части.
  • Работа коннектора. Если позволить USB Type-C работать с неподдерживаемыми уровнями напряжения, то, вероятнее всего, кабель и/или устройство подвергнется возгоранию.
  • Совместимость. USB Type-C - это инновации в мире USB, но новейшее поколение оставляет в прошлом старые устройства, поскольку не поддерживает работу с ними.
  • Переходники. Для полноценной работы с USB Type-C на старых устройствах придется докупать переходники. Это дополнительная трата денег.

Преимущества USB Type-C


Несмотря на все вышенаписанное, USB Type-C можно уверенно назвать шагом вперед для индустрии. Установка данного разъема позволит производителям делать более тонкие компьютеры и мобильные устройства с меньшим количеством портов, высочайшей скоростью передачи данных и в наушники. В будущем, если USB Type-C выбьется в массы, разъему удастся заменить не только порт 3,5 мм для наушников, но и HDMI - интерфейс, используемый для передачи видео. Так USB Type-C заменит привычные сегодня разъемы и станет универсальным стандартом в любой ситуации.

Плюсы:

  • Симметричность. USB Type-C позволяет забыть о ситуациях, когда приходится вспоминать, с какой стороны вставлять кабель в разъем. Также отныне можно не бояться не найти нужную сторону USB в темноте.
  • Компактность. Габариты USB Type-C составляют 8,4х2,6 мм - это позволяет производителям делать компьютеры и мобильные устройства значительно тоньше.
  • Универсальность. Благодаря интеграции единого разъема станет возможной зарядка одним кабелем как ноутбука, так и планшета или смартфона.

Редко бывает, что одна лишняя буква в названии стандарта грозит совершить революцию в мире интерфейсов передачи данных и гаджетов, но появление последней разновидности USB 3.1 Type-C похоже как раз тот случай. Что же нам обещает принести очередное обновление старого доброго USB интерфейса?

  • Скорость передачи данных до 10 GBps
  • Возможность запитывания от порта устройств с потребляемой мощностью вплоть до 100Вт
  • Размеры коннектора сравнимые с micro-USB
  • Симметричность разъёма - у него не существует верха и низа, а значит нет ключа, который часто приводит к повреждениям как самих разъёмов, так и подключаемых через них гаджетов
  • С помощью данного интерфейса можно запитывать устройства с напряжением вплоть до 20 вольт
  • Больше не существует разных типов коннекторов - А и В. На обоих концах кабеля стоят совершенно одинаковые разъёмы. Как данные так и питающее напряжение могут передаваться через один и тот же разъём в обоих направлениях. В зависимости от ситуации каждый разъём может выступать в роли ведущего или ведомого
  • Нам обещают, что конструкция разъёма способна выдерживать до 10 000 подключений
  • Возможно использование этого интерфейса для непосредственного подключения вместо некоторых других широко распространённых интерфейсов для быстрого обмена данными.
  • Стандарт совместим сверху вниз как c обычным USB 3 интерфейсом, так и с его младшими братьями. Конечно не на прямую, но с помощью переходника через него возможно подключение скажем USB 2.0 диска
Под катом постараюсь разобрать тему по косточкам - начиная от конструкции разъёма и кабеля, и заканчивая кратким обзором профилей оборудования и новинок чипов для поддержки возможностей данного интерфейса. Я долго думал на какой площадке размещать статью, ведь все предыдущие касающиеся этой темы выходили на GT, но в моей публикации так много технических деталей, что она будет полезней не гикам, а потенциальным разработчикам, которым уже сегодня стоит начинать к нему присматриваться. Поэтому рискнул поселить статью тут.

Не буду касаться истории развития USB интерфейса, эта тема не плохо развита в данном комиксе в смысле истории в картинках

Электроника - наука о контактах

Для начала сравнительные фото сегодняшнего героя в компании заслуженных предков.

Коннектор USB Type-C немного крупнее привычного USB 2.0 Micro-B, однако заметно компактнее сдвоенного USB 3.0 Micro-B, не говоря уже о классическом USB Type-A.
Габариты разъема (8,34×2,56 мм) позволяют без особых сложностей использовать его для устройств любого класса, включая смартфоны и планшеты.


Сигнальные и силовые выводы размещены на пластиковой вставке пожалуй это самое слабое его место в центральной части разъёма. Контактная группа USB Type-C содержит 24 вывода. Напомню, что у USB 1.0/2.0 имелось всего 4 контакта, а разъемам USB 3.0 потребовалось уже 9 выводов.



Если внимательно присмотреться к рисунку слева, то видно, что контакты имеют разную длину. Это обеспечивает их замыкание в определённой последовательности. На рисунке в центре мы видим наличие защёлок, которые должны удерживать воткнутый кабель и обеспечивать тактильный щелчок в процессе соединения-рассоединения. На правом графике изображена зависимость усилия в процессе вставки-вынимания разъёма.

Пики, которые мы видим на нём - это моменты срабатывания защёлки.

Можно констатировать, что разработчики стандарта сделали если не всё, то почти всё, чтобы разъём стал максимально удобным и надёжным: он вставляется любым концом и любой стороной с ощутимым щелчком. По их мнению, он способен пережить эту процедуру более 10 тысяч раз.

Многоликий симметричный янус

Крайне приятной и полезной особенностью USB-C стал симметричный дизайн разъёма, позволяющий подключать его к порту любой стороной. Достигается это благодаря симметричному расположению его выводов.

По краям расположены выводы земли. Плюсовые контакты питания также расположены симметрично. В центре находятся контакты, отвечающие за совместимость с интерфейсом USB2 и младше. Им повезло больше всего - они дублируются и поэтому поворот на 180 градусов при соединении не страшен. Синим цветом помечены выводы, отвечающие за высокоскоростной обмен данными. Как мы видим тут всё хитрее. Если мы повернём разъём, то к примеру, выход TX1 поменяется местами с TX2, но одновременно и место входа RX1 займёт RX2.

Выводы Secondary Bus и USB Power Delivery Communication служебные и предназначены для общения между собой двух соединяемых устройств. Ведь им необходимо очень о многом друг другу рассказать, прежде чем начать обмен, но об этом позже.

А пока ещё об одной особенности. Порт USB Type-C изначально разрабатывался в качестве универсального решения. Помимо непосредственной передачи данных по USB, он может также использоваться в альтернативном режиме (Alternate Mode) для реализации сторонних интерфейсов. Такую гибкость USB Type-C использовала ассоциация VESA, внедрив возможность передачи видеопотока посредством DisplayPort Alt Mode.

USB Type-C располагает четырьмя высокоскоростными линиями (парами) Super Speed USB. Если две из них выделяются на нужды DisplayPort, этого достаточно для получения картинки с разрешением 3840×2160. При этом не страдает скорость передачи данных по USB. На пике это все те же 10 Гб/с (для USB 3.1 Gen2). Также передача видеопотока никак не влияет на энергетические способности порта. На нужды DisplayPort может быть выделено даже 4 скоростные линии. В этом случае будут доступны разрешения вплоть до 5120×2880. В таком режиме остаются не задействованы линии USB 2.0, потому USB Type-C все еще сможет параллельно передавать данные, хотя уже с ограниченной скоростью.

В альтернативном режиме для передачи аудиопотока используются контакты SBU1/SBU2, которые преобразуются в каналы AUX+/AUX-. Для протокола USB они не задействуются, потому здесь тоже никаких дополнительных функциональных потерь.

При использовании интерфейса DisplayPort, коннектор USB Type-C по-прежнему можно подключать любой стороной. Необходимое сигнальное согласование предусмотрено изначально.

Подключение устройств с помощью HDMI, DVI и даже D-Sub (VGA) также возможно, но для этого понадобятся отдельные переходники, однако это должны быть активные адаптеры, так как для DisplayPort Alt Mode, не поддерживается режим Dual-Mode Display Port (DP++).

Альтернативный режим USB Type-C может быть использован отнюдь не только для протокола DisplayPort. Возможно, вскоре мы узнаем о том, что данный порт научился, например, передавать данные с помощью PCI Express или Ethernet.

И этому дала, и тому дала. В общем… о питании.

Еще одна важная особенность, которую привносит USB Type-C – возможность передачи по нему энергии мощностью до 100 Вт. Этого хватит не только для питания/зарядки мобильных устройств, но и для работы ноутбуков, мониторов, а если пофантазировать, то и небольшого лабораторного источника питания.

При появлении шины USB, передача энергии была важной, но всё же второстепенной её функцией. Порт USB 1.0 обеспечивал всего 0,75 Вт (0,15 А, 5 В). Достаточно для работы мыши и клавиатуры, но не более того. Для USB 2.0 номинальная сила тока была увеличена до 0,5 А, что позволило получать от неё уже 2,5 Ватта для питания, например, внешних жестких дисков формата 2,5”. Для USB 3.0 номинально предусмотрена сила тока в 0,9 А, что при неизменном напряжении питания в 5В гарантирует мощность в 4,5 Вт. Специальные усиленные разъемы на материнских платах или ноутбуках способны были выдавать до 1,5 А для ускорения зарядки подключенных мобильных устройств, но и это “всего лишь” 7,5 Вт. На фоне этих цифр возможность передачи 100 Вт выглядит чем-то фантастическим.

Для того чтобы наполнить такой энергией порт USB Type-C служит поддержка спецификации USB Power Delivery 2.0 (USB PD). Если таковой нет, порт USB Type-C штатно сможет выдать на гора 7,5 Вт (1,5 А, 5 В) или 15 Вт (3А, 5 В) в зависимости от конфигурации. Для подробного описания этой спецификации в данной статье недостаточно места, да и всё равно я не сделаю это лучше, чем уважаемый stpark в своей замечательной статье .

Однако, совсем обойти эту архиважную тему не получится.

Для того, чтобы обеспечить мощность в 100 ватт при напряжении пять вольт потребуется ток в 20 ампер! Такое при габаритах кабеля USB Type-C возможно пожалуй только если изготовить его из сверхпроводника! Боюсь, что сегодня это будет обходиться пользователям дороговато, поэтому разработчики стандарта пошли по другому пути. Они увеличили напряжение питания до 20 Вольт. “Позвольте, но ведь оно выжжет напрочь мой любимый планшет” - воскликните вы, и будете совершенно правы. Для того, чтобы не пасть жертвой разъярённых пользователей, инженеры задумали хитрый трюк - они ввели систему силовых профилей. Перед соединением любое устройство находится в стандартном режиме. Напряжение в нём ограничено пятью вольтами, а ток двумя амперами. Для соединения с устройствами старого типа этим режимом всё и закончится, а вот для более продвинутых случаев, после обмена данными, устройства переходят в другой согласованный режим работы с расширенными возможностями. Чтобы познакомиться с основными существующими режимами глянем на таблицу.

Профиль 1 гарантирует возможность передачи 10 Вт энергии, второй уже – 18 Вт, третий – 36 Вт, четвёртый целых – 60 Вт, ну а пятый нашу заветную сотню! Порт, соответствующий профилю более высокого уровня, поддерживает все состояния предыдущих по нисходящей. В качестве опорных напряжений выбраны 5В, 12В и 20В. Использование 5В необходимо для совместимости с огромным парком имеющейся USB-периферии. 12В – стандартное напряжение питания различных компонентов систем. 20В предложено с учетом того, что для зарядки аккумуляторов большинства ноутбуков используются внешние БП на 19–20В.

Пара слов о кабелях!

Поддержка описываемого в статье формата в полном объёме потребует огромной работы не только программистов, но и производителей электроники. Потребуется разработать и развернуть производство очень большого количества компонентов. Самое очевидное это разъёмы. Для того, чтобы выдерживать высокие токи питающего напряжения, не оказывать помех передаче сигналов очень высокой частоты, да ещё при этом не выходить из строя после второго коннекта и не вываливаться в самый неподходящий момент, качество их изготовления должно быть радикально выше по сравнению с форматом USB 2.

Для совмещения передачи энергии большой мощности и сигналом с гигабитным трафиком, производителям кабелей придётся серьёзно напрячься.

Полюбуйтесь, как выглядит подходящий для нашей задачи кабель в разрезе.

Кстати, об ограничениях на длину кабелей при использовании интерфейса USB 3.1. Для передачи данных без существенных потерь на скоростях до 10 Гб/c (Gen 2) длина кабеля c разъемами USB Type-C не должна превышать 1 метр, для соединения на скорости до 5 Гб/c (Gen 1) – 2 метра.

Схемотехники производителей материнских плат, докстанций и ноутбуков долго будут ломать голову, как сгенерировать мощность порядка сотни ватт, а трассировщики, как подвести её к разъёму USB Type-C.

Производители чипов на низком старте.

Симметричное подсоединение и работа сигнальных линий в разных режимах потребует применения микросхем высокоскоростных коммутаторов сигналов. Сегодня уже появились первые ласточки. Вот, например, коммутатор от фирмы Texas Instruments, который поддерживает работу в устройствах как в режиме хоста так и ведомого устройства. Он способен коммутировать линии дифференциальных пар с частотой сигнала вплоть до 5ГГц.

При этом размеры чипа HDC3SS460 3.5 на 5.5 мм и в режиме покоя он потребляет ток порядка 1 микроампера. В активном же режиме - меньше миллиампера. Существуют и более продвинутые решения, например чипы производства NXP поддерживают частоту обмена до 10 ГГц.

Стали появляться и менеджеры питания, совмещённые с цепями защиты сигнальных линий от статики, например вот такое изделие от NXP

Оно предназначено для корректной обработки момента подключения разъёма, а так же размыкания цепи питания в случае неполадок. Данный чип уже поддерживает напряжение на VBUS до 30 вольт, а вот с максимальным коммутируемым током всё много хуже - он не должен превышать 1 ампера, что и понятно, учитывая габариты - 1.4 на 1.7 мм!

Безусловным лидером в этой области выступила Cypress, которая выпустила специализированный микроконтроллер с ядром ARM Cortex M0 поддерживающий все пять возможных для стандарта профилей питания.

Типичная схема включения для использования в ноутбуке даёт о нём некоторое представление, а подробнее с ним можно будет ознакомиться скачав даташит.

В отличие от чипа NXP он ориентирован на управление внешними силовыми ключами и поэтому может обеспечить коммутацию требуемых токов и напряжений, не смотря на свои малые размеры.

Внимание, Важная особенность для тех кто уже торопится заказать первые образцы - микроконтроллер не имеет USB интерфейса и не является полным и законченным решением. Он может служить только в качестве менеджера питания. В данный момент открыт предзаказ на поставку образцов и демонстрационных плат. Судьба этого микроконтроллера видимо будет во многом зависеть от того, снабдит ли фирма - производитель разработчиков референсными библиотеками для его использования в разных режимах.

Тот факт, что уже для него уже создано несколько демокитов сильно повышает вероятность последнего.

Лифт в небеса или Вавилонская башня.

Итак сегодня полностью сложилась революционная ситуация. Верхи не могут, а низы не хотят жить по старому. Всем надоела неразбериха с огромным количеством кабелей, зарядных устройств, блоков питания и их низкая надёжность.

Новый стандарт породил невиданную активность. Флагманы электронной индустрии - Apple, Nokia, Asus готовят к выпуску свои первые гаджеты с поддержкой USB Type-C. Китайцы уже штампуют кабели и переходники. На подходе докстанции и хабы с поддержкой высокой нагрузки по мощности. Производители чипов разрабатывают новые микросхемы и думают как бы запихнуть драйвер нового порта в микроконтроллер. Маркетологи решают куда воткнуть новый разъём, а инженеры чешут репу пытаясь реализовать многопрофильные устройства из уже имеющихся электронных компонентов.

Пока не ясно только одно. Что мы получим в результате? Удобный и надёжный разъём, который заменит львиную долю интерфейсов и найдёт повседневное применение, или вавилонское столпотворение, ведь ситуация может начать развиваться по не самому благоприятному сценарию:

Пользователи могут окончательно запутаться в многочисленных спецификациях и кабелях, которые будут выглядеть с виду совершенно одинаково, но при этом будут сертифицированы только под определённые профили. Попробуй разберись с ходу со всеми этими маркировками.

Но даже если получится, то это вряд ли решит проблему - китайцы без зазрения совести легко поставят на любой шнур любой значок. А если надо, то до кучи на каждую сторону одного кабеля разные, их не смутит даже если они будут взаимоисключающими.

Рынок наводнится невероятным количеством переходников разного калибра и сомнительного качества.

Пытаясь подключить одно устройство к другому никогда в результате не будешь знать к какому результату этот процесс приведёт и из-за чего коннект либо вовсе отсутствует, либо всё жутко глючит. То ли один из гаджетов не поддерживает нужный профиль, то ли поддерживает но не слишком корректно, то ли вместо качественного кабеля попалась его грубая китайской подделка. А что прикажете делать, если вдруг на вашем ноутбуке выйдет из строя единственный оставшийся на нём разъём?

До новых встреч.

P.S. Новый стандарт уже приводит к появлению весьма экзотических устройств. Так анонсирован кабель 100 метровой длины, который вроде бы никак не вписывается в стандарты. Вся фишка в том, что он активный. На обоих своих концах кабель имеет преобразователь сигналов USB3 интерфейса в оптический. Сигнал передаётся по оптике и на выходе конвертируется назад. Естественно он не передают энергию, а только данные. При этом каждый из преобразователей на его концах питается от разъёма к которому подключен.
Думаю, что в скором времени для подтверждения подлинности уважающие себя фирмы начнут вставлять в кабели активные метки. Проблема хабов породит невиданную активность у разработчиков и производителей DC-DC преобразователей. Как справедливо заметил уважаемый пользователь TimsTims может возникнуть например ситуация, что устройство, которое питает способно выдать только 12 вольт, а подключенные к нему устройства начнут затребовать скажем одно 5, другое 18.
В общем этот стандарт обещает прокормить не одного разработчика, да и производители в накладе не останутся.

USB это последовательный интерфейс передачи данных для периферийных устройств в вычислительной технике

Стандарт USB 1.0, получивший широкое распространение, был представлен в ноябре 1996 года. Версия v1.1 практически почти не используется по причине слишком низкой скорости передачи данных (12 Мбит/сек), поэтому применяется только для совместимости.

USB 2.0

Стандарт USB 2.0, получивший широкое распространение, был представлен в ноябре 1996 года.

Как и в случае спецификаций USB 1.0 и USB 1.1, в спецификации USB 2.0 для подключения периферийных устройств используется кабель, состоящий из двух пар проводов: одна витая пара проводов для приема и передачи данных, а другая - для питания периферийного устройства.

Напряжение питания по шине USB равно 5 В при силе тока до 500 мА. Этого, конечно, недостаточно для периферийных устройств со высоким энергопотреблением, например таких как принтеры. Поэтому они комплектуются собственными блоками питания, которые подключаются непосредственно к электрической розетке. Кабели USB ориентированы, то есть имеют физически разные наконечники «к устройству» (Тип B) и «к хосту» (Тип A). Возможна реализация USB устройства без кабеля, со встроенным в корпус наконечником «к хосту».

Компьютеры и ноутбуки, выпущенные после 2003 года, как правило, оснащены портами USB 2.0.

Устройств USB 2.0 поддерживают три режима работы:

  • Low-speed , 10-1500 Кбит/c (клавиатуры, мыши, джойстики, геймпады)
  • Full-speed , 0,5-12 Мбит/с (аудио-, видеоустройства)
  • High-speed , 25-480 Мбит/с (видеоустройства, устройства хранения информации)

Интерфейс USB 3.0 – стандарт SuperSpeed USB

Спецификация USB 3.0 появилась в 2008 году.

В спецификации USB 3.0 разъёмы и кабели совместимы с USB 2.0, причём для однозначной идентификации разъёмы USB 3.0 изготавливают из пластика синего или (у некоторых производителей) красного цвета.

Спецификация USB 3.0 повышает максимальную скорость передачи информации до 5 Гбит/с - что выше скорости передачи данных устройств USB 2.0. (максимально 480 Мбит/с.)

31 июля 2013 года USB 3.0 Promoter Group объявила о принятии спецификации следующего интерфейса, USB 3.1, скорость передачи которого может достигать 10 Гбит/с. Разъём USB 3.1 Type-C является симметричным.

Типы возможных разъемов и кабелей

Количество возможных разъемов USB 3.0 стало больше. Самый популярный разъём, которым все пользовались - USB Type-A классического размера: он расположен на флешках, USB-модемах, на концах проводов мышей и клавиатур. Чуть реже встречаются полноразмерные USB Type-B: обычно таким кабелем подключаются принтеры и сканеры. Мини-версия USB Type-B до сих пор часто используется в кардридерах, цифровых камерах, USB-хабах. Микро-версия Type-B стала самым популярным разъёмом в мире: все актуальные мобильники, смартфоны и планшеты (кроме продукции одной фруктовой компании) выпускаются именно с разъёмом USB Type-B Micro.

Реферат

Интерфейс USB

Введение

аппаратный кабель интерфейс

Увеличение числа устройств, подключаемых к персональному компьютеру, и, соответственно, развитие внешних интерфейсов привело к противоречивой ситуации: с одной стороны, компьютер должен иметь множество различных разъемов, а с другой - большая часть из них не используется. Такая ситуация определяется историческим развитием интерфейсов ПК - каждый интерфейс имел свой специализированный разъем. Более того, к одному порту в большинстве случаев можно подключить только одно устройство. Кроме того, проблема многочисленности разнообразных подключений включает в себя и следующие аспекты:

практически для каждого из устройств необходимо выделение аппаратного прерывания (IRQ);

большая часть устройств требует наличия внешнего блока питания;

каждое устройство имеет свой протокол обмена, многократно увеличивая необходимее количество драйверов;

конфигурирование огромного числа устройств, многие из которых не поддерживают спецификации Plug and Play, достаточно сложно для обычного пользователя и др.

Естественно, что производители аппаратного обеспечения задумались о создании единого и универсального интерфейса. И в начале 1996 года была опубликована версия 1.0 нового интерфейса USB (Universal Serial Bus - универсальная последовательная шина).

Последовательные шины позволяют объединять множество устройств, используя всего 1-2 пары проводов. Функциональные возможности этих шин гораздо шире, чем у традиционных интерфейсов локальных сетей.

Шина USB ориентирована именно на периферийные устройства, подключаемые к персональному компьютеру. Устройства могут подключаться к USB четырехпроходным кабелем без выключения компьютера. Изохронные передачи USB позволяют передавать цифровые аудиосигналы, а шина USB 2.0 способна нести и видеоданные. Все передачи управляются централизованно, и ПК является необходимым управляющим узлом, находящимся в корне древовидной структуры шины. Спецификация USB подразумевает прозрачное подключение устройств к шине и позволяет иметь несколько устройств на одном порту. Адаптер USB входит в состав всех современных чипсетов системных плат.

1. История USB

Интерфейс USB появился по компьютерным меркам довольно давно. Спецификация версии 1.1 на этот интерфейс была опубликована в начале 1996 года, большинство устройств поддерживает версию 1.1, которая вышла осенью 1998 года, - в ней были устранены обнаруженные проблемы первой редакции. Весной 2000 года опубликована спецификация USB 2.0, в которой предусмотрено 40-кратное повышение пропускной способности шины. В конце 2008 года USB Implementers Forum финализировал спецификации стандарта USB 3.0. Новый стандарт увеличил пропускную способность еще в 10 раз (пиковая производительность - 5 Гбит/с).

Первоначально (в версиях 1.0 и 1.1) шина обеспечивала две скорости передачи информации: полная скорость FS (full speed) - 12 Мбит/с и низкая скорость LS (Low Speed) - 1,5 Мбит/с. В версии 2.0 определена еще и высокая скорость HS (High Speed) - 480 Мбит/с, которая позволяет существенно расширить круг устройств, подключаемых к шине. В одной и той же системе могут присутствовать и одновременно работать устройства со всеми тремя скоростями. При этом предусматривается обратная совместимость устройств USB 2.0 с USB 1.x, т.е. «старые» USB 1.x устройства будут работать с USB 2.0 контроллерами, правда на скорости 12 Мбит/с. Скорость 480 Мбит/с достигается только при одновременном использовании USB 2.0 контроллера и USB 2.0 периферии.

Шина USB разрабатывалась для обеспечения механизма взаимодействия компьютерных и телефонных систем, однако вскоре члены комитета разработки поняли, что USB может удовлетворить потребности многих приложения и все сферы компьютерной телефонии.

Разработчики шины ориентировались на создание интерфейса, обладающего следующими свойствами:

легко реализуемое расширение периферии ПК;

дешевое решение, позволяющее передавать данные с высокой скоростью;

гибкость протокола смешанной передачи изохронных данных и асинхронных сообщений;

интеграция с выпускаемыми устройствами;

охват всевозможных конфигураций и конструкций ПК;

обеспечение стандартного интерфейса, способного быстро завоевать рынок;

создание новых классов устройств, расширяющих ПК.

Практически все поставленные задачи были решены, и весной 1997 года стали появляться компьютеры, оборудованные разъемами для подключения USB-устройств. Иконкой, официально обозначается шина USB, как в Windows, так и на USB-разъемах.

В феврале 2004 года корпорация Intel совместно с Agere, Systems, HP, Microsoft Corporation, NEC, Philips Semiconductors и Samsung Electronics объявила о создании группы продвижения беспроводного USB (Wireless USB Promoter Group). Ее задача - продвижение высокоскоростной технологии беспроводного подключения внешних устройств Wireless USB на скорости 480 Мбит/с с дальностью действия при низком энергопотреблении до 10 метров.

2. Сравнение USB с другими интерфейсами

В настоящее время достойной альтернативы USB не существует (кроме, пожалуй, изначального конкурента - Fire Wire, но у этой шины принципиально другая система соединения). Интерфейсы, сравнимые с USB по скорости обмена, требуют специальных преобразователей (например, RS-485). Интерфейсы, не требующие дополнительных элементов, либо низкоскоростные, либо узконаправленные (RS-232, LPT, MIDI и др.). Кроме того, к несомненным плюсам USB относятся организация помехозащищенности на уровне аппаратного и шинного протоколов и «встроенная» поддержка Plug and Play, а также отсутствие дополнительных элементов для подключения устройств (как, например, терминаторы для SCSI-интерфейса). Единственным минусом можно считать довольно короткое кабельное соединение, но следует помнить, что шина USB разрабатывалась как шина для домашних устройств и дальние соединения не закладывались в нее изначально.

3. Архитектура USB-шины

.1 Общая архитектура

Для шины USB выбран последовательный формат пересылки данных, обеспечивающий ее наименьшую стоимость и наибольшую гибкость. Тактирующий сигнал и данные кодируются вместе и передаются как единый сигнал. В результате нет никаких ограничений в отношении тактовой частоты или расстояний, связанных со сдвигом данных, благодаря чему становится возможной высокая пропускная способность соединений с высокой тактовой частотой.

Для того чтобы к шине USB можно было одновременно подключать большое количество устройств, удаляемых и подсоединяемых в любое время, эта шина имеет древовидную структуру. Компьютер в такой конфигурации является управляющим устройством и называется хостом. В узлах дерева располагаются устройства, называемые хабами и действующие как промежуточные управляющие компоненты между хостом и устройствами ввода-вывода. Компьютер имеет встроенный хаб, называемый корневым хабом, который соединяет все дерево с хост-компьютером. «Листьями» дерева являются устройства ввода-вывода (клавиатура, динамики, соединение с Интернетом, цифровой телевизор и т.п.), в терминологии USB называемые функциями.

3.2 Составляющие USB

Шина USB состоит из следующих элементов.

Хост-контроллер (Host Controller) - это главный контроллер, который входит в состав системного блока компьютера и управляет работой всех устройств на шине USB. Для краткости его называют просто «хост». На шине USB допускается наличие только одного хоста. Системный блок персонального компьютера содержит один или несколько хостов, каждый из которых управляет отдельной шиной USB.

Устройство (Device) может представлять собой хаб, функцию или их комбинацию (Compound Device).

Порт (Port) - точка подключения.

Хаб (Hub, другое название - концентратор) - устройство, которое обеспечивает дополнительные порты на шине USB. Другими словами, хаб преобразует один порт (восходящий порт, Upstream Port) во множество портов (нисходящие порты, Downstream Ports). Архитектура допускает соединение нескольких хабов (не более 5). Хаб распознает подключение и отключение устройств к портам и может управлять подачей питания на порты. Каждый из портов может быть разрешен или запрещен и сконфигурирован на полную или ограниченную скорость обмена. Хаб обеспечивает изоляцию сегментов с низкой скоростью от высокоскоростных. Хаб может ограничивать ток, потребляемый каждым портом.

Корневой хаб (Root Hub) - это хаб, входящий в состав хоста.

Функция (Function) - это периферийное устройство (ПУ) или отдельный блок периферийного устройства, способный передавать и принимать информацию по шине USB. Каждая функция предоставляет конфигурационную информацию, описывающую возможности ПУ и требования к ресурсам. Перед использованием функция должна быть сконфигурирована хостом - ей должна быть выделена полоса в канале и выбраны опции конфигурации.

3.3 Свойства составляющих

Свойства USB-устройств

Спецификация USB жестко определяет набор свойств, которые должно поддерживать любое USB-устройство:

адресация - устройство должно отзываться на назначенный ему уникальный адрес и только на него;

конфигурирование - после включения или сброса устройство должно предоставлять нулевой адрес для возможности конфигурирования его портов;

передача данных - устройство имеет набор конечных точек для обмена данными с хостом. Для конечных точек, допускающих разные типы передач, после конфигурирования доступен только один из них;

управление энергопотреблением - любое устройство при подключении не должно потреблять от шины ток, превышающий 100 мА. Если хаб не может обеспечить устройству заявленный ток, устройство не будет использоваться;

приостановка - устройство USB должно поддерживать приостановку (Suspended Mode), при которой его потребляемый ток не превышает 500 мкА. Устройство должно автоматически приостанавливаться при прекращении активности шины;

удаленное пробуждение - возможность удаленного пробуждения (Remote Wakeup) позволяет приостановленному устройству подать сигнал хосту, который тоже может находиться в приостановленном состоянии.

Свойства хабов

Хаб выполняет коммутацию сигналов и выдачу питающего напряжения, а также отслеживает состояние подключенных к нему устройств, уведомляя хост об изменениях. Хаб состоит из двух частей - контроллера (Hub Controller) и повторителя (Hub Repeater).

Контроллер содержит регистры для взаимодействия с хостом. Доступ к регистрам осуществляется по специфическим командам обращения к хабу. Команды позволяют конфигурировать хаб, управлять нисходящими портами и опрашивать их состояние.

Повторитель представляет собой управляемый ключ, соединяющий выходной порт со входным. Он имеет средства сброса и приостановки передачи сигналов.

Нисходящие порты хабов могут находиться в следующих состояниях:

Питание отключено (Powered off) - на порт не подается питание (возможно только для хабов, коммутирующих питание). Выходные буферы переводятся в высокоимпедансное состояние, входные сигналы игнорируются;

Отсоединен (Disconnected) - порт не передает сигналы ни в одном направлении, но способен обнаружить подключение устройства;

Запрещен (Disabled) - порт передает только сигнал сброса (по команде контроллера), сигналы от порта (кроме обнаружения отключения) не воспринимаются;

Разрешен (Enabled) - порт передает сигналы в обоих направлениях. По команде контроллера или по обнаружении ошибки кадра порт переходит в состояние «Запрещен», а по обнаружении отключения - в состояние «Отсоединен»;

Приостановлен (Suspended) - порт передает сигнал перевода в состояние «спящий режим». Если хаб находится в активном состоянии, сигналы через порт не пропускаются ни в одном направлении.

Состояние каждого порта идентифицируется контроллером хаба с помощью отдельных регистров. Имеется общий регистр, биты которого отражают факт изменения состояния каждого порта. Это позволяет хосту быстро узнать состояние хаба, а в случае обнаружения изменений специальными транзакциями уточнить состояние.

Свойства хоста

Хост имеет следующие обязанности:

обнаружение подключения и отключения устройств USB;

управление потоками данных;

сбор статистики;

обеспечение энергосбережения подключенными ПУ.

Системное ПО контроллера управляет взаимодействием между устройствами и их ПО, функционирующим на хост-компьютере, для согласования:

нумерации и конфигурирования устройств;

изохронных передач данных;

управления энергопотреблением;

информации об управлении устройствами и шиной.

4. Аппаратное обеспечение

.1 Кабели

Спецификация USB предъявляет несколько требований к кабельному соединению:

предотвращение ошибки соединения разъемов;

простота кабельного соединения;

возможность подключения устройств, имеющих питание от шины и возможность подключения устройств, имеющих внешнее питание.

Соединительный кабель, используемый для подключения устройств с интерфейсом USB, представляет собой четырехжильный кабель в экранирующей оплетке и защитным покрытием из полихлорвинила. Два проводника предназначены для передачи данных, один - для источника питания (+5 В) и один - для «земли»

Спецификация USB 2.0 определяет три возможных типа используемых кабелей:

стандартный съемный кабель;

высокоскоростной (полноскоростной) несъемный кабель;

низкоскоростной несъемный кабель.

Стандартный съемный кабель служит для соединения хоста или хаба с устройством. С одной стороны он заканчивается разъемом типа «А» для подключения к хосту или хабу, а с другой - разъемом типа «В» или «mini-B» для подключения к устройству. Оба разъема маркируются логотипом USВ.

Несъемный кабель заканчивается с одной стороны разъемом типа «А» (с маркировкой) для подключения к хосту или хабу, а с другой стороны жестко присоединен к устройству, т.е. имеет всего один разъем.

Высокоскоростной кабель имеет импеданс 90+15% Ом и полную задержку распространения сигнала 26 нс. Кабель обязательно должен иметь витую пару из сигнальных проводников и экранирующую оплетку. Такой кабель можно использовать и для низкоскоростного соединения.

Низкоскоростной кабель предназначен для работы на скоростях до 1,5 Мбайт/с. В связи с этим к кабелю предъявляются меньшие требования: низкоскоростной кабель не имеет витой пары из сигнальных проводников и экранирующей оплетки. Он должен иметь емкость в диапазоне 200-450 пФ и задержку на распространение сигнала не более 18 нс.

Длина соединительного кабеля определяется импедансом и задержкой распространения сигнала. В среднем длина составляет три-пять метров, но может быть и до десяти. Определяющим фактором является качество изготовления и используемый материал.

4.2 Разъемы

Для предотвращения ошибочных соединений USB использует USB-кабели с различными разъемами. Согласно спецификации, устройства, работающие с шиной USВ, могут использовать три типа разъемов: «А», «В» и «Mini-B». Разъемы «А» обозначают принадлежность к «ведущему» устройству, они используются в хостах и хабах. Их всегда можно встретить, например, на современных материнских платах персональных компьютеров. Разъемы «В» используют «ведомые» устройства. Тип разъемов «mini-В» появился в спецификации в 2000 году с введением стандарта USB 2.0. Этот разъем позиционируется для применения в малогабаритных мобильных устройствах, например, в сотовых телефонах, когда габариты самого устройства соизмеримы с размерами разъема.

Конструктивно разъемы задуманы так, что сначала происходит соединение шины питания, потом шины данных.

Спецификация USB определяет стандартную цветовую гамму для проводников внутри USB-кабеля, что значительно облегчает идентификацию проводов при применении кабелей от разных производителей.

Кабель также имеет линии VBus и GND для передачи питающего напряжения 5 В к устройствам. Сечение проводников выбирается в соответствии с длиной сегмента для обеспечения гарантированного уровня сигнала и питающего напряжения.

5. Принципы передачи данных

Информация, пересылаемая через соединения USВ, организуется в пакеты, каждый из которых включает один или несколько байтов данных. В интерфейсе USB испольуется несколько разновидностей пакетов:

пакет-признак (token paket) описывает тип и направление передачи данных, адрес устройства и порядковый номер конечной точки (КТ - адресуемая часть USB-устройства); пакет-признаки бывают нескольких типов: IN, OUT, SOF, SETUP;

пакет с данными (data packet) содержит передаваемые данные;

пакет согласования (handshake packet) предназначен для сообщения о результатах пересылки данных; пакеты согасования бывают нескольких типов: ACK, NAK, STALL.

Таким образом, каждая транзакция состоит из трех фаз: фаза передачи пакета-признака, фаза передачи данных и фаза согласования.

В интерфейсе USB используются несколько типов пересылок информации:

Управляющая пересылка (control transfer) используется для конфигурации устройства, а также для других специфических для конкретного устройства целей. Управляющие пересылки содержат две стадии: Setup-стадия и статусная стадия. Между ними может располагаться стадия передачи данных. Setup-стадия используется для выполнения SETUP-транзакции, в процессе которой пересылается информация в управляющую КТ функции. SETUP-транзакция содержит SETUP-пакет, пакет с данными и пакет согласования.

Если пакет с данными получен успешно, то она отсылает хосту ACK-пакет. Иначе транзакция завершается.

Потоковая пересылка (bulk transfer) используется для передачи относительно большого объема информации. Потоковые пересылки характеризуются гарантированной безошибочной передачей данных между хостом и функцией посредством обнаружения ошибок при передаче и повторного запроса информации.

Пересылка с прерыванием (iterrupt transfer) используется для передачи небольшого объема информации, для которого важна своевременная пересылка. Имеет ограниченную длительность и повышенный приоритет относительно других типов пересылок. Пересылки с прерыванием могут содержать IN- или OUT-пересылки. Если у функции нет информации, для которой требуется прерывание, то в фазе передачи данных функция возвращает NAK-пакет. Если работа КТ с прерыванием приостановлена, то функция возвращает STALL-пакет. При необходимости прерывания функция возвращает необходимую информацию в фазе передачи данных. Если хост успешно получил данные, то он посылает ACK-пакет. В противном случае согласующий пакет хостом не посылается.

Изохронная пересылка (isochronous transfer) также называется потоковой пересылкой реального времени. Информация, передаваемая в такой пересылке, требует реального масштаба времени при ее создании, пересылке и приеме. Изохронные транзакции содержат фазу передачи признака и фазу передачи данных, но не имеют фазы согласования. Хост отсылает IN- или OUT-признак, после чего в фазе передачи данных КТ (для IN-признака) или хост (для OUT-признака) пересылает данные. Изохронные транзакции не поддерживают фазу согласования и повторные посылки данных в случае возникновения ошибок.

Пересылаемую по шине USB информацию можно разделить на две категории: управляющая информация и данные. Управляющие пакеты используются для адресации устройств при инициировании пересылки данных, а также для подтверждения факта получения правильных данных и сообщений об ошибках. Пакеты данных содержат входные и выходные данные, которыми хост обменивается с устройством, и некоторую другую информацию.

Каждый пакет состоит из одного или нескольких полей, содержащих разные типы информации. Первое поле любого пакета называется идентификатором и обозначается как PID. Оно идентифицирует тип пакета. В этом поле четыре бита информации, которые передаются дважды. В первый раз пересылаются их реальные значения, а во второй - дополненные. Это позволяет устройству-получателю проверить достоверность полученного байта PID.

Механизм передачи данных является асинхронным и блочным. Блок передаваемых данных называется USB-фреймом или USB-кадром (состоит из пакетов) и передается за фиксированный временной интервал. Оперирование командами и блоками данных реализуется при помощи логической абстракции, называемой каналом. Внешнее устройство также делится на логические абстракции, называемые конечными точками. Таким образом, канал является логической связкой между хост-контроллером и конечной точкой внешнего устройства. Канал можно сравнить с открытым файлом.

Для передачи команд (и данных, входящих в состав команд) используется канал по умолчанию, а для передачи данных открываются либо потоковые каналы, либо каналы сообщения.

Для шины USB настоящего механизма прерываний (как, например, для последовательного порта) не существует. Вместо этого хост-контроллер опрашивает подключенные устройства на предмет наличия данных о прерывании. Опрос происходит в фиксированные интервалы времени, обычно каждые 1-32 мс.

С точки зрения драйвера, возможности работы с прерываниями фактически определяются хост-контроллером, который и обеспечивает поддержку физической реализации USB-интерфейса.

6. USB-устройства

Благодаря своей универсальности и способности эффективно передавать разнородный трафик, шина USB применяется для подключения к PC самых разнообразных устройств. Она призвана заменить традиционные порты PC - СОМ и LPT, а также порты игрового адаптера и интерфейса MIDI.

Обычно USB-устройство представляет собой USB-функцию с портом для подключения. Типичными примерами функций являются:

указатели: мышь, планшет, световое перо;

устройства ввода: клавиатура, сканер;

устройства вывода: принтер, звуковые колонки, монитор;

телефонный адаптер ISDN;

флеш-диски.

Часто USB-устройство имеет встроенный хаб, позволяющий подключать к нему другие устройства.

6.1 Мышь и клавиатура

Подключение USB-мыши может быть оправдано при необходимости освободить последовательный порт. Однако для мыши остается еще порт PS/2, поэтому USB-мышь не особенно необходима, за исключением возможности конфигурирования частоты опроса, что оценят любители компьютерных игр, или в отсутствии других портов (в ноутбуках).

Использование USB-клавиатуры интересно только возможностью подключения USB-мыши прямо к клавиатуре, а также экономией системных ресурсов.

6.2 Мониторы

В отличие от USB-колонок, не требующих звуковой карты, USB-монитор все же требует графический адаптер (видеокарту). «USB» в названии означает наличие USB-портов, позволяющих подключать USB-устройства непосредственно к монитору, а также возможность программного конфигурирования настроек монитора по USB-интерфейсу.

6.3 Переходники USB-to-COM и USB-to-LPT

Конвертеры USB-to-COM и USB-to-LPT незаменимы в тех случаях, когда последовательные и параллельные порты в системе уже заняты (или недееспособны). Эти устройства позволяют подключать к USB-порту устройства с последовательным (мышь, модем) и параллельным (принтер, сканер) интерфейсами. Переходник USB-to-COM будет также полезен пользователям ноутбуков, т.к. в них имеется всего один последовательный порт.

6.4 Сканеры

Основной интерес USB-сканера заключается в отсутствии внешнего питания. Скорость работы таких сканеров ничем не отличается от обычных, т.к. основной определяющей является не скорость передачи данных, а скорость движения сканирующей головки.

6.5 Модемы

Такие модемы не требуют внешнего питания и работают полностью от шины. С одной стороны, это позволило значительно уменьшить размеры самих модемов, но с другой, такие модемы имеют все достоинства и недостатки программных модемов (soft modem). На многих USB-модемах производители уменьшили число индикаторов состояния или используют программное отображение, что не очень, удобно.

6.6 Звуковые колонки

колонки не требуют звуковой карты, а преобразование сигнала в аналоговый происходит в самих колонках через встроенный аналого-цифровой преобразователь.

Следует отличать понятия «USB-колонки» от «колонки с питанием от USB». Второй вариант представляет собой обычные колонки, требующие звуковой карты, но без отдельного блока питания. Их можно отличить по дополнительному разъему к звуковой карте. При подключении к шине такие колонки даже не опознаются системой как новое устройство.

Качество звука, получаемое при использовании USB-колонок, значительно выше, чем с применением обычных колонок совместно с большинством звуковых карт. Единственное ограничение - компьютер должен иметь достаточную производительность для обеспечения непрерывного потока данных на колонки, иначе любое движение мыши способно привести к исчезновению звука.

Поток данных, передаваемых на USB-колонки, довольно большой, что создает заметный трафик от компьютера к колонкам. По этой причине рекомендуется подключение колонок непосредственно к компьютеру либо к ближайшему хабу.

6.7 Флеш-диски

Флеш-диски с USB-интерфейсом обладают значительными преимуществами:

флеш-диск можно подключить к любому современному компьютеру без выключения;

диск может быть загрузочным;

скорость записи довольно велика, хотя и меньше, чем у жесткого диска;

отсутствуют сбойные секторы;

ударостойкость около 1000 G (значительно больше любого современного жесткого диска);

время хранения данных - не менее 10 лет;

число циклов записи - не менее миллиона;

объем диска достаточно большой.

С USB-диска можно запускать программы, редактировать файлы, не прибегая к помощи жесткого диска компьютера. Это значительно облегчает синхронизацию файлов между компьютерами, например, домашним и рабочим.

Согласно спецификации USB к одному порту можно подключить 127 устройств с помощью соответствующего хаба. Однако на практике число флеш-дисков ограничено числом свободных букв дисков (26 букв минус А, В и С, т.е. максимум 23 диска).

Флеш-диски легко форматируются средствами Windows. При этом пользователь может сам выбирать тип файловой системы (FAT или FAT32).

6.8 Хабы

Хабы не являются как таковыми USB-устройствами. Их задача - преобразовывать один USB-порт в несколько портов. Модели классифицируются по числу предоставляемых портов, поддерживаемым стандартам и типу питания.

Хабы могут быть внутренние (вставляемые в PIC-шину) и внешние. Питание внешних хабов обычно внешнее, однако бывают и исключения.

6.9 Измерительная техника

Скорость передачи данных USB-канала позволяет использовать USB-шину для подключения измерительных приборов, таких как цифровые осциллографы, логические анализаторы, генераторы сигналов и т.п. В таких устройствах USB используется как для передачи данных в компьютер для их последующей обработки и отображения, так и для задания пара метров приборов.

6.10 Экзотические устройства

В последнее время на рынке компьютерной продукции стали появляться и довольно экзотические USB-устройства. Список устройств, в общем-то, не относящихся к компьютерной периферии, довольно большой. Интересны, например, USB-фонарик, позволяющий осветить клавиатуру или рабочее место, или USB-вентилятор. Среди экзотических устройств можно найти USB-подогреватель для чашки, USB-грелку и даже USB-зубную щетку.

7. Установка и конфигурирование USB-устройств

Спецификация USB была разработана с непосредственной поддержкой спецификации Plug and Play. Каждое устройство при подключении к шине USB сигнализирует о своем существовании и сообщает идентификатор производителя и идентификатор устройства. Эти идентификаторы являются определяющей информацией при выборе загружаемого драйвера, информация о котором ищется в реестре. Если подходящего драйвера в реестре не обнаружено, производится процедура установки нового устройства (драйвера). Спецификация Plug and Play предполагает прозрачное подключение и автоматическое конфигурирование устройств. Вмешательство пользователя требуется в том случае, когда система либо не смогла найти нужный драйвер и запрашивает его местоположение у пользователя, либо системе не удалось корректно распределить системные ресурсы.

Для подключения устройств к шине не требуется дополнительных действий (как, например, установка перемычек при подключении жестких дисков к IDE-интерфейсу), а возможность неправильного подключения исключается разными разъемами. Многие производители предоставляют свои драйверы для устройств.

Так как обмен данными по шине USB идет только между компьютером и устройствами, то при подключении устройств следует учитывать потребляемую ими полосу пропускания. Устройства с большими объемами приема и / или передачи данных должны подключаться либо к самому компьютеру, либо к ближайшему свободному узлу.

С другой стороны, при подключении устройств следует учитывать и поддерживаемые ими стандарты USB. Устройства и ПО, критичные к полосе пропускания шины, в неправильной конфигурации работать откажутся и потребуют переключений. Если же хост-контроллер старый, то все достоинства USB 2.0 окажутся недоступны пользователю. В этом случае придется менять хост-контроллер, т.е. системную плату. Контроллер и хабы USВ 2.0 позволяют повысить суммарную пропускную способность шины и для старых устройств. Если устройства FS подключать к разным портам хабов USB 2.0 (включая и корневой), то для них суммарная пропускная способность возрастет по сравнению с 12 Мбит/с во столько раз, сколько используется портов высокоскоростных хабов.

Заключение

Универсальная последовательная шина USB призвана заменить такие устаревшие интерфейсы, как RS-232 (COM-порт) и параллельный интерфейс IEEE 1284 (LPT-порт), то есть заменить последовательные и параллельные, клавиатурные и мышиные порты - все устройства подключаются к одному разъему, допускающему установку многочисленных устройств с легкостью технологии Plug & Play. Технология Plug & Play позволяет производить «горячую» замену без необходимости выключения и перезагрузки компьютера. После физического подсоединения устройства правильно опознаются и автоматически конфигурируются: USB самостоятельно определяет, что именно подключили к компьютеру, какой драйвер и ресурсы понадобятся устройству, после чего все это выделяет без вмешательства пользователя. Для адекватной работы шины необходима операционная система, которая корректно с ней работает.

К шине USB можно одновременно подключить до 127 устройств: мониторы, принтеры, сканеры, клавиатуры и т.д. Каждое устройство, подключенное на первом уровне, может работать в качестве концентратора-то есть к нему, при наличии соответствующих разъемов, могут подключаться еще несколько устройств. Обмен по интерфейсу - пакетный, скорость обмена - от 1,5 Мбит/с до 480 Мбит/с.

Кроме этого, питание маломощных устройств подается с самой шины. Попутно решается историческая проблема нехватки ресурсов на внутренних шинах IBM PC совместимого компьютера - контроллер USB занимает только одно прерывание независимо от количества подключенных к шине устройств.

Конструкция разъемов для USB рассчитана на многократное сочленение / расчленение.

Все эти возможности и достоинства интерфейса USB сыграли решающую роль в том, что данная технология получила такую популярность. Универсальность соединения по типу USB привела к тому, что настоящее время интерфейс USB распространился повсеместно, вытеснив устаревшие порты на компьютерах.

Однако пропускной способности USB 2.0 перестало хватать для многих современных устройств. Новый стандарт USB 3.0 обеспечивает увеличение пропускной способности, а также дает и другие новшества. На данный момент оборудования и устройства с поддержкой USB 3.0 только начинают внедрять. Однако, согласно данным исследовательской компании InStart, новый стандарт к 2013 году будет занимать 25% рынка.