Способы умягчения воды: выбор лучшего варианта. Умягчение воды-что это? Правильное сочетание процессов умягчения воды

Бытует распространенное мнение, что воду из глубинных водоносных слоев можно употреблять в пищу без предварительной подготовки. Действительно, вода из них гораздо чище, чем из верховодки, однако, и в ней есть примеси, наличие которых может негативно отразиться на здоровье человека и работе оборудования. Чтобы подробно разобраться в вопросе, обратимся к специалистам отдела систем водоочистки компании БИИКС .

Вода - это прекрасный растворитель. Находясь в постоянном контакте с горными породами, она насыщается веществами, из которых эти породы состоят. Со временем накапливается огромное количество соединений. Состав воды зависит от типа породы, в которой проходит водоносный слой. Для Москвы и Подмосковья характерно высокое содержание карбонатных солей жесткости и соединений железа.

Длительное употребление в пищу воды повышенной жесткости приводит к отложениям конкрементов в почках (камней), при контакте кожа и волосы становятся сухими. Во время нагрева соединения выпадают в осадок, образуя твердый, плохо удаляемый налет. Приходят в негодность ТЭНы, засоряются трубы и шланги, повышается скорость износа подвижных частей оборудования.

Превышение жесткости может быть определено:

  • визуально : образование налета на сантехнике и нагревательных элементах (в чайнике, на ТЭНах стиральных и посудомоечных машин, бойлеров);
  • на вкус : в сравнении с бутилированной водой известной жесткости;
  • по пенообразованию : в жесткой воде образуется меньше пены и расход моющих средств выше;
  • в лаборатории .

Умягчение воды - это снижение концентрации солей жесткости и приведение этих показателей к рекомендованным значениям.

Нормы жесткости воды

В зависимости от концентрации солей жесткости, воду делят на:

  • мягкую - содержание солей не более 2 мг-экв/л;
  • нормальную - содержание солей в пределах 2 - 4 мг-экв/л;
  • жесткую - содержание солей в пределах 4 - 6 мг-экв/л;
  • высокой жесткости - содержание солей выше 6 мг-экв/л.

Российским стандартом, регламентирующим качество питьевой воды, установлено предельное значение концентрации солей жесткости на уровне 7,0 мг-экв/л. В то время, как ВОЗ устанавливает этот показатель на уровне 2,5 мг-экв/л, а в ЕЭС принят норматив 2,9 мг-экв/л. Таким образом, в качестве питьевой водопроводной воды в России допустима подача очень жесткой воды, с двукратным превышением рекомендаций ВОЗ.

Способы умягчения воды

Термический

Другими словами - кипячение. При повышении температуры, растворимый гидрокарбонат кальция (наиболее распространенное соединение, вызывающее жесткость) распадается на нерастворимый карбонат кальция и углекислый газ. Нерастворимая часть выпадает в осадок, газ улетучивается. Частично при кипячении уменьшается концентрация и сульфата кальция. Термический способ самый доступный в бытовых условиях, но не самый удобный и имеет низкую производительность. Кроме того, он не подходит для соединений магния.

Мембранный

Для умягчения воды таким способом используются молекулярные мембраны, которые пропускают только частицы воды, удаляя большую часть примесей (до 98%) . Так действуют фильтры обратного осмоса.

Не нужно пить загрязненную воду ради некоторых якобы полезных солей, которые в ней тоже содержатся. Намного лучше питать свой организм теми же самыми веществами, но находящимися в обычных продуктах. Собственно, человечество всю свою жизнь и берет их именно в хлебе, молоке, мясе, рыбе, овощах и фруктах. Например, в стакане молока одного лишь кальция в сотни раз больше, чем в стакане водопроводной. В некоторых случаях, для подготовки питьевой воды таким способом устанавливается минерализатор.

Химический (реагентный)

Суть способа - превратить растворимые соединения в нерастворимые. Для этого используются различные реактивы в зависимости от преобладания в воде солей того или иного типа. Для солей карбонатного типа используется известь, соединения натрия, сода и синтетические соединения, например, тринатрийфосфат. В итоге вода умягчается, но из-за присутствия реагентов в пищу употреблять ее нельзя.

Магнитный

На воду воздействуют путем наведения постоянного магнитного поля. Прохождение через магнитное поле меняет структуру солей жесткости. Молекулы перестают соединяться при нагревании и не образуют осадок, а также разрыхляют слой уже имеющейся накипи, которая растворяется в воде. Такой метод не снижает концентрацию солей, а препятствует их отложению в виде осадка. Для бытовых целей такая вода подходит хорошо: трубы, насосное оборудование и нагревательные элементы прослужат дольше. Эффективно умягчать воду можно с помощью магнитов можно только в небольших объемах и скорости потока не выше 0,5 м/с. С помощью магнитного умягчителя также снижается содержание железа.

Электромагнитный

Является усовершенствованной версией магнитного с той разницей, что избыток солей не только теряет способность выпадать в виде осадка, но и удаляется через отстойник в канализацию.

Ионообменный

Суть метода заключается в замещении ионов кальция и магния на ионы натрия, соединения которого растворимы и не оказывают негативного влияния на здоровье и оборудование.

Современные системы очистки питьевой воды нередко сочетают несколько способов, которые зависят от анализа воды из скважины. Определить, какой тип умягчителя нужен в вашей ситуации, помогут специалисты по водоочистке. Для артезианских скважин на территории Подмосковья, где преобладают карбонаты, рекомендуется установка умягчителей воды ионообменного типа.

Конструктивно устройство представляет собой пластиковый баллон, внутрь которого в виде гранул засыпается полимерная ионообменная смола, способная отдавать ионы натрия и поглощать ионы кальция и магния. Вода, поступающая в баллон, медленно проходит сквозь смолу на которой происходит реакция замещения. Когда концентрация ионов натрия в смоле падает, необходимо произвести процесс промывки и регенерации. С баллоном для этих целей соединен солевой бачок, откуда поступает раствор хлорида натрия. Процесс контролируется автоматическим блоком управления. Во время промывки подача умягченной воды прекращается, поэтому регенерация программируется на ночное время. Если разбор воды происходит непрерывно, то рекомендуется устанавливать два баллона и запускать регенерацию поочередно. Периодически, в среднем через 3-4 года, смолу необходимо менять, так как количество циклов её восстановления ограничено. Производительность системы зависит от объема загрузки в баллоне.

Статья подготовлена при участии специалистов отдела систем водоочистки сайта

Известно, что важнейшей характеристикой пресной воды является ее жесткость. Под жесткостью понимают количество миллиграмм-эквивалентов ионов кальция или магния в 1 л воды. 1 мг÷экв/л жесткости соответствует содержанию 20,04 мг Са 2+ или 12,16 мг Mg 2+ . По степени жесткости питьевую воду делят на очень мягкую (0-1,5 мг÷экв/л), мягкую (1,5-3 мг÷экв/л), средней жесткости (3-6 мг÷экв/л), жесткую (6-9 мг÷экв/л) и очень жесткую (более 9 мг÷экв/л). Наилучшие вкусовые свойства имеет вода с жесткостью 1,6-3,0 мг÷экв/л, а, согласно СанПиН 2.1.4.1116-02, физиологически полноценная вода должна содержать солей жесткости на уровне 1,5-7 мг÷экв/л. Однако при жесткости воды выше 4,5 мг÷экв/л происходит интенсивное накопление осадка в системе водоснабжения и на сантехнике, нарушается работа бытовых приборов. Обычно умягчение проводят до остаточной жесткости 1,0-1,5 мг÷экв/л, что соответствует зарубежным нормативам по эксплуатации бытовой техники. Вода, имеющая жесткость ниже 0,5 мг÷экв/л является коррозионно-активной по отношению к трубам и котлам, способна вымывать отложения в трубах, накапливающиеся при долгом застаивании воды в системе водоснабжения. Это влечет за собой появление неприятных запаха и вкуса воды.

Умягчение воды осуществляют методами:
- термическим, основанным на нагревании воды, ее дистилляции или вымораживании;
- реагентными, при которых находящиеся в воде ионы Са (II) и Mg (II) связывают различными реагентами в практически нерастворимые соединения;
- ионного обмена, основанного на фильтровании умягчаемой воды через специальные материалы, обменивающие входящие в их состав ионы Na (I) или Н (I) на ионы Са (II) и Mg (II), содержащиеся в воде;
- диализа; комбинированным, представляющим собой различные сочетания перечисленных методов.

Выбор метода умягчения определяется качеством воды, необходимой глубиной умягчения и технико-экономическими соображениями.

Умягчение воды катионированием основано на явлении ионного обмена, сущность которого состоит в способности ионообменных материалов или ионитов поглощать из воды положительные ионы в обмен на эквивалентное количество ионов катионита. Каждый катионит обладает определенной обменной емкостью, выражающейся количеством катионов, которые катионит может обменять в течение фильтроцикла. Обменную емкость катионита измеряют в грамм-эквивалентах задержанных катионов на 1 м 3 катионита, находящегося в набухшем (рабочем) состоянии после пребывания в воде, т.е. в таком состоянии, в котором катионит находится в фильтрате. Различают полную и рабочую обменную емкость катионита. Полной обменной емкостью называют то количество катионов кальция и магния, которое может задержать 1 м 3 катионита, находящегося в рабочем состоянии, до того момента, когда жесткость фильтрата сравнивается с жесткостью исходной воды. Рабочей обменной емкостью катионита называют то количество катионов Са +2 и Мg +2 , которое задерживает 1 м 3 катионита до момента «проскока» в фильтрат катионов солей жесткости. Обменную емкость, отнесенную ко всему объему катионита, загруженного в фильтр, называют емкостью поглощения.

При пропуске воды сверху вниз через слой катионита происходит ее умягчение, заканчивающееся на некоторой глубине. Слой катионита, умягчающий воду, называют работающим слоем или зоной умягчения. При дальнейшем фильтровании воды верхние слои катионита истощаются и теряют обменную способность. В ионный обмен вступают нижние слои катионита и зона умягчения постепенно опускается. Через некоторое время наблюдаются три зоны: работающего, истощенного и свежего катионита. Жесткость фильтрата будет постоянной до момента совмещения нижней границы зоны умягчения с нижним слоем катионита. В момент совмещения начинается «проскок» катионов Са +2 и Мg +2 и увеличение остаточной жесткости, пока она не станет равной жесткости исходной воды, что свидетельствует о полном истощении катионита. Рабочую обменную емкость фильтра Ер г÷экв/ м 3 , можно выразить так: Ер = QЖи; Ер = ер Vк.

Объем загруженного в фильтр катионита в набухшем состоянии Vк = аhк.
Формула для определения рабочей обменной емкости катионита, г÷экв/ м 3: ер = QЖи /аhк; где Жи — жесткость исходной воды, г÷экв/ м 3 ; Q — количество умягченной воды, м 3 ; а — площадь катионитового фильтра, м 2 ; hк — высота слоя катионита, м.

Обозначив скорость фильтрования воды в катионитовом фильтре vк, количество умягченной воды можно найти по формуле: Q = vк aTk = ераhк /Жи; откуда длительность работы катионитового фильтра (межрегенерационный период) находим по формуле: Tk = ерhк /vк Жи.

По исчерпании рабочей обменной способности катионита его подвергают регенерации, т.е. восстановлению обменной емкости истощенного ионообменника путем пропуска раствора поваренной соли.

В технологии умягчения воды широко применяют ионообменные смолы, которые представляют собой специально синтезированные полимерные нерастворимые в воде вещества, содержащие в своей структуре ионогенные группы кислотного характера NaSO 3 - (сильнокислотные катиониты). Ионообменные смолы подразделяют на гетеропористые, макропористые и изопористые. Гетеропористые смолы на дивинилбензоловой основе характеризуются гетерогенным характером гелевидной структуры и небольшими размерами пор. Макропористые имеют губчатую структуру и поры свыше молекулярного размера. Изопористые имеют однородную структуру и полностью состоят из смолы, поэтому их обменная способность выше, чем у предыдущих смол.

Качество катионитов характеризуется их физическими свойствами, химической и термической стойкостью, рабочей обменной емкостью и др. Физические свойства катионитов зависят от их фракционного состава, механической прочности и насыпной плотности (набухаемости). Фракционный (или зерновой) состав характеризует эксплуатационные свойства катионитов. Он определяется ситовым анализом. При этом учитываются средний размер зерен, степень однородности и количество пылевидных частиц, непригодных к использованию.

Мелкозернистый катионит, обладая более развитой поверхностью, имеет несколько большую обменную емкость, чем крупно-зернистый. Однако с уменьшением зерен катионита гидравлическое сопротивление и расход электроэнергии на фильтрование воды увеличиваются. Оптимальные размеры зерен катионита, исходя из этих соображений, принимают в пределах 0,3...1,5 мм. Рекомендуется применять катиониты с коэффициентом неоднородности Кн = 2.

Приведем характеристики некоторых катионоообменников. Среди сильнокислотных катионообменников отечественного производства, разрешенных к применению для хозяйственно-питьевого водоснабжения, можно выделить КУ-2-8чС. Получают его сульфированием гранульного сополимера стирола с 8% дивинилбензола. КУ-2-8чС по структуре и свойствам близок к следующим зарубежным сульфокатионитам особой степени чистоты: амберлайту IRN-77 (США), зеролиту 325 NG (Англия), дауэксу HCR-S-Н (США), дуолайту ARC-351 (Франция), вофатиту RH (Германия). По внешнему виду — сферические зерна от желтого до коричневого цвета, размером 0,4-1,25 мм, удельный объем не более 2,7 см 3 /г. Полная статическая обменная емкость не менее 1,8 г÷экв/л, мин, динамическая обменная емкость с полной регенерацией не менее 1,6 г÷экв/л.

В настоящее время нашли широкое применение сильнокислотные катиониты фирмы Пьюролайт: C100, С100Е, С120Е (аналоги отечественных смол КУ-2-8, КУ-2-8чС). Применяется ионообменная смола фирмы Пьюролайт С100Е Аg (обменная емкость 1,9 г÷экв/л, насыпная масса 800-840 г/л), представляющая собой серебросодержащий катионит для водоумягчения, обладающий бактерицидным действием. Существует отечественный аналог КУ-23С — макропористый катионит бактерицидного действия (статическая обменная емкость 1,25 г÷экв/л, насыпная масса 830-930 г/л).

Применяется для умягчения питьевой воды как в промышленности, так и в быту катионит Пьюрофайн С100ЕF — он имеет ряд преимуществ по сравнению с общепринятыми смолами для водоумягчения. Обладает намного большей рабочей емкостью при обычных скоростях потока, повышенной рабочей емкостью при высоких скоростях потока, при меняющемся и прерывающемся потоке. Минимальная общая обменная емкость 2,0 г÷экв/л. Особенность катионита С100ЕF состоит в том, что он требует меньшего объема и количества регенеранта (NaCl).

Применяется сильнокислотный катионит IONAС/С 249 для умягчения воды бытового и муниципального применения. Обменная емкость 1,9 г÷экв/л.

Умягчение воды натрий-катионитовым методом на указанных смолах: жесткость воды снижается при одноступенчатом натрий-катионировании до 0,05...0,1, при двухступенчатом — до 0,01 мг÷экв/л.

После истощения рабочей обменной емкости катионита он теряет способность умягчать воду и его необходимо регенерировать. Процесс умягчения воды на катионитовых фильтрах слагается из следующих последовательных операций: фильтрование воды через слой катионита до момента достижения предельно допускаемой жесткости в фильтрате (скорость фильтрования в пределах 10...25 м/ч); взрыхление слоя катионита восходящим потоком умягченной воды, отработанного регенерата или отмывных вод (интенсивность потока 3...4 л/(см 2); спуска водяной подушки во избежание разбавления регенерирующего раствора; регенерации катионита посредством фильтрования соответствующего раствора (скорость фильтрования 8...10 м/ч). На регенерацию обычно затрачивают около 2ч, из них на взрыхление — 10...15, на фильтрование регенерирующего раствора — 25...40, на отмывку — 30...60 мин.

Процесс регенерации на практике ограничиваются однократным пропуском соли при жесткости умягченной воды до 0,20 мг÷экв/л или двукратным — при жесткости ниже 0,05 мг÷экв/л.

Умягчение воды – процесс понижения жесткости. Жесткость воды обусловлена наличием солей кальция и магния. Для снижения жесткости воды применяют следующие методы: реагентный; катионитовый; электродиализ; мембранные технологии.

Реагентные методы умягчения воды основаны на переводе ионов кальция и магния в малорастворимые и легко удаляемые соединения с помощью химических веществ. Из реагентных способов умягчения наиболее распространен известково − содовый метод. Сущность его состоит в переводе солей Ca 2+ и Mg2+ в малорастворимые соединения CaCO 3 и Mg(OH) 2 , выпадающие в осадок. При известково − содовом методе процесс проводят в две стадии. Первоначально из воды удаляют органические примеси и значительную часть карбонатной жесткости, используя соли алюминия или железа с известью. После этого вводят соду. Более глубокое умягчение воды может быть достигнуто ее подогревом.

Содово−натриевый метод применяют для умягчения воды, карбонатная жесткость которой немного больше некарбонатной.

Бариевый метод умягчения воды применяют в сочетании с другими методами. Вначале вводят барий − содержащие реагенты (Ba(OH) 2 , BаCO 3 , BaAl 2 O 4) для устранения сульфатной жесткости, затем после осветления воду обрабатывают известью и содой для доумягчения. Из-за высокой стоимости реагентов этот метод применяют очень редко.

Фосфатирование применяют для доумягчения воды, после реагентного умягчения известково−содовым методом, что позволяет получить остаточную жесткость 0,02−0,03 мг-экв/л. Такая глубокая доочистка позволяет в некоторых случаях не прибегать к катионитовому умягчению. Фосфатное умягчение обычно осуществляется при подогреве воды до 105−150 ◦ С. Из-за высокой стоимости тринатрийфосфата фосфатный метод используется для доумягчения воды, прошедшей предварительное умягчение известью и содой.

Катионитовый метод основан на способности ионообменных материалов обменивать присутствующие в воде катионы кальция и магния на обменные катионы натрия или водорода. В качестве катионитов применяют органические катиониты искусственного происхождения. Катионитовый метод позволяет достичь глубокого умягчения воды.

N-катионитовый метод применяют для умягчения воды с содержанием взвеси не более 8 мг/л и цветностью не более 30 град. Жесткость воды снижается при одноступенчатом Na- катионировании до 0,05…,1, при двухступенчатом – до 0,01 мг − экв/л. Процесс Na- катионирования описывается следующими реакциями обмена:

2Na[K] + Ca (HCO 3) ↔ Ca[K] +2NaHCO 3 ,

где [K] – нерастворимая матрица полимера.

После истощения рабочей обменной емкости катионита он теряет способность умягчать воду и его необходимо регенерировать. Процесс умягчения воды на катионитовых фильтрах слагается из следующих последовательных операций: фильтрование воды через слой катионита до момента достижения предельно допускаемой жесткости в фильтрате; взрыхление слоя катионита восходящим потоком умягченной воды; спуск водяной подушки во избежание разбавления регенерирующего раствора; регенерация катионита посредством фильтрования соответствующего раствора; отмывка катионита неумягченной водой.


Наибольшее практическое применение нашло сочетание процессов

Н – Na − катионирования, в результате чего может быть достигнута требуемая щелочность или кислотность воды. Процесс Н – Na-катионирования может осуществляться по схемам: параллельное Н– Na-катионирование, последовательное Н – Na − катионирование и совместное Н – Na − катионирование.

Электродиализ – метод разделения растворенных веществ, значительно отличающихся молекулярными массами. Он основан на разных скоростях диффузии этих веществ через полупроницаемую мембрану, разделяющую концентрированный и разбавленный растворы. Диализ осуществляется в мембранных аппаратах с нитро − и ацетатцеллюлозными пленочными мембранами.

Опреснение и обессоливание воды. Существующие методы опреснения и обессоливания воды подразделяются на две группы: с изменением и без изменения агрегативного состояния воды. К первой группе методов относят дистилляцию, замораживание, газогидратный метод; ко второй группе – ионный обмен, электродиализ, обратный осмос, гиперфильтрацию.

Дистилляционный метод основан на способности воды при нагревании испаряться и распадаться на пресный пар и соленый рассол. При нагревании соленой воды до температуры более высокой, чем температура кипения, вода начинает кипеть. Образовавшийся пар при давлении менее 50кг/см 2 практически не способен растворять содержащиеся в опресняемой воде соли, поэтому при его конденсации получается пресная вода.

Ионообменный метод опреснения и обессоливания основан на последовательном фильтровании воды через Н − катионитовый и ОН - − анионитовый фильтры. Вода, содержащая NaCl, обессоливается по следующим схемам:

Н[K] + NaCl ↔ Na[K] +HCl.

OH[A] +HCl ↔ Cl[A] + H 2 O

На ионообменные установки подается вода, содержащая соли до 3,0 г/л, сульфаты и хлориды – до 5 мг/л, взвешенных веществ – не более 8 мг/л и имеющая цветность не выше 30 град и перманганатную окисляемость до 7 мгО 2 /л.

В соответствии с необходимой глубиной обессоливания воды применяют одно-, двух- и трехступенчатые установки.

В одноступенчатых ионитовых установках воду последовательно пропускают через группу фильтров с сильнокислотным Н − катионитом, а затем через группу фильтров со слабоосновным анионитом: свободный диоксид углерода удаляется в дегазаторе, который устанавливается после катионитовых или анионитовых фильтров. В каждой группе должно быть не менее двух фильтров.

Ионитовые установки с двухступенчатой схемой обессоливания воды состоят из Н −катионитовых и анионитовых фильтров первой ступени (со слабоосновным анионитом) дегазатора для удаления свободной углекислоты, Н − катионитовых и анионитовых фильтров второй ступени (с сильноосновным анионитом). Анионитовые фильтры первой ступени задерживают анионы сильных кислот, второй ступени – анионы слабых кислот (органических кислот и кремневой кислоты).

В установках с трехступенчатой схемой на третьей ступени применяют фильтр со смешанной загрузкой катионита и анионита или Н − катионитовые фильтры третьей ступени и за ними анионитовые фильтры третьей ступени с сильноосновным анионитом.

Электродиализным называется процесс удаления из раствора ионов растворенных веществ путем избирательного их переноса через мембраны, селективные к этим ионам, в поле постоянного электрического тока.

При наложении постоянного электрического поля на раствор ионизированных веществ (электролитов) возникает направленное движение ионоврастворенных солей, а также ионов H + и ОН - . Причем катионы движутся к катоду, а анионы – к аноду. Если раствор разделить на секции с помощью специальных мембран, проницаемых только для катионов или только для анионов, то катионы, двигаясь к катоду, будут свободно проходить через катионитовую мембрану. Для анионов же она практически непроницаема. Анионы, пройдя через анионитовую мембрану, будут двигаться к аноду. Таким образом раствор разделится на обессоленную воду, находящуюся между мембранами, и концентрированные рассолы – щелочной католит и кислый анолит.

В настоящее время для обессоливания воды используются многокамерные плоскорамерные аппараты.

Область применения электродиализа ограничивается солесодержанием растворов 0,5 − 10 г/л, так как при меньших концентрациях падает проводимость растворов и уменьшается эффективность использования электроэнергии, а при больших − процесс становиться экономически не выгоден вследствие существенного роста энергозатрат, так как затраченная электроэнергия пропорциональна количеству удаляемых ионов.

Опреснение воды гиперфильтрацией заключается в фильтровании соленой воды через специальные полупроницаемые мембраны, которые пропускают воду, а задерживают ионы растворенных в ней солей. При этом необходимо создать избыточное давление для фильтрования воды через мембрану.

Обезжелезивание воды. В природной воде, особенно в воде подземных источников в больших количествах встречается железо в растворенном виде и часто, марганец. Норма содержания в питьевой воде для железа по СанПиН 2.1.4.1074 − 01 составляет 0,3 мг/л и 0,1 мг/л для марганца.

Железо находится в воде в форме:

Двухвалентного железа – в виде растворенных ионов Fe 2+ ;

Трехвалентного;

Органического железа (в виде растворимых комплексов с природными органическими кислотами (гуматов));

Бактериального железа – продукта жизнедеятельности железобактерий (железо находится в оболочке).

В подземных водах присутствует в основном растворенное двухвалентное железо в виде ионов Fe 2+ . Трехвалентное железо появляется после контакта такой воды с воздухом и в изношенных системах водораспределения при контакте воды с поверхностью труб.

В поверхностных водах железо находится в трехвалентном состоянии, а также входит в состав органических комплексов и железобактерий. Если в воде присутствует только трехвалентное железо в виде взвеси, то хватает простого отстаивания или фильтрации.

Для удаления двухвалентного железа и марганца сначала их переводят в нерастворимую форму, окисляя их кислородом воздуха, хлором, озоном или перманганатом калия с последующей фильтрацией через механический фильтр с песчаной, антрацитовой или гравийной загрузкой. Процесс окисления и формирования хлопьев достаточно длителен.

2 Fe 2+ +О 2 +2Н + =2 Fe 3+ +2ОН -

Fe 3+ +ОН -= Fe(ОН) 3 ↓.

Принципиально новыми продуктами, появившимися в последнее время, являются каталитические загрузки, позволяющие проводить обезжелезивание и деманганацию с высокой эффективностью. К таким загрузкам относятся Бирм (Birm), пиролюзит, магнетит, Гринсенд (Manganese Greensand, MZ−10) и МТМ. Эти природные материалы содержат перманганат марганца и пм фильтрации через эти загрузки происходит окисление железа и марганца, перевод их в нерастворимую гидроокись, которая осаждается на загрузке. Пленка из окислов марганца расходуется на окисление железа и марганца, и поэтому ее необходимо восстанавливать. Для этого загрузку периодически обрабатывают раствором перманганата калия либо дозируют его в воду с помощью системы пропорционального дозирования перед поступлением ее в фильтр.

Фторирование и обесфторивание воды. Недостаток фтора в воде так же как, и его избыток оказывает негативное воздействие на здоровье человека. Оптимальное содержание фтора в воде 0,7 − 1,5 мг/л.

Обесфторивание воды осуществляется с применением следующих методов: реагентный, фильтрование через фторселективные материалы, к которым относится: активированный оксид алюминия; фосфатсодержащие сорбенты; магнезиальные сорбенты (оксифториды магния); активированные угли; алюмомодифицированные материалы.

При реагентном методе обесфторивания воды применяются следующие реагенты: сульфат алюминия, полиоксихлориды алюминия.

Дезодорация воды. Запахи и привкусы воды обусловлены присутствием в ней микроорганизмов, некоторых неорганических (сероводород и железо) и органических веществ. Иногда органолептические свойства воды ухудшаются при передозировке реагентов или при неправильной эксплуатации водоочистных сооружений. Универсальных методов дезодорации не существует, но использование некоторых из них в сочетании обеспечивают требуемую степень очистки. Если вещества, вызывающие неприятные привкусы и запахи, находятся во взвешенном и коллоидном состоянии, то хорошие результаты дает их коагулирование. Привкусы и запахи, обусловленные неорганическими веществами, которые находятся в растворенном состоянии, извлекают дегазацией, обезжелезиванием, обессоливанием. Запахи и привкусы, вызванные органическими веществами, отличаются большой стойкостью. Их извлекают путем оксидации и сорбции. Для устранения запахов и привкусов, вызванных находящимися в воде микроорганизмами, применяют окисление с последующей сорбцией веществ. Запахи и привкусы природной воды могут быть устранены совместно с хлорированием или озонированием, а также окислением перманганатом калия. Действие окислителей эффективно лишь по отношению к ограниченному числу загрязнений. Недостатком окислительного метода является необходимость дозирования окислителя.

Подготовка воды в оборотных системах охлаждения. Оборотные системы промышленных предприятий обеспечиваются водой для охлаждения, которая перекачивается из искусственного охладителя, где вода отдает тепло воздуху. В оборотных системах вода охлаждается в градирнях, брызгальных бассейнах, прудах – охладителях.

Вода, циркулирующая в оборотной системе охлаждения, подвергается физико − химическим воздействиям: упариванию, нагреванию, охлаждению, аэрации, многократному контакту с охлаждаемой поверхностью в результате этого изменяется ее состав. Особенно часто нарушается нормальная работа циркуляционных систем в результате появления на стенках теплообменных аппаратов накипи, биологических обрастаний, коррозии металлических элементов систем. Отложения на стенках аппаратов и труб вызывают также увеличение потерь напора при движении по ним воды, ухудшение условий теплопередачи и уменьшение расходов охлаждающей воды, что приводит к снижению эффекта охлаждения, нарушению технологических режимов работы теплообменных аппаратов. Потери воды за счет испарения и разбрызгивания компенсируются добавочной водой из источника.

Потери воды на испарение Q 1 определяют по формуле:

Q 1 =k 1 ∆tQ o ,

где k 1 – коэффициент, зависящий от температуры воздуха; ∆t − разность температур до и после охлаждения; Q o – расход охлаждаемой воды, м 3 /ч.

Потери воды из системы на разбрызгивание Q 2 зависят от типа, конструкции и размеров охладителя и определяются по формуле:

где k 2 – коэффициент потерь воды на разбрызгивание.

Необходимость обработки охлаждающей воды для борьбы с отложениями накипи возникает в системах оборотного водоснабжения. Основным соединением, встречающимся в составе накипи в охлаждающих системах, является карбонат кальция CaCO 3 . Для предотвращения образования карбоната кальция применяют следующие методы обработки воды:

1. Освежение оборотной воды, т.е. непрерывное добавление в систему свежей воды с меньшей карбонатной жесткостью и сбросом (продувкой) части отработавшей воды.

2. Введение в добавочную воду фосфатов, тормозящих процесс кристаллизации CaCO 3 .

3. Подкисление воды. При этом карбонатная жесткость свежей воды переходит в некарбонатную, соли которой не выпадают в осадок, что приводит к снижению рН и возрастанию концентрации свободной углекислоты СО 2 .

4. Умягчение воды в целях снижения содержания ионов Са 2+ и Мg 2+ , которые в виде нерастворимых солей удаляются из воды отстаиванием при известковании или в результате катионирования.

5. Рекарбонизация оборотной воды – возмещение потерь равновесной углекислоты.

6. Магнитная акустическая обработка воды.

Для борьбы с развитием в оборотных системах биологических обрастаний наибольшее распространение получила обработка воды хлором и медным купоросом.

Системы охлаждения теплообменных аппаратов подвержены процессам электрохимической и биологической коррозии. Предотвращения коррозионного действия воды может быть достигнуто одним из следующих способов:

1. Нанесение защитных покрытий на омываемые водой металлические поверхности.

2. Удаление из воды коррелирующих агентов (кислорода, сероводорода, свободной углекислоты).

3. Нанесение карбонатной, силикатной или фосфатной пленки на внутренние поверхности труб.

Статья № 118

Процессы для умягчения воды


Процессы для умягчения воды


Большое количество информации порождает бессмыслицу и запутанность. Проблема, вместо того, чтобы быть решенной перерастает в дилемму. Это утверждение особенно справедливо для ситуации, сложившейся с жесткой водой и в тот момент, когда нужно определить процессы для умягчения воды . Что делать: проводить удаление накипи в котле или жесткая вода все-таки может быть использована? Наверное, ответ будет положительным и средство от накипи применять нужно. Ведь доказано, что известковый налет и отложения часто наносят сильный вред санитарной и бытовой технике.
С другой стороны есть информация о том, что, мол, даже вода из родников потому и вкусная, что там содержатся ионы кальция и магния (именно они, как вы помните, являются главной причиной образования накипи). Также многие врачи заявляют, что в нашей стране у каждого человека наблюдается недостаток кальция и магния в организме, что пагубно для здоровья и ведет к нарушениям в костной системе. Известно также, что именно вода, насыщенная «накипными» солями, является основным источником, из которого можно получить необходимые человеку вещества. Но, при этом, процессы для умягчения воды всё же необходимы.
С одной стороны умягчение воды будто бы не требуется, а с другой – как же тогда уберечь бытовую технику? Между тем, примеров удивительных свойств применения мягкой воды огромное множество: только из мягкой воды готовят чешское пиво лучших сортов, а чай и кофе становятся более ароматными и вкусными. Если вы были в турецком отеле, то наверняка помните, насколько ваша кожа была приятна на ощупь после посещения душа. Это происходит потому, что там используется умягчитель воды для котла и труб .
Перейдем от теории к практике. В России один человек в среднем расходует на себя около 300-400 литров воды, из которых основная часть приходится на бытовые нужды, и только около 5-10 литров мы тратим на приготовление пищи. Что касается питья, то здесь цифры еще меньше – мы выпиваем всего 1-2 литра.
В связи с этим напрашивается будто бы единственное правильное решение – для питьевой воды приобретать жесткую воду (покупать в бутылках), а для техники использовать умягчитель воды. Пожалуй, это самое лучший способ, который позволит избежать постоянных технических поломок, облегчит и разгрузит систему водоснабжения от заторов и позволит сэкономить на моющих средствах. Но сделать это не так легко, как кажется, особенно в нашей стране. Процессы для умягчения воды бывают разными.
Конечно, коммунальные службы делают все возможное для того, чтобы предварительно очистить воду, но, по сути, от них мало что зависит, их умягчение воды лишь поверхностное. Жесткая вода поступает в квартиры граждан практически напрямую, не проходя необходимой очистки. Ни одно средство от накипи при этом не используется.
Совсем другая ситуация сложилась в зарубежных странах, где процесс поступления воды и очистка от накипи очень хорошо организованы. На Западе водоподготовка продумана до мелочей, ведь там действительно очищают воду, но далеко не всю. Разводка коммуникаций проектируется таким способом, что мягкая вода подается лишь в систему горячего водоснабжения. Это позволяет увеличить срок службы котла и минимизирует производимые затраты.
Очистка от накипи котла и теплообменника , этот процесс умягчения воды происходит благодаря тому, что в котловый контур поступает умягченная вода. При этом вода, находящаяся в системе холодного водоснабжения, не подвергается обработке – жесткая вода подается в первозданном виде. Но здесь есть одна хитрость. Дело в том, что поступающая горячая вода смешивается с холодной и дает на выходе 1,5-2 мг-экв/л. Однако такое средство от накипи используется не всегда. К примеру, для воды в сливных бочках унитаза, а также воды, предназначенной для полива газонов, обработка не применяется.
Итак, с теорией и заграничной практикой по проведению процессов для умягчения воды и комплекса таких действий, как водоподготовка, мы знакомы. Что же делать нам, в наших российских условиях для того, чтобы как можно более эффективно и без особых затрат добиться, чтобы происходило естественное удаление накипи и снижение жёсткости воды ?

Сочетание процессов для умягчения воды

Для этого, в первую очередь, желательно быть в курсе того, какова жесткость именно вашей воды. Если хотите узнать, то сделать это так просто не получится – придется отнести анализ воды на пробу в специальную лабораторию, где определяют пригодность воды. Существует классификация, согласно которой, вода с жесткостью 1,5-3 мг-экв/л считается мягкой, с показателями в 3-6 мг-экв/л – умеренно жесткой. Действительно жесткая вода содержит от 6 до 9 мг-экв/л катионов солей. В соответствии с ГОСТ – вода, которая поступает из крана, должна содержать 7 мг-экв/л катионов солей. Сочетание процессов для умягчения воды позволит максимально снизить жёсткость.
Следует заметить, что этот параметр – 7 мг-экв/л выводился без учета потребностей людей, исходя из времени выхода из строя труб. Трубопроводная система изнашивается гораздо быстрее при воде с жесткостью выше 7 мг-экв/л. Получается, что все существующие нормы были введены, во избежание зарастания известью и предупреждения скорого вывода трубопровода из строя.
Однако чтобы не мучить себя, нужен ли вам умягчитель воды, можно определить уровень содержания солей на глаз. Однако, это не так эффективно, как сочетание процессов для умягчения воды, например с разными средствами от накипи. От жесткой воды на душевом рассеивателе остается известковый налет, а кожа после водных процедур часто сохнет, шелушится, становясь при этом грубой. Количество накипи, которая остается после кипячения воды в чайнике, ни о чем не говорит, поскольку она остается даже при использовании умягченной воды.
Возвращаемся к поставленной проблеме: как же решить ее наиболее эффективным образом – так, чтобы сэкономить финансы и уберечь технику?
На данный момент существует множество способов по проведению такой процедуры, как водоподготовка. Самым простым из них всегда было и остается обычное кипячение. Такое умягчение воды эффективно при карбонатной жесткости (временная жесткость). Гидрокарбонат при термическом воздействии выпадает в осадок, выделяется углекислый газ. Данный метод используют не только в быту, но и в промышленности. Он особенно результативен при наличии дарового тепла.
Помимо этого, иногда используются реагентные методы. В процессе умягчения воды и воздействия химвеществ соли кальция переводятся в нерастворимые соединения, которые впоследствии образуют осадок. Сфера применения – станции муниципальной подготовки воды. Удаление накипи происходит при добавлении гашеной извести и соды. Это устраняет мутные взвеси, а также способствует умягчению воды.
Однако, сочетание процессов для умягчения воды и воздействие реагентами имеет весомые недостатки, которые не позволяют использовать этот метод в домашних условиях. Во-первых, нужна точная дозировка веществ. Во-вторых, их надо где-то хранить. В-третьих, очистка от накипи оставляет большое количество твердых отходов.
В древности воду смягчали, добавляя в нее печную золу. Не менее эффективный способ – добавление соды, в пропорциях 1-2 чайные ложки на ведро воды. Это, конечно, решает проблему, но не в таких масштабах, в каких нам нужно. Плюс ко всему, это требует времени и наличия необходимых элементов. Мы же выяснили, что человек потребляет около 300 литров воды в день – а это много для того, чтобы каждый раз добавлять в воду соду, кипятить ее или смешивать с золой.
Следующими способами являются электродиализ и обратный осмос. Методы используются при обессоливании, смягчении и подготовке воды к питью. Довольно широко используется способ умягчения воды, основанный на ионообменных смолах, в ходе которого происходит обмен «жестких» ионов на ионы натрия смолы. Регенерация смолы, полученной в ходе ионного обмена, осуществляется при использовании раствора поваренной соли. Импортные смягчители изготовлены в виде напорного бака, имеющего высокую прочность. Ионообменная смола находится внутри такого баллона.
Сейчас существует множество различного оборудования, предназначенного для умягчения воды. Однако наиболее мобильным, эффективным и практически безотходным являются электромагнитные умягчители. По сравнению с теми же процессами для умягчения воды и осмосными и ионообменными установками, они гораздо дешевле, компактнее и не создают никакого шума, а также не имеют побочных эффектов. Важный параметр – это время очистки и объем воды, который может быть очищен за определенный промежуток времени. По сравнению с существующими аналогами, электромагнитный умягчитель и здесь показывает самые лучшие результаты. Сочетание процесса для умягчения воды с другими процессами, даёт наилучший результат.