Теплоотдача одного метра стальной гладкой трубы таблица. Расчет теплоотдачи регистра отопления

Расчёт теплоотдачи трубы требуется при проектировании отопления, и нужен, чтобы понять, какой объём тепла потребуется, чтобы прогреть помещения и, сколько времени на это уйдёт. Если монтаж производится не по типовым проектам, то такой расчёт необходим.

Для каких систем нужен расчёт?

Коэффициент теплоотдачи считается для тёплого пола. Всё реже эта система делается из стальных труб, но если в качестве теплоносителей выбраны изделия из этого материала, то произвести расчёт необходимо. Змеевик – ещё одна система, при монтаже которой необходимо учесть коэффициент отдачи тепла.

Регистры – представлены в виде толстых труб, соединённых перемычками. Теплоотдача 1 метра такой конструкции в среднем – 550 Вт. Диаметр же колеблется в пределах от 32 до 219 мм. Сваривается конструкция так, чтобы не было взаимного подогрева элементов. Тогда теплоотдача увеличивается. Если грамотно собрать регистры, то можно получить хороший прибор обогрева помещения – надёжный и долговечный.

Как оптимизировать теплоотдачу стальной трубы?

В процессе проектирования перед специалистами встаёт вопрос, как уменьшить или увеличить теплоотдачу 1 м. стальной трубы. Для увеличения требуется изменить инфракрасное излучение в большую сторону. Делается это посредством краски. Красный цвет повышает теплоотдачу. Лучше, если краска матовая.

Другой подход – установить оребрение. Оно монтируется снаружи. Это позволит увеличить площадь теплоотдачи.

В каких же случаях требуется параметр уменьшить? Необходимость возникает при оптимизации участка трубопровода, расположенного вне жилой зоны. Тогда специалисты рекомендуют утеплить участок – изолировать его от внешней среды. Делается это посредством пенопласта, специальных оболочек, которые производятся из особого вспененного полиэтилена. Нередко используется и минеральная вата.

Производим расчёт

Формула, по которой считается теплоотдача следующая:

Q = K*F*dT, где

  • К – коэффициент теплопроводности стали;
  • Q – коэффициент теплоотдачи, Вт;
  • F – площадь участка трубы, для которого производится расчёт, м 2 dT – величина напора температуры (сумма первичной и конечной температур с учётом комнатной температуры), ° C.

Коэффициент теплопроводности K выбирается с учётом площади изделия. Зависит его величина и от количества ниток, проложенных в помещениях. В среднем величина коэффициента лежит в пределах 8-12,5.

dT называется также температурным напором. Чтобы параметр высчитать, нужно сложить температуру, которая была на выходе из котла, с температурой, которая зафиксирована на входе в котёл. Полученное значение умножается на 0,5 (или делится на 2). Из этого значения вычитается комнатная температура.

dT = (0,5*(T 1 + T 2)) — T к

Если стальная труба изолирована, то полученное значение умножается на КПД теплоизоляционного материала. Он отражает процент тепла, который был отдан при прохождении теплоносителя.

Рассчитываем отдачу для 1 м. изделия

Q = 0,047*10*60 = 28 Вт.

Об этом стоит помнить

Хотите сделать систему отопления грамотно? Не стоит подбирать трубы на глазок. Расчёты теплоотдачи помогут оптимизировать траты на строительство. При этом можно получить хорошую отопительную систему, которая прослужит долгие годы.

В этой статье мы расскажем о том, как рассчитать теплоотдачу трубы, а также в каких случаях может потребоваться определение данного показателя.

С какой целью рассчитывают теплоотдачу стальных труб

Преимущественно, расчет теплоотдачи стальных труб производится в таких случаях:

  • если нужно определить мощность нагревательных приборов для системы отопления в доме;
  • если возникла необходимость оценки теплопотерь, происходящих во время транспортировки теплоносителя по трубопроводу.

Стоит отметить, что нагревательные контуры, сквозь которые может отдаваться тепло, устанавливают в таких приборах:

  • полотенцесушители и змеевики;
  • регистры;
  • системы теплого пола.

Системы теплых полов

Если речь идет о водяном теплом полу, в отличие от электрического аналога, в качестве нагревательного контура в нем используются металлические трубы, хотя, их стали применять в последнее время все реже.

Главная причина снижения спроса на водяной теплый пол заключается в постепенном изнашивании стальных труб, снижении просвета в них. Кроме того, имеет значение и способ монтажа – сварные швы выполнить сможет далеко не каждый, а резьбовое соединение грозит утечкой теплоносителя через некоторое время. Естественно, никому не понравится результат утечки воды из системы в полу со стяжкой – будет затоплен потолок нижнего этажа или подвала, а перекрытие постепенно придет в негодность.


По этим причинам на замену стальным трубам в теплых водяных полах сначала пришли металлопластиковые змеевики, фитинги на которые крепились за пределами стяжки, а в настоящее время предпочитают армированный полипропилен.

Такому материалу присуще незначительное тепловое расширение, а при грамотной укладке и эксплуатации они могут прослужить не один десяток лет. Как вариант, используют и другие полимерные материалы.

Обратите внимание, что зазоры для теплового расширения армированного полипропилена все же нужно оставлять, хоть оно и небольшое.

Полотенцесушители

В домах старой постройки полотенцесушители из стальных труб встречаются очень часто, ведь в большинстве случаев они были заложены проектом, причем почти до конца прошлого века врезались в систему на резьбе.

Не так давно стали применять циркулярные врезки в элеваторных узлах, которые обеспечивают стабильную горячую температуру прибора.


Поскольку нагревательные контуры в полотенцесушителях постоянно подвергались перепадам температур – то нагревались, то остывали – резьбовым соединениям было сложно выдержать такой режим, поэтому они периодически начинали подтекать.

Несколько позднее, когда прогрев этих приспособлений стал стабильным благодаря врезке в стояки отопления, проблема протечек стала не настолько актуальной. В то же время размеры змеевика стали намного меньше, в результате чего снизилась площадь теплоотдачи стальной трубы. Однако такой полотенцесушитель оставался теплым не только во время использования горячей воды, а постоянно.

Регистры


Это было очень простым и дешевым решением в ситуациях, когда требовался обогрев больших площадей. Хотя если говорить о теплоотдаче трубы в таком регистре в сравнении с алюминиевым радиатором, то разница в эффективности ошеломляет. За счет большей площади теплообменника радиатора и теплопроводности алюминия, современное оборудование, несомненно, предпочтительнее. Да и внешне регистры выглядели довольно грубо.

Тем не менее, для своего времени регистры были приемлемы ввиду дешевизны и простоты. Можно отметить, что сварные швы на них были очень прочными, а засорение трубы не мешало их функционированию.

Методы повышения теплоотдачи

Круглая форма отнюдь не способствует увеличению теплоотдачи металлических труб. Еще более низкий коэффициент отношения объема и поверхности можно встретить только у сферы.

Следовательно, проблема как увеличить теплоотдачу трубы, несомненно, стояла у разработчиков первых простых отопительных приборов.

Чтобы увеличить коэффициент теплоотдачи стальной трубы раньше применялись такие методы:

  • Поверхность трубы покрывали матовой черной краской, чтобы усилить инфракрасное излучение нагревательного элемента. Это позволяло добиться значительного роста температуры в помещении. Стоит отметить, что современное хромирование на полотенцесушителях крайне неэффективно для усиления теплоотдачи – оно, скорее, для красоты.
  • Увеличение теплоотдачи трубы за счет наваривания на нее дополнительных ребер, что делало площадь нагревательного элемента, а значит и теплоотдачу, существенно больше. Наиболее передовым вариантом использования данного способа можно назвать конвектор, то есть участок загнутой трубы с приваренными поперечными ребрами. Хотя сама труба в данном случае отдает минимум тепла.

Любым из этих методов можно воспользоваться, если стоит вопрос, как увеличить теплоотдачу трубы отопления своими руками, ведь они совсем не сложные и вполне осуществимы в домашних условиях.

Теплопотери сквозь трубы

В условиях квартир особого смысла рассчитывать теплоотдачу нержавеющей трубы нет, ведь в данном случае все тепло, отдаваемое стояком и отопительными контурами, будет рассеиваться внутри, обогревая помещение.


А вот если необходимо качественно обогреть подвальные или складские мощности, а теплоноситель к ним должен подаваться из другого места, то в данном случае расчет теплоотдачи трубы будет более чем целесообразен, чтобы можно было сориентироваться, сколько тепла теряется по пути. Тогда можно попробовать поискать способы сократить теплопотери труб с горячей водой.

Применение теплоизоляционных материалов

Наверное, первое, что приходит в голову при необходимости сохранить максимум тепла внутри трубы – это обмотать ее теплоизоляционным материалом. В конце прошлого века для этих целей применяли утеплитель из стекловолокна с дополнительной обмоткой негорючей тканью (данный способ рекомендован нормативной базой). Еще чуть раньше активно использовались растворы гипса или цемента, то есть теплоизоляция получалась твердой. В действительности же нерадивые сантехники нередко просто обматывали трубы старой ветошью, в надежде, что никто не проконтролирует.


Обилие современных материалов, например накладки на трубы из пенопласта, разрезные полиэтиленовые оболочки, минеральная вата и прочие, позволяет выполнить теплоизоляцию отопительных труб намного более качественно. И в новостройках такие материалы с успехом применяются. Тем не менее, отсталость ЖЕКов зачастую приводит к тому, что трубы по старинке обматывают тряпьем.

Расчетные показатели

Чтобы вычислить мощность отопительного оборудования, а также выяснить масштаб теплопотерь при транспортировке теплоносителя, необходимо будет выполнить теплосъем с трубы при определенных показателях температуры жидкости внутри нее и воздуха снаружи. Теплоизоляционный слой служит дополнительным параметром.

Формула для расчета теплоотдачи трубы из стали выглядит так:

Q=K×F×dT, в которой:

Q – искомый результат теплоотдачи стальной трубы в килокалориях;

K – коэффициент теплопроводности. Он зависит от материала трубы, ее сечения, числа контуров отопительного оборудования, а также расхождения в температурах между внешним воздухом и теплоносителем;

F – общая площадь поверхности трубы или нескольких труб в приборе;

dT – напор температуры, то есть ½ суммарной температуры жидкости на входе и выходе из трубы за вычетом температуры воздуха в помещении.

Если трубы дополнительно обернуты слоем теплоизоляции, то ее КПД в процентном выражении (количество пропускаемого сквозь нее тепла) умножают на полученный показатель теплоотдачи.

Для примера рассчитаем теплоотдачу регистра из трех труб сечением 100 мм, длиной 1 м. В помещении температура равна 20 ℃, а теплоноситель при прохождении сквозь трубу остывает с 81 до 79 ℃.


Согласно формуле S=2пиrh рассчитываем площадь поверхности цилиндра:

S= 2×3,1415×0,05×1=0,31415 м 2 . Если трубы три, то их общая площадь составит 0,31415×3 = 0,94245 м 2 .

Показатель dT = (79+81):2-20 = 60.

Значение K для регистра из трех труб с температурным напором 60 и сечением 1 метр принимаем равным 9. Следовательно, Q=9×1×60 = 540. То есть теплоотдача регистра будет равна 540 ккал.

Таким образом, мы рассмотрели понятия теплоотдачи, а также способы минимизации теплопотерь стальной трубы для тех или иных случаев. Ничего очень сложного в этом нет. Главное, подойти к вопросу ответственно.

Расчет теплоотдачи стальных труб выполняется для определения количества тепла, выделяемого с поверхности труб. Такой расчет необходим всего в двух случаях:

Теплоотдача труб рассчитывается по формуле:

Q=K * F * ∆t,

Q – теплоотдача,Ккал/ч;

К- коэффициент теплопроводности, Ккал/(кв.м * ч * 0 С)

F – площадь труб, кв.м;

∆t – температурный напор, который вычисляется так:

∆t= 0,5 х (tп + tо) – tв,

где: tп – температура воды на входе, 0 С

tо – температура воды на выходе, 0 С

tв – температура в окружающей среды, 0 С

Необходимые значения для определения температурного напора берутся согласно таблицам СНиП:

  • tп = 80 0 С
  • tо = 70 0 С
  • tв = 20 0С

Коэффициент теплопроводности зависит от таких данных:

  • материал трубы;
  • ее диаметр;
  • количество деталей конструкции;

где: П = 3,14

d – диаметр трубы

l – длина трубы

Приведем пример.

Сколько тепло может излучить стальная труба длиной 1 м и диаметром 30 мм?

Поскольку это теоретический расчет, возьмем значение ∆t = 55 0С.

F = 3,14 * 0,03 * 1 = 0,09 кв. м

Коэффициент теплопроводности стальной трубы составляет приблизительно К = 11,5.

Q = 11,5 *0,09 * 55 = 56,9 Ккал/ч

Поскольку практически все намного сложнее, то для проведения более точных расчетов необходимо обратиться к специалисту.

Необходимо учитывать и второстепенные показатели, влияющие на теплоотдачу:

внешняя форма трубы;


Увеличение теплоотдачи.

Для эффективного увеличения показателя излучаемого тепла, есть много способов:

  • установка конвектора;
  • покраска труб черной краской;
  • установка регистра;
  • дополнительные секции батареи.

Конвектор представляет собой изогнутую трубу с металлическими пластинами. Изготовить его можно самостоятельно или купить в магазине более современный аналог.

Применение матовой черной краски для окрашивания поверхности теплоносителя тоже дает неплохой результат. Эстетически это выглядит не очень привлекательно, но если речь идет о комфорте, то приходится выбирать.

Еще одной недорогой и достаточно популярной конструкцией является регистр. Это несколько соединенных между собой широких труб с заваренными срезами. К ним также относятся полотенцесушители, радиаторы, магистральные линии и даже обыкновенную стальную трубу, закрепленную по всему периметру комнаты.

Уменьшение теплоотдачи.

В целях энергосбережения, становиться актуальным уменьшение теплоотдачи труб на тех участках коммуникаций, которые не используются по назначению, например при переходе из одного здания в другое или в неотапливаемом помещении.

Для этого есть множество вариантов использования теплоизоляционных материалов. Производители представляют на выбор достаточно широкий ассортимент, начиная от дешевых стекловолоконных и заканчивая более дорогими типа пенополистирола. Можно приобрести трубы с уже встроенными в нее утеплительными элементами.

Подведя итог, делаем выводы, что использование подобных расчетов помогает существенно сэкономить и избежать многих технических препятствий при проектировании систем водо- и теплообеспечения.

Давайте попробуем обобщить случаи, когда может понадобиться расчет теплоотдачи трубы, и узнать методы расчета этого параметра.

Зачем это нужно?

  • При расчете нагревательных приборов;
  • Чтобы оценить количество потерь тепла на трубопроводах, транспортирующих теплоноситель.

Отопительные приборы

Что за нагреватели используют в качестве отдающих тепло элементов трубы?

Из широко распространенных стоит упомянуть:

  • Теплый пол;
  • Полотенцесушители и разнообразные змеевики;
  • Регистры.

Теплый пол

В качестве нагревательного элемента для водяного теплого пола (есть еще и теплый пол с электрическим подогревом) практически всегда выступают именно трубы; однако использование последнее время стало редкостью.

Причины очевидны: стальная труба подвержена коррозии и уменьшению просвета со временем; монтаж требует наличия сварки; монтаж стальной трубы на — это всегда потенциальные утечки. А что такое течи в полу, под стяжкой? Мокрый потолок на нижнем этаже или в подвале и постепенное разрушение перекрытия.

Именно поэтому в качестве нагревательного элемента для теплого пола совсем недавно предпочитали использовать змеевики из металлопластиковой трубы (с обязательным монтажом фитингов вне стяжки), сейчас же в стяжку все чаще укладывается армированный полипропилен.

Он имеет низкий коэффициент теплового расширения и при правильном монтаже не требует ремонта и обслуживания много десятилетий. Применяются и другие пластики.

Совет: обязательно оставьте небольшие зазоры на тепловую деформацию трубы. Армированный полипропилен вытягивается при нагреве меньше неармированного, но все же вытягивается.

Полотенцесушители

Стальные полотенцесушители весьма распространены в домах советской постройки. Еще совсем недавно они были частью типового проекта любого строящегося дома, причем вплоть до 80-х годов всегда монтировались на резьбовых соединениях.

Циркуляционные врезки в элеваторных узлах, обеспечивающие постоянно горячие стояки отопления, тоже появились относительно недавно.

Раз так — режимом работы полотенцесушителя были повторяющиеся охлаждения и нагревы. Расширения — сжатия. Как на это реагировали резьбовые соединения? Правильно. Начинали течь.

Позже, когда полотенцесушители стали частью стояков отопления и загрели круглосуточно, проблема течей отошла на второй план. Сам же размер сушилки (и, соответственно, эффективная площадь теплоотдачи) резко уменьшился. Причина — изменение среднесуточной температуры.

Если раньше змеевик в ванной нагревался лишь тогда, когда владельцы ванной пользовались горячей водой, то теперь грел постоянно.

Регистры

Во многих производственных помещениях, в складах и даже некоторых давно не ремонтировавшихся магазинах внимание привлекает несколько рядов толстых труб под окном, от которых идет ощутимый жар. Перед нами один из дешевейших отопительных приборов эпохи развитого социализма — регистр.

Он представляет собой несколько толстых труб с заваренными торцами и перемычками из тонких трубок. В простейшем варианте это вообще может быть одна толстая труба, идущая по периметру помещения.

Забавно сравнить теплоотдачу стального регистра с занимающей сопоставимый объем в комнате алюминиевой батареей современного образца. Разницы в теплоотдаче в разы.

Как за счет большей теплопроводности алюминия, так и за счет огромной поверхности теплообмена с воздухом у современного решения. Об эстетике в случае регистра говорить, сами понимаете, не приходится вообще.

Однако регистр был решением дешевым и доступным. К тому же крайне редко требовал ремонта или обслуживания: забитая даже наполовину труба продолжала греть, ну а проваренный электросваркой шов течь начинал примерно после пятисотого удара кувалдой.

Способы увеличения теплоотдачи

С точки зрения отдачи в пространство максимального количества тепла менее эффективен, чем труба, разве что шар. У него еще худшее соотношение поверхности к объему.

Что же делали предки, чтобы эти чудовищные отопительные приборы грели?

Как увеличить теплоотдачу трубы?

  • Увеличивали инфракрасное излучение отопительного прибора . Простая окраска регистра черной матовой краской давала ощутимое потепление в помещении.
    Кстати, нынешнее хромирование современных змеевиков для ванной выглядит эффектно, но с точки зрения теплоотдачи прибора — идиотизм чистейшей воды.

  • Увеличена теплоотдача труб стальных может быть и благодаря оребрению, наваренному или смонтированному иным способом снаружи трубы .
    Конечная стадия реализации этого способа — конвектор, виток трубы с поперечными пластинами. Разумеется, в этом случае все методы расчета теплоотдачи трубы неприменимы — труба отдает в этом приборе меньшую часть тепла.

Потери тепла через трубы

В городской квартире все просто: и стояки, и подводка к отопительным приборам, и сами приборы находятся в обогреваемом помещении. Какой смысл переживать из-за того, сколько тепла рассеивает стояк, если оно служит той же цели — отоплению?

Однако уже в подъездах многоквартирных домов, в подвалах и в части складских помещений ситуация в корне иная. Обогреть нужно одно помещение, а подвести к нему теплоноситель через другое. Отсюда — попытки минимизировать теплоотдачу труб, по которым горячая вода поступает в батареи.

Теплоизоляция

Самый очевидный способ того, как может быть уменьшена теплоотдача трубы стальной — теплоизоляция этой трубы. Еще двадцать лет назад способов для этого было два: рекомендованный нормативной документацией (утепление стекловатой с обмоткой негорючей тканью; еще раньше внешнюю изоляцию вообще выполняли твердой с использованием гипсового или цементного раствора) и реалистичный: трубы просто заматывались тряпьем.

Сейчас появилась масса вполне адекватных способов ограничить потери тепла: тут и пенопластовые накладки на трубы, и разрезные оболочки из вспененного полиэтилена, и минеральная вата.

При строительстве новых домов эти материалы активно применяются; однако в жилищно-коммунальной системе ограниченность, вежливо говоря, бюджета приводит к тому, что трубы в подвалах по-прежнему просто заматывают сса… гм, рваными тряпками.

Цифры и формулы

Обе этих категории — расчет отопительных приборов и расчет потерь тепла по пути к ним — сводится к одному: нам нужно знать, сколько тепла отдает стальная труба при заданной температуре воды в ней и воздуха снаружи. Дополнительным условием является наличие или отсутствие теплоизоляции.

Весь расчет теплоотдачи стальных труб выглядит так : Q=K*F*dT, где:

Q — теплоотдача трубы в килокалориях;

K — коэффициент теплопроводности стальной трубы, зависящий, кроме материала, от диаметра трубы, разницы температур между теплоносителем и воздухом и количества ниток отопительного прибора;

F — площадь поверхности трубы или труб;

dT — температурный напор, который равен половине суммы температур на входе трубы и на выходе минус температура внутри помещения.

Коэффициент варьируется от 8 до 12,5 в зависимости от:

  • Диаметра трубы;
  • Количества ниток трубы в регистре (в случае отопительного прибора);
  • Температурного напора.

В случае теплоизолированной трубы результат умножается на КПД теплоизоляции, то есть на количество процентов тепла, которое она пропускает в окружающее пространство.

Так, возьмем регистр в три нитки из трубы-сотки длиной в один метр. Температуру в комнате берем равной 20 С; при прохождении через регистр температура теплоносителя падает с 81 до 79 С.

Помните, как рассчитывается поверхность цилиндра? S=2 πrh, длина окружности на высоту. Площадью перемычек и торцов в этом случае смело можно пренебречь.

Общая площадь каждой трубы регистра у нас окажется равной 2*3,1415*0,05*1=0,31415 м2. Таких трубы три; суммарная их площадь будет чуть меньше квадратного метра.

Наш регистр оставит в помещении всего-то 540 килокалорий тепла.

Заключение

Вот, в общем-то, и все премудрости, связанные с постепенно уходящими в прошлое стальными трубами и их способностью греть воздух. Последний на сегодня

совет: забыть их, как страшный сон, и обратить свой взор к более современным решениям.

На рынке присутствует немалое количество разного рода отопительных приборов, Тем не менее, самодельные радиаторы до сих пор используются. И наиболее часто встречаются регистры из труб. Регистры отопления — сварные или сборные конструкции из горизонтально расположенных труб, соединенных между собой перемычками для циркуляции теплоносителя.

Какие бывают

Отопительные регистры изготавливают из разного материала, имеют они разную форму. У каждой есть плюсы и минусы.

Из чего делают

Если говорить о материалах, то самый распространенный — сталь, а вернее стальные электросварные трубы. Сталь имеет не самую лучшую теплоотдачу, но это компенсируется невысокой ценой, легкостью в обработке, доступностью и большим выбором типоразмеров.

Совсем редко встречаются сделанные из нержавеющей трубы — для приличной мощности требуется большое количество труб, а сколько стоят изделия из нержавейки, вы имеете представление. Если и делали их, то, наверное, давно. Используют еще «оцинковку», но работать с ней сложнее — варить не получится.

Делают иногда медные регистры — они используются в тех сетях, где разводка сделана . Медь отличается высокой теплоотдачей (в четыре раза больше чем у стали) потому размеры у них бывают гораздо более скромные (и по длине и по диаметру использованных труб). К тому же сами трубы разводки (если они не ) отдают достаточное количество тепла. В то же время пластичность этого металла позволяет изгибать трубы без особых ухищрений и усилий, а сварку использовать только в местах соединения разных кусков. Но все эти плюсы нивелируются двумя большими минусами: первый — высокая цена, второй — капризность меди к условиям эксплуатации. По цене все ясно, а по эксплуатации немного пояснений:

  • требуется нейтральный и чистый теплоноситель, без твердых частиц
  • в системе нежелательно присутствие других металлов и сплавов, кроме совместимых — бронза, латунь, никель, хром, потому все фитинги и арматуру нужно будет искать из этих материалов;
  • обязательно тщательно выполненное заземление — без него при наличии воды начинается процессы электрохимической коррозии;
  • мягкость материала требует защиты — нужны кожухи и т.п.

Есть регистры из чугуна. Но они слишком громоздки. К тому же имеют очень большую массу, под них нужно делать не менее массивные стойки. Плюс ко всему чугун отличатся хрупкостью — один удар, и он может расколоться. Получается, что и этот тип регистров нуждается в защитных кожухах, а они снижают теплоотдачу и увеличивают стоимость. Причем устанавливать их — сложная и тяжелая работа. К плюсам можно отнести высокую надежность и химическую нейтральность: этому сплаву все равно, с каким теплоносителем работать.

В общем, медь и чугун — это непросто. Вот и получается, что оптимальный выбор — стальные регистры.

Виды регистров

Самый распространенный вид — регистры из гладких труб, и чаще всего — стальных электросварных. Диаметры — от 32 мм до 100 мм, иногда до 150 мм. Их делают двух типов — змеевидные и регистровые. Причем регистровые могут иметь два типа соединения: нитка и колонка. Нитка — это когда перемычки, по которым из одной трубы в другую перетекает теплоноситель, установлены то справа, то слева. Получается, что теплоноситель последовательно оббегает все трубы, то есть соединение последовательное. При соединении типа «колонка» все горизонтальные участки соединены между собой с обоих концов. В этом случае движение теплоносителя параллельное.

Любой тип регистров может использоваться для любого типа системы: с однотрубной и , с вертикальным и горизонтальным типом подачи. При любой системе большая теплоотдача будет при подключении подачи в верхний патрубок.

В случае использования в системах с естественной циркуляцией требуется соблюдать небольшой уклон в сторону движения теплоносителя порядка 0,5 см на один метр трубы. Такой маленький уклон объясняется большим диаметром (малым гидравлическим сопротивлением).

Делают эти изделия не только их круглых, но и из квадратных труб. Они практически ничем не отличаются, только работать с ними сложнее, да гидравлическое сопротивление чуть больше. Но к плюсам такого исполнения можно отнести более компактные размеры при том же объеме теплоносителя.

Есть еще регистры из труб с оребрением. В таком случае увеличивается площадь соприкосновения металла с воздухом, и теплоотдача повышается. Собственно, до сих пор в некоторых бюджетных новостройках строители ставят именно такие отопительные приборы: всем известная «труба с оребрением». При не самом лучшем внешнем виде они неплохо греют помещения.

Если любой регситр вставить ТЭН, можно получить комбинированный отопительный прибор. Он может быть отдельным, не связанным с системой, или использоваться как дополнительный источник тепла. Если радиатор будет изолированным с нагревом только от ТЭНа, необходимо в верхней точке поставить расширительный бачек (10% от общего объема теплоносителя). При нагреве от расширительный бачок, как правило, встроен в конструкцию. Если его нет (часто бывает в ), то и в этом случае необходима установка расширительного бачка. Если материал для регистров сталь, то бачок нужен закртыого типа.

Электроподогрев может пригодиться в самые сильные холода, когда не хватает. Также такой вариант может выручить в межсезонье, когда загружать и разгонять систему «на полную» нет смысла. Нужно лишь немного прогреть помещение. С котлами на твердом топливе такое невозможно. А такой вот запасной вариант поможет обогреться в межсезонье.

Расчет регистров из гладких труб

Стальные регистры отопления несложно сделать своими руками. Стоимость такой системы отопления будет зависеть от того, кто будет их варить. Если техникой сварки владеете сами, вариант — самый малобюджетный, если сварщику нужно будет платить, особой разницы в стоимости с недорогими не будет.

При этом регистры будут занимать большие площади, чем стандартные отопительные приборы: из-за незначительной поверхности соприкосновения с воздухом эффективность у них невысокая. Увеличивают теплоотдачу, поставив более мощный насос, но есть ограничения по скорости из-за возможных шумов в системе. О том,

Диаметры, как говорилось — от 32 мм до 100-150 мм. Большие размеры труб ведут к увеличению объема системы. При старте и разгоне системы это минус — пока нагреется теплоноситель, пройдет прилично времени. При работе большой объем — скорее плюс: более мягкие условия для котла. С другой стороны — при большом количестве теплоносителя регулировать температуру сложно.

Таблица теплоотдачи стальных труб разного диаметра для разных условий работы системы (кликните по картинке для увеличения ее размера)

Расстояние между двумя трубами в регистре маленьким быть не должно: так снижается теплоотдача. Потому их располагают на расстоянии не меньшем чем 1,5 радиуса. Количество рядов и длина регистра зависят от требуемой мощности, а также от диаметра выбранных труб. В общем случае (для средней полосы России, для помещений со средней теплоизоляцией и высотой потолков 3м) можно считать по теплоотдаче метра стальной трубы. Эти значения приведены в таблице. По ней вы сможете найти размер и количество регистров по площади помещения.

Теплоотдача одного метра стальных труб разного диаметра — для расчета регистра отопления по площади

Для расчета по тепловым потерям помещения есть усредненные данные по тепловой мощности погонного метра стальной трубы. Можно для стандартных условий использовать их. Если система работает на других температурах, требуется внести корректировки в большую или меньшую сторону.

Если эти таблицы вам не помогли, можно сделать расчет регистра по формуле.

Подставив соответствующие значения, вы найдете теплоотдачу одной труб при ваших условиях. Теплоотдача всех последующих (второй и более) будет чуть меньше. Найденное значение нужно умножить на 0,9. Так вы рассчитаете и сможете сделать регистр из гладких труб своими руками.

Как устанавливают

Вариантов установки два: навесить на стену или поставить на стойку. Выбор зависит от габаритов и массы полученной конструкции, а также от типа стен.

Достаточно часто делают комбинированную установку: варят стойки, которые затем крепят к стене. Таким способом можно установить даже очень массивные регистры. Также такой вариант установки обеспечивает высокий уровень безопасности.

Каждый такой отопительный прибор в верхней точке должен иметь . Он нужен для стравливания воздуха из системы.

Достоинства и недостатки

К достоинствам можно отнести простую конструкцию и несложный расчет, доступность материалов. Все это вместе позволяет делать регистры для отопления своими руками.

Следующий положительный моментбольшая часть тепла передается при помощи лучистой энергии, а она воспринимается человеком, как более приятная.

Следующий плюс — гладкая поверхность, что обеспечивает легкую уборку.

Отличное качество — совместимость с любыми системами — и с естественной и с принудительной циркуляцией.

Минусы тоже имеются: небольшая теплоотдача, подверженность коррозии, не самый привлекательный внешний вид, необходимость регулярной окраски ().

Итоги

Регистровое отопление в частных домах сегодня используют нечасто: есть большой выбор отопительных приборов для разных условий. Диапазон цен тоже достаточно широк. Но регистры из гладких труб и труб с оребрением часто используют для обогрева производственных, складских и вспомогательных помещений, теплиц, гаражей, оранжерей и др. То есть там, где внешняя привлекательность не имеет значения.