Система охлаждения. Главные двигатели судов. Схема автоматической системы охлаждения главного двигателя, принцип работы Технологическая схема водоохладитель судовой

Система охлаждения предназначена для отвода тепла от деталей двигателя, подверженных нагреву горячими газами и для поддержания допустимых температур, определяемых жаропрочностью материалов, термостабильностью масла и оптимальными условиями протекания рабочего процесса. В зависимости от конструкции ДВС количество тепла, отводимого в охлаждающую жидкость, составляет 15—35 % тепла, выделяемого при сгорании топлива в цилиндрах.
В качестве охлаждающей жидкости используется пресная и забортная вода, масло и дизельное топливо.
Для судовых ДВС используются проточная и замкнутая системы охлаждения. При проточной системе охлаждение двигателя осуществляется забортной водой, прокачиваемой насосом. Система забортной воды включает следующие основные элементы: кингстонные ящики с кингстонами, фильтры, насосы, трубопроводы, арматуру и приборы управления, сигнализации и контроля. Согласно Правилам Регистра СССР система должна иметь один днищевой и один—два бортовых кингстона. Система забортной воды может иметь два насоса, один из которых является резервным одновременно для пресной и забортной воды. Аварийное охлаждение двигателей может обеспечиваться от насосов холодильной установки или пожарной системы судна.
Проточная система охлаждения проста по конструкции, требует небольшого количества насосов, но двигатель охлаждается относительно холодной забортной водой (не более 50—55 С). Выше температуру поддерживать нельзя, так как уже при 45 С начинается интенсивное отложение солей на поверхности охлаждения. Кроме того, все полости системы, в которых протекает охлаждающая забортная вода, сильно загрязняются шламом. Отложения солей и шлама значительно ухудшают теплопередачу и нарушают нормальное охлаждение двигателя. Омываемые поверхности подвергаются значительной коррозии.
Современные судовые ДВС имеют, как правило, замкнутую (двухконтурную) систему охлаждения, при которой в двигателе циркулирует пресная забортная вода, охлаждаемая в специальных водяных холодильниках. Водяные холодильники прокачиваются забортной водой.
Одним из основных преимуществ этой системы является возможность поддержания охлаждаемых полостей в более чистом состоянии, так как система заполнена пресной или специально очищенной водой. Это в свою очередь позволяет легко поддерживать наивыгоднейшую температуру охлаждающей воды в зависимости от режима работы двигателя. Температура пресной воды, выходящей из двигателя, поддерживается следующая: для тихоходных ДВС 65—70 С, для быстроходных — 80—90 С. Замкнутая система охлаждения является более сложной, чем проточная и требует повышенного расхода энергии на работу насосов.
Для защиты поверхностей втулок и блоков со стороны охлаждения от коррозионно-кавитационного разрушения и образования накипи применяют антикоррозионные эмульсионные масла ВНИИНП—117/119, «Шелл Дромус ойл В» и другие. Эти масла имеют практически одинаковые физико-химические свойства и методику применения. Они нетоксичны и хранятся в металлической таре при температуре не ниже минус 30 С.
Антикоррозионные масла образуют с пресной водой стойкую непрозрачную эмульсию молочного цвета. Стойкость эмульсии зависит и от жесткости воды. Тонкая пленка антикоррозионного масла, покрывая поверхность охлаждения ДВС, предохраняет ее от коррозии, кавитационного разрушения и отложения накипи. Для сохранения этой пленки на поверхности охлаждения двигателя необходимо постоянно поддерживать рабочую концентрацию масла в охлаждающей воде около 0,5 % и применять воду определенного качества.
Антикоррозионные эмульсионные масла широко применяются в системах охлаждения ДВС, применяемых на промысловых судах. Методы обработки охлаждающей пресной воды приводятся в инструкциях по эксплуатации двигателей.
В системах охлаждения используются центробежные насосы с электроприводом. Иногда встречаются поршневые насосы, которые приводятся в действие от самого ДВС. Насосы охлаждения создают давление 0,1—0,3 МПа. Охлаждение современных среднеоборотных ДВС осуществляется в основном при помощи навешенных центробежных насосов забортной и пресной воды.
Принципиальная схема замкнутой системы охлаждения двигателя приведена на рисунке:


Замкнутый внутренний контур служит для охлаждения двигателя, а проточный внешний — для охлаждения холодильников пресной воды и масла.
Циркуляция воды по замкнутому контуру осуществляется при помощи центробежного насоса 8 , подающего воду в нагнетательный трубопровод 10 , из которого по отдельным патрубкам она подводится к нижней части блока двигателя для охлаждения каждого цилиндра. Из верхней части блока по переливным патрубкам вода поступает в крышки цилиндров, а из них по отводящему трубопроводу направляется в водяной холодильник 4 и далее во всасывающий трубопровод насоса 8 . В системе охлаждения ДВС имеется терморегулятор 3 с термобаллоном 2 , который автоматически поддерживает необходимую температуру воды за счет перепуска части ее мимо водяного холодильника 4 . Первоначальное заполнение водой внутреннего контура производится через расширительный бак 1 . Туда же направляется паровоздушная смесь из отводящего трубопровода двигателя.
Подача воды во внешний контур осуществляется автономным центробежным электронасосом 7 , который забирает воду из кингстона через спаренный сетчатый фильтр 9 с запорными клапанами и подает ее последовательно к масляному 5 и водяному 4 холодильникам. Из водяного холодильника вода сливается за борт. Перед масляным холодильником установлен терморегулятор 6 , который в зависимости от температуры масла регулирует количество воды, проходящее через холодильник.Температура и давление воды в системе охлаждения контролируется приборами местного и дистанционного контроля и системой аварийно-предупредительной сигнализации.

Система охлаждения судовой энергетической установки предназначена для охлаждения деталей главных и вспомогательных двигателей, нагревающихся от теплоты сгорания топлива (так называемые «огневые поверхности) с тем, чтобы снизить их температурную деформацию и повысить прочность, а также для отвода теплоты от рабочих сред (масла, топлива, воды и наддувочного воздуха). Кроме того, с помощью системы охлаждения обеспечивается отвод теплоты от других различных механизмов, устройств, приборов, размещенных в машинно-котельном отделении.

Режим охлаждения двигателя оказывает влияние на эффективность его работы. С повышением температуры охлаждающей воды индикаторный КПД двигателя падает, что объясняется уменьшением коэффициента наполнения, периода задержки воспламенения и скорости нарастания давления. Вместе с тем благодаря снижению вязкости масла уменьшаются потери на трение (механический КПД растет) и износ деталей двигателя. В результате при изменении температуры воды от 50 о до 150 о С наблюдается незначительное увеличение эффективного КПД дизеля.

Температурный уровень охлаждения влияет на количество и характер лако- и нагарообразования, выпадения осадка и окисления масла. С ростом температуры ускоряется окисление масла, однако лакообразование уменьшается. Таким образом, повышение температуры охлаждающей воды в двигателе сопровождается некоторым улучшением его показателей. Кроме того, наблюдается благоприятное с точки зрения утилизации теплоты перераспределение потоков вторичных энергоресурсов: количество теплоты, отводимой отходящими газами, возрастает, а охлаждающей водой - уменьшается.

Система охлаждения состоит из следующих основных элементов: насосов пресной и забортной воды, фильтров, расширительных и сточных цистерн и цистерн для приготовления присадок, охладительной пресной воды, подогревателей пресной и забортной воды, приемных и отливных устройств, трубопроводов с запорной и регулирующей арматурой и контрольно-измерительных приборов. Охладители предназначены для отвода в воду избыточной теплоты от охлаждающих жидкостей и наддувочного воздуха. Расширительная цистерна служит для компенсации изменений объема воды в системе вследствие изменения ее температуры, для восполнения потерь воды в системе из-за утечек и испарения, а также удаления из системы воздуха и водяных паров. Терморегуляторы должны автоматически поддерживать температуру воды и охлаждаемых жидкостей в заданном диапазоне.

В настоящем проекте применяется трехконтурная система охлаждения с центральным охладителем пресной воды. Такой выбор обусловлен стремлением повысить надежность всего охлаждаемого оборудования, где для отвода тепла используется только пресная вода, обладающая меньшей коррозионной активностью. В связи с тем, что в заданном проекте фидерного контейнеровоза укомплектована дизелем 5G50ME - B9, имеющих два контура охлаждения (низкотемпературный и высокотемпературный), то и контур пресной воды состоит из двух частей. Согласно технической документации на дизель 5G50ME - B9 фирмы MAN B&W для охлаждения втулок цилиндра с целью снизить тепловые потери с охлаждающей водой используется пресная вода с температурой на входе в зарубашечное пространство 75°С и 85°С на выходе из него. Для обеспечения этого требования в контуре пресной воды системы охлаждения выделяется специальный высокотемпературный контур, который имеет сообщение с низкотемпературным контуром пресной воды через регулировочный клапан с термостатом. Во избежание вскипания воды в зарубашечном пространстве и охлаждающих каналах крышки цилиндров, где охлаждаются огневые поверхности, в контуре поддерживается давление не менее 0,25 МПа.

Устойчивая циркуляция пресной воды достигается благодаря постоянному отводу паровоздушной смеси из полостей охлаждения, обеспечению полного заполнения водой циркуляционного контура (периодическим пополнением воды) и возможности изменения объема воды из-за динамичности процессов охлаждения во время эксплуатации. Для этого в каждой системе последовательно с основным контуром циркуляции воды (или параллельно ему) устанавливают дренажно-компенсаторный контур с расширительной цистерной, связанной с атмосферой. В этой цистерне происходит выделение паровоздушной смеси из воды. Она служит для пополнения утечек воды и является буферной емкостью при изменении объема воды.

Согласно требованиям Регистра каждое машинное отделение должно иметь не менее двух кингстонных ящиков циркуляционной или охлаждающей воды, обеспечивающих приём забортной воды в любых условиях эксплуатации. В настоящее время, предусматривают кингстонно-распределительный канал, в который вода поступает из кингстонных ящиков, а затем через клинкетные задвижки - в систему охлаждения. Отвод воды за борт осуществляется через невозвратно-запорные клапаны. Во избежания попадания нагретой воды в приёмные отверстия, отливные и приёмные отверстия разносят по длине судна, располагая последние в нос от отливных. Отливные забортные отверстия размещаются на днище или на борту, как правило, не менее 300 мм ниже ватерлинии наибольшей осадки.

Принцип действия и состав системы охлаждения ГД.

На рисунок 7 изображена схема системы охлаждения ГД, состоящая из трех контуров (два контура пресной воды, имеющих сообщение, и контур забортной воды). Забортная вода поступает в систему охлаждения через днищевые (поз. 2) и бортовые (поз. 1) кингстонные ящики. Затем забортная вода, пройдя через кингстонный клапан (поз. 3) и фильтр грубой очистки (грязевые коробки) (поз. 4), поступает в кингстонный канал (поз. 5), в который забортная вода может поступать от другого кингстонного ящика. Из кингстонного канала очищенная вода забирается насосом забортной воды (поз. 6) и подается в центральный охладитель пресной воды (поз. 7), где она нагревается и отводится в отливной ящик (поз. 8). В случае очень низкой температуры забортной воды часть нагретой забортной воды после центрального охладителя с помощью терморегулятора возвращается в кингстонный ящик, поддерживая таким образом требуемую температуру забортной воды на входе центрального охладителя.

В свою очередь пресная вода после охлаждения в центральном охладителе поступает на вход циркуляционного насоса низкотемпературного контура (НКТ) пресной воды (поз. 10), где получив необходимую энергию, идет на параллельно включенные охладитель масла ГД (поз. 11) и охладитель наддувочного воздуха (поз. 12). Пройдя через указанные теплообменные аппараты подогретая пресная вода после слияния разделяется на два потока. Один поток через дроссельную шайбу (поз. 13) проходит в усреднительный узел (поз. 14), где смешавшись с излишками пресной воды высокотемпературного контура (ВТК) возвращается к центральному охладителю, замыкая таким образом низкотемпературный контур. Для регулирования температуры воды низкотемпературного контура часть ее после усреднения с помощью автоматического клапана (поз. 15) направляется в обход центрального охладителя пресной воды. Второй поток пресной воды после слияния подходит к клапану терморегулятора температуры пресной воды высокотемпературного контура (поз. 16), который дозирует количество воды низкотемпературного контура, поступающей на разбавление нагретой воды ВТК. После терморегулятора (поз. 16) пресная вода высокотемпературного контура поступает к циркуляционным насосам ВТК (поз. 17). Эти насосы, сообщая воде необходимую энергию, подают ее к главному двигателю (поз. 18) для охлаждения цилиндров. Нагретая вода из главного двигателя поступает в пароотводящий клапан (поз. 19), установленный с целью удаления из системы паров воды и воздуха, которые образуются в незначительном количестве на огневых поверхностях двигателя и могут накапливаться в системе. Выделившийся в этом клапане воздух и пар отводятся в расширительную цистерну (поз. 22) по трубопроводу (поз. 24). Выйдя из пароотводящего клапана, вода, разделившись на два параллельных потока, идет частью через утилизационную опреснительную установку (поз. 20) и частью через дроссельную шайбу (поз. 21), которая создает необходимый перепад давления для работы опреснительной установки. Указанные параллельные потоки воды, пройдя дроссельную шайбу и опреснительную установку, сливаются и подходят к клапану терморегулятора температуры пресной воды высокотемпературного контура, который пропускает необходимую часть горячей воды на смешение с водой НТК, а излишки направляются в усреднительный узел.

Для компенсации объема воды в замкнутом контуре пресной воды при ее нагреве в период работы двигателя и ее охлаждении в период стоянки устанавливается расширительная цистерна (поз. 22), которая с помощью трубопровода компенсационной воды (поз. 23) подключается на вход циркуляционного насоса ВТК, надежно обеспечивая таким образом ему необходимый кавитационный запас.

Кроме того, при помощи специального трубопровода (поз. 25) через расширительную цистерну в систему вводится дополнительная вода, компенсирующая утечки и испарение, а также вводятся различные присадки. При прогреве двигателя перед пуском в системе охлаждения цилиндров используется паровой подогреватель (поз. 26).

Определение параметров основного оборудования для комплектации системы охлаждения.

В расчёт системы охлаждения в объеме данного проекта входит определение основных параметров для ее комплектации следующим оборудованием - насосами пресной и забортной воды, теплообменными аппаратами.

Производительность насоса пресной воды.

Производительность насоса забортной воды.

где W 4 =41,7

По производительности из типоразмерного ряда подбираем насос забортной воды марки НЦВ 315/10А-1-11 производительностью 315м 3 / час

Определение количества теплоты отводимого водой.

Отвод теплоты от пресной воды - ;

Отвод теплоты с маслом - ;

Отвод теплоты от продувочного воздуха - 5685 = 2840 .

Расчет охладителя пресной воды.

где: = 1100 кВт - отвод теплоты от пресной воды;

= (25003500) Вт/ - коэффициент теплопередачи от пресной воды к забортной, для пластинчатого охладителя;

Принимаем 3000 Вт/.

Температурный напор, .

где: - разность температур пресной и забортной воды на том конце теплообменника, где она имеет большее значение;

Температура пресной воды на входе в охладитель;

Температура пресной воды на выходе из охладителя,

=(30 - 35) - температура забортной воды после охладителя;

принимаем 35

=(40 - 45) - температура забортной воды после охладителя;

Принимаем 45

70 - 35 = 35

60 - 45 = 15

Расчет маслоохладителя

Определение площади теплопередающей поверхности

где: - отвод теплоты маслом;

350 Вт/ - коэффициент теплопередачи от масла к забортной воде, для пластинчатого охладителя;

Температурный напор, .

где: - большая разность температур;

Меньшая разность температур.

Температура масла на входе в охладитель;

Температура масла на выходе из охладителя,

35 - температура забортной воды после охладителя.

55 - 30 = 25

45 - 35 = 10

Расчет воздухоохладителя

Определение площади теплопередающей поверхности

где: - отвод теплоты от продувочного воздуха;

=(5075) Вт/- коэффициент теплопередачи от воздуха к забортной воде;

Принимаем 60 Вт/.

Температурный напор, .

Где: - большая разность температур;

Меньшая разность температур.

Температура воздуха на входе в охладитель;

Температура воздуха на выходе из охладителя.

30 - температура забортной воды после охладителя;

40 - температура забортной воды после охладителя.

Объём расширительной цистерны.

Охлаждение ГД производится пресной водой по замкнутому контурам. Система охлаждения каждого двигателя автономная и обслуживается навешанными на двигателях насосами,а так же отдельно установленными охладителями пресной воды и общей для обоих двигателей расширительной цистерной.

Система охлаждения оборудована терморегуляторами,автоматически поддерживающие заданную температуру пресной воды за счет перепуска её помимо водоохладителей.Предусмотрена также возможность ручной регулировки температуры воды.

В каждый контур пресной воды включён маслоохладитель,в который вода поступает после водоохладителя и терморегулятора. Заполнение расширительной цистерны предусмотрено от системы водоснабжения открытым способом.

Охлаждение вспомогательного двигателя производится пресной водой по замкнутому контуру. Система охлаждения вспомогательного двигателя автономная и обслуживается, навешанным на двигатель насосом, водоохладителем и термостатом.

Расширительная цистерна ёмкостью 100 л оборудована указательной колонкой,сигнализатором нижнего уровня, горловиной.

Система охлаждения забортной водой

Для приёма забортной воды предусмотрены два кингстонных ящика, соединенных через фильтр и клинкетные задвижки кингстонной магистралью.

Системы охлаждения главных и вспомогательных двигателей автономные и обслуживаются навешанными насосами забортной воды. Навешанные насосы главных двигателей принимают воду из кингстонной магистрали прокачивают её через водоохладители и через невозвратно-запорные клапаны, расположенные ниже ватерлинии,за борт.

Насос вспомогательного двигателя принимает воду из кингстонной магистрали,прокачивает её через водоохладитель и через невозвратно- запорный клапан за борт ниже ватерлинии. Предусмотрена также подача воды в приёмный трубопровод насоса вспомогательного двигателя от напорного трубопровода насоса забортной воды главного двигателя правого борта. Для возможности регулирования температуры охлаждающей воды вспомогательного двигателя предусмотрен перепускной трубопровод.

От напорных трубопроводов насосов забортной воды каждого главного двигателя предусмотрены отборы воды на охлаждение упорных и дейдвудных подшипников соответствующего борта.

От отливных магистралей главных двигателей предусмотрены отборы воды на рециркуляцию в соответствующие кингстонные ящики.

Охлаждение компрессора сжатого воздуха забортной водой осуществляется от специального электронасоса с отливом воды ниже ватерлинии за борт.

В качестве насоса охлаждения электрокомпрессора установлен центробежный горизонтальный одноступенчатый электронасос ЭЦН18/1 с подачей 1 м3 при напоре 10 м вод.ст.

Система сжатого воздуха

В МКО установлены 2 баллона сжатого воздуха ёмкостью по 60 кгс/с м2 .

Из одного баллона воздух используется для пуска главных двигателей,для работы тифона и на хознужды, другой баллон является резервным и воздух из него используется только для пуска главного двигателя. Общий запас сжатого воздуха на судне обеспечивает не менее 6 пусков одного подготовленного к пуску главного двигателя без подкачки воздуха в баллонах. Для понижения давления сжатого воздуха установлены соответствующие редукционные клапаны.

Заполнение баллонов сжатым воздухом предусмотрено от одного автоматизированного электрокомпрессора.

Баллоны сжатого воздуха емкостью по 40 л, снабжены головками с необходимой арматурой, манометром и устройством для продувания.

Что такое ? Чиллер – это холодильный агрегат, применяемый для охлаждения и нагревания жидких теплоносителей в центральных системах кондиционирования, в качестве которых могут выступать приточные установки или фанкойлы. В основном чиллер для охлаждения воды используют на производстве - охлаждают различное оборудование. У воды лучше характеристики по сравнению со смесью гликоля, поэтому работа на воде более эффективна.

Широкий диапазон мощности дает возможность использовать чиллер для охлаждения в помещениях различных размеров: от квартир и частных домов до офисов и гипермаркетов. Кроме того, он применяется в пищевой промышленности для и напитков, в спортивно-оздоровительной сфере – для охлаждения катков и ледовых площадок, в фармацевтике – для охлаждения медикаментов.

Существуют следующие основные типы чиллеров:

  • моноблок, воздушный конденсатор, гидромодуль и компрессор находятся в одном корпусе;
  • чиллер с выносным конденсатором на улицу (холодильный модуль располагается в помещении, а конденсатор выносится на улицу);
  • чиллер с водяным конденсатором (используют когда нужны минимальные размеры холодильного модуля в помещении и нет возможности использовать выносной конденсатор);
  • тепловой насос, с возможностью нагрева или охлаждения теплоносителя.

Принцип работы чиллера

Теоретической основой, на которой построен принцип работы холодильников, кондиционеров, холодильных установок, является второе начало термодинамики. Охлаждающий газ (фреон) в холодильных установках совершает так называемый обратный цикл Ренкина - разновидность обратного цикла Карно . При этом основная передача тепла основана не на сжатии или расширении цикла Карно, а на фазовых переходах - и конденсации.

Промышленный чиллер состоит из трех основных элементов: компрессора, конденсатора и испарителя. Основная задача испарителя – это отвод тепла от охлаждаемого объекта. С этой целью через него пропускаются вода и хладагент. Закипая, хладагент отбирает энергию у жидкости. В результате этого вода или любой другой теплоноситель охлаждаются, а холодильный агент – нагревается и переходит в газообразное состояние. После этого газообразный холодильный агент попадает в компрессор, где воздействует на обмотки электродвигателя компрессора, способствуя их охлаждению. Там же горячий пар сжимается, вновь нагреваясь до температуры в 80-90 ºС. Здесь же он смешивается с маслом от компрессора.

В нагретом состоянии фреон поступает в конденсатор, где разогретый холодильный агент охлаждается потоком холодного воздуха. Затем наступает завершающий цикл работы: хладагент из теплообменника попадает в переохладитель, где его температура снижается, в результате чего фреон переходит в жидкое состояние и подается в фильтр-осушитель. Там он избавляется от влаги. Следующим пунктом на пути движения хладагента является терморасширительный вентиль, в котором давление фреона понижается. После выхода из терморасширителя холодильный агенент представляет собой пар низкого давления в сочетании с жидкостью. Эта смесь подается в испаритель, где хладагент вновь закипает, превращаясь в пар и перегреваясь. Перегретый пар покидает испаритель, что является началом нового цикла.

Схема работы промышленного чиллера


# 1 Компрессор (Compressor)
Компрессор имеет две функции в холодильном цикле. Он сжимает и перемещает пары хладогента в чиллере. При сжатии паров происходит повышение давления и температуры. Далее сжатый газ поступает в где он охлаждается и превращается в жидкость, затем жидкость поступает в испаритель (при этом её давление и температура снижается), где она кипит, переходит в состояние газа, тем самым забирая тепло от воды или жидкости, которая проходит через испаритель чиллера. После этого пары хладагента поступают снова в компрессор для повторения цикла.

# 2 Конденсатор воздушного охлаждения (Air-Cooled Condenser)
Конденсатор с воздушным охлаждением представляет собой теплообменник, где тепло, поглощаемое хладагентом, выделяется в окружающее пространство. В конденсатор обычно поступает сжатый газ - фреон, который охлаждаются до и, конденсируясь, переходит в жидкую фазу. Центробежный или осевой вентилятор подают поток воздуха через конденсатор.

# 3 Реле высокого давления (High Pressure Limit)
Защищает систему от избыточного давления в контуре хладагента.

# 4 Манометр высокого давления (High Pressure Pressure Gauge)
Обеспечивает визуальную индикацию давления конденсации хладагента.

# 5 Жидкостной ресивер (Liquid Receiver)
Используется для хранения фреона в системе.

# 6 Фильтр-осушитель (Filter Drier)
Фильтр удаляет влагу, грязь, и другие инородные материалы из хладагента, который повредит холодильной системе и снизить эффективность.

# 7 Соленоиндный вентиль (Liquid Line Solenoid)
Соленоидный клапан - это просто электрически управляемый запорный кран. Он управляет потоком хладагента, который закрывается при остановке компрессора. Это предотвращает попадание жидккого хладагента в испаритель, что может вызвать гидроудар. Гидроудар может привести к серьезному повреждению компрессора. Клапан открывается, когда компрессор включен.

# 8 Смотровое стекло (Refrigerant Sight Glass)
Смотровое стекло помогает наблюдать поток жидкого хладагента. Пузырьки в потоке жидкости свидетельствуют о нехватке хладагента. Индикатор влажности обеспечивает предупреждение в том случае, если влага поступает в систему, указывая, что требуется техническое обслуживание. Зеленый индикатор не сигнализирует никакого содержания влаги. А желтые сигналы индикатора, что система загрязнена с влагой и требует технического обслуживания.

# 9 Терморегулирующий вентиль (Expansion Valve)
Терморегулирующий вентиль или ТРВ - это регулятор, положение регулирующего органа (иглы) которого обусловлено температурой в испарителе и задача которого заключается в регулировании количества хладагента, подаваемого в испаритель, в зависимости от перегрева паров хладагента на выходе из испарителя. Следовательно, в каждый момент времени он должен подавать в испаритель только такое количество хладагента, которое, с учетом текущих условий работы, может полностью испариться.

# 10 Горячий Перепускной клапан газа (Hot Gas Bypass Valve)
Hot Gas Bypass Valve (регуляторы производительности) используются для приведения производительности компрессора к фактической нагрузке на испаритель (устанавливаются в байпасную линию между сторонами низкого и высокого давления системы охлаждения). Перепускной клапан горячего газа (не входит в стандартную комплектацию чиллеров) предотвращает короткое циклирование компрессора путем модуляции мощности компрессора. При активации, клапан открывается и перепускает горячий газ холодильного агента с нагнетания в жидкостной поток хладагента, поступающего в испаритель. Это уменьшает эффективную пропускную способность системы.
# 11 Испаритель (Evaporator)
Испаритель это устройство, в котором жидкий хладагент кипит, поглощая тепло при испарении, у проходящего через него охлаждающей жидкости.

# 12 Манометр низкого давления фреона (Low Pressure Refrigerant Gauge)
Обеспечивает визуальную индикацию давления испарения хладагента.

# 13 Предельное Низкое давление хладагента (Low Refrigerant Pressure Limit)
Защищает систему от низкого давления в контуре хладагента, чтобы вода не замерзла в испарителе.

# 14 Насос охлаждающей жидкости (Coolant Pump)
Насос для циркуляции воды по охлаждаемому контуру

# 15 Ограничение температуры замерзания (Freezestat Limit)
Предотвращает замерзание жидкости в испарителе

# 16 Датчик температуры
Датчик, который показывает температуру воды в охлаждающем контуре

# 17 Хладагент манометр (Coolant Pressure Gauge)
Обеспечивает визуальную индикацию давления теплоносителя, подаваемого на оборудование.

# 18 Автоматический долив (Water Make-Up Solenoid)
Включается когда вода в емкости снижается ниже допустимого предела. Соленоидный клапан открывается и происходит долив в емкость от водопровода до нужного уровня. Далее клапан закрывается.

# 19 Резервуар Уровень поплавковый выключатель (Reservoir Level Float Switch)
Поплавковый выключатель. Открывается когда уровень воды в емкости снижается.

# 20 Датчик температуры 2 (From Process Sensor Probe)
Датчик температуры, который показывает температуру нагретой воды, которая возвращается от оборудования.

# 21 Реле протока (Evaporator Flow Switch)
Защищает испаритель от замерзания в нем воды (когда слишком низкий проток воды). Защищает насос от сухого хода. Сигнализирует отсутствие потока воды в чиллере.

# 22 Емкость (Reservoir)
Для избежания частых пусков компрессоров используют емкость увеличенного объема.

Чиллер с водяным охлаждением конденсатора отличается от воздушного - типом теплообменника (вместо трубчато-ребристого теплообменника с вентилятором используется кожухотрубный или пластинчатый, который охлаждается водой). Водяное охлаждение конденсатора осуществляется оборотной водой из сухого охладителя ( , драйкулера) или градирни. В целях экономии воды предпочтительным является вариант с установкой сухой градирни с водяным замкнутым контуром. Основные преимущества чиллера с водяным конденсатором: компактность; возможность внутреннего размещения в маленьком помещении.

Вопросы и ответы

Вопрос:

Можно ли чиллером охлаждать жидкость на проток более, чем на 5 градусов?

Чиллер можно использовать в замкнутой системе и поддерживать заданную температуру воды, например, 10 градусов, даже если возврат будет с температурой 40 градусов.

Есть чиллеры, которые охлаждают воду на проток. Это в основном используется для охдаждения и газирования напитков, лимонадов.

Что лучше чиллер или драйкулер?

Температура при использовании драйкулера зависит от температуры окружающей среды. Если, например, на улице будет +30, то хладоноситель будет с температурой +35…+40С. Драйкулер используют в основном в холодное время года для экономии электроэнергии. Чиллером можно получать заданную температуру в любое время года. Можно изготовить низкотемпературный чиллеры для получения температуры жидкости с отрицательной температурой до минус 70 С (хладоносителем при такой температуре является в основном спирт).

Какой чиллер лучше - с водяным или воздушным конденсатором?

Чиллер с водяным охлаждением имеет компактные размеры, поэтому могут размещаться в помещении и не выделяют тепло. Но для охлаждения конденсатора требуется холодная вода.

Чиллер с водяным конденсатором имеет более низкую стоимость, но может дополнительно потребоваться сухая градирня, если нет источника воды - водопровод или скважина.

В чем отличие чиллеров с тепловым насосом и без него?

Чиллер с тепловым насосом может работать на обогрев, т.е не только охлаждать хладоноситель, но и нагревать его. Необходимо учитывать, что с понижением температуры нагрев ухудшается. Наиболее эффективен нагрев когда температура опускается не ниже минус 5.

На какое расстояние можно выносить воздушный конденсатор?

Обычно конденсатор можно вынести на расстояние до 15 метров. При установке системы отделения масла выснок конденсатора возможен до 50 метров, при условии правильного подбора диаметра медных магистралей между чиллером и выносным конденсатором.

До какой минимальной температуре работает чиллер?

При установке системы зимнего пуска работа чиллера возможно до окружающей температуры минус 30…-40. А при установке вентиляторов арктического исполнения - до минус 55.

Виды и типы схем установок охлаждения жидкости (чиллеры)


Применяется в случае, если перепад температур ∆Т ж = (Т Нж – Т Кж) ≤ 7ºС (охлаждение технической и минеральной воды)

2. Схема охлаждения жидкости с использованием промежуточного хладоносителя и вторичного теплообменного аппарата.


Применяется в случае, если перепад температур ∆Т ж = (Т Нж – Т Кж) > 7ºС или для охлаждения пищевых продуктов, т.е. охлаждение во вторичном разборном теплообменнике.

Для этой схемы необходимо правильно определить расход промежуточного хладоносителя:

G х = G ж · n

G х – массовый расход промежуточного хладоносителя кг/ч

G ж – массовый расход охлаждаемой жидкости кг/ч

n – кратность циркуляции промежуточного хладоносителя

n =

где: C Рж – теплоёмкость охлаждаемой жидкости, кДж/(кг´ К)

C Рх – теплоёмкость промежуточного хладоносителя, кДж/(кг´ К)

Чиллер – это водоохлаждающая машина, предназначенная для снижения температуры воды или жидких хладоносителей. На этой странице будет подробно рассмотрена схема и устройство чиллера , а также как он работает.

Основана на практически безостановочном цикле (в зависимости от вида потребителя). заключается в том, чтобы охладить, нагретую потребителем воду на несколько градусов и подать её в таком виде на потребитель или на промежуточный теплообменник, в котором вода (если её температура не позволяет пускать её на прямую в ) охлаждается на, практически, любое количество градусов. Необходимое значение снижения температуры хладоносителя - задаётся будущим пользователем водоохладителя в зависимости от вида и характеристик хладоносителя, требуемых потребителем этого самого хладонгосителя. Оборудованием, которому требуется холодная энергия, передаваемая от водоохлаждающей машины к хладоносителю могут быть самые разнообразные потребители: станки, системы кондиционирования воздуха, термопластавтоматы, индукционные машины, масляные насосы, станки по изготовлению полиэтиленовой плёнки и другие системы, требующие требующие при своей работе постоянной подачи к ним охлаждённой воды. Разнообразные модификации и широкий диапазон холодопроизводительности позволяет использовать водоохладители, как для одного потребителя с очень маленьким тепловыделением, так и для предприятий с большим количеством станков большой выделяемой тепловой мощности. Помимо этого, охладители воды применяются в пищевой промышленности во многих технологических линиях по производству напитков и других продуктов, для обеспечения охлаждения льда катков и ледовых площадок, в металлообработке (индукционные печи), в исследовательских лабораториях (обеспечение работы испытательных камер) и т.д. и т.п.




Выбор водоохлаждающей машины – это серьезная задача, требующая таких специфических знаний как устройство чиллера, а так же принцип взаимодействия чиллера совместно с другими элементами общей схемы. Для принятия грамотного решения о том, какой охладитель оптимально впишется в схему совместной работы всех потребителей и самого охладителя - необходим большой опыт расчетов, подбора и последующего успешного внедрения комплекса оборудования на базе охладителей воды в технологический процесс, каким и обладают наши специалисты. Отдельной сферой является автоматизация чиллера, которая позволяет сделать работу устройства еще более эффективной, оптимизировав контроль и управление за всеми протекающими процессами. Конечно же, для того чтобы подобрать холодильный аппарат, нет необходимости знать все тонкости работы холодильной машины и автоматику чиллера, но основополагающие знания принципов помогут вам наиболее чётко сформулировать техническое задание для расчета и профессионального подбора всех элементов, из которых потом будет собрана совместная с потребителями схема чиллера.

Схема чиллера

На приведённом ниже чертеже - будет разобрана , дано описание его элементов и их функциональная принадлежность. В результате чего Вам будет понятно , как осуществляется работа чиллера и всех его элементов.

Водоохлаждающая машина работает по принципу сжатия газа с выделением тепла и его последующим расширением с поглощением тепла, т.е. выделением холода. Водоохлаждающая машина состоит из четырех основных элементов: компрессор, конденсатор, ТРВ и испаритель. Тот элемент, в котором вырабатывается холод называется - испаритель. Задача испарителя – отвести тепло от охлаждаемой среды. Для этого через него протекает хладоноситель (вода) и хладагент (газ, он же фреон). До попадания в испаритель газ в сжиженном виде находится под большим давлением, попадая в испаритель (где поддерживается низкое давление) фреон начинает кипеть и испаряться (отсюда название Испаритель). Фреон кипит и отбирает энергию у хладоносителя который находится в Испарителе, но отделен от фреона герметичной перегородкой. В результате этого хладоноситель охлаждается, а хладагент – повышает свою температуру и переходит в газо-образное состояние. После этого газообразный хладагент попадает в компрессор. Компрессор сжимает газообразный хладагент который при сжатии нагревается до высокой температуры в 80...90 ºС. В этом состоянии (горячий и под высоким давлением) фреон попадает в конденсатор, где за счёт обдува окружающим воздухом охлаждается. В процессе охлаждения газ - фреон конденсируется (поэтому блок, в котором происходит этот процесс называют - конденсатор), а при конденсации газ переходит в жидкое состояние. На этом цепь преобразования фреона из жидкости в газ и обратно подходит к своему началу. Начало и конец этого процесса разделяет ТРВ (термо- расширительный вентиль) который является по сути - большим сопротивление по ходу движения фреона из конденсатора в испаритель. Это сопротивление обеспечивает перепад давления (до ТРВ - конденсатор с высоким давлением, после ТРВ - испаритель с низким давлением). По пути движения фреона по замкнутому контуру есть ещё и второстепенные элементы, которые улучшают процесс и повышают эффективность описанного цикла (фильтр, вентили и соленоидные вентили и регуляторы, переохладитель, система добавления масла для компрессора и масло отделитель, ресивер и прочее).

Устройство чиллера

На схеме ниже - приведено изображение компактной машины по охлаждению воды - чиллер устройство, моноблочного исполнения в частично разобранном виде (сняты защитные боковины корпуса). На этом изображении хорошо видны все, указанные в схеме данной водоохлаждающей машины элементы, а так же элементы водяного контура, не попавшие в принципиальную схему (водяной насос, реле протока на трубопроводе подачи хладоносителя потребителю, водяной фильтр, манометр измерения напора хладоносителя, накопительная емкость для воды, фильтр на водяной линии).

Питер Холод - поставщик Промышленных водоохладителей и машин для систем кондиционирования. Мы готовы разработать и создать для вас чиллеры, подходящие для реализации ваших профессиональных задач. Также мы производим сервисное обслуживание, ремонт и автоматизацию чиллеров. Если вы желаете дистанционно управлять собственным оборудованием, или хотели бы защитить его от распространенных проблем, автоматика чиллеров позволит вам добиться всех этих целей. Наша команда готова к реализации проектов любого объема и сложности. Просто свяжитесь с нами удобным для вас способом, и мы проконсультируем вам по любом интересующему вопросу.