Сделай своими руками трансформатор Тесла (Tesla coil). Небольшая катушка тесла своими руками

Катушка Тесла – это резонансный трансформатор, который создает высокое напряжение высокой частоты. Изобретен Теслой в 1896 году. Работа этого устройства вызывает очень красивые эффекты, подобные управляемой молнии, а их размеры и сила зависят от питаемого напряжения и электрической схемы.

В домашних условиях сделать катушку Тесла несложно, при этом эффекты ее очень красивые. Готовые и мощные такие приборы продаются в этом китайском магазине .

Не используя провода, с помощью предлагаемого высокочастотного трансформатора можно поддерживать свечение газонаполненных ламп (к примеру лампы дневного света). Кроме того, на конце обмотки формируется красивая высоковольтная искра, к которой можно прикасаться руками. Вследствие того, что входное напряжение на представленном генераторе будет невысоким, он относительно безопасен.

Техника безопасности при работе представленной схемы катушки Тесла

Помните, что нельзя включать это устройство около телефонов, компьютеров и других электронных аппаратов, так как они могут выйти из строя под действием его излучения.

Простая схема генератора Теслы

Для сборки схемы необходимы:

1. Медный эмалированный провод толщиной 0,1-0,3 мм, длиной 200 м.

2. Пластиковая труба диаметром 4-7 cм, длиной 15 см для каркаса вторичной обмотки.

3. Пластиковая труба диаметром 7-10 cм, длиной 3-5 см для каркаса первичной обмотки.

4. Радиодетали: транзистор D13007 и охлаждающий радиатор для него; переменный резистор на 50 кОм; постоянный резистор на 75 Ом и 0,25 вт; блок питания напряжением на выходе 12-18 вольт и током 0,5 ампера;
5. Паяльник, оловянный припой и канифоль.

Подобрав нужные детали, начните с намотки катушки. Наматывать следует на каркас виток к витку без перехлёстов и заметных пробелов, примерно 1000 витков, но не менее 600. После этого нужно обеспечить изоляцию и закрепить намотку, лучше всего для этого использовать лак, которым покрыть обмотку в несколько слоёв.

Для первичной обмотки (L1) используется более толстый провод диаметром 0,6 мм и более, обмотка 5-12 витков, каркас для неё подбирается хотя бы на 5мм толще вторичной обмотки.

Далее соберите схему, как на рисунке выше. Транзистор подойдет любой NPN, можно и PNP, но в этом случае необходимо поменять полярность питания, автор схемы использовал BUT11AF, из отечественных, которые ничем не уступают, хорошо подходят КТ819, КТ805.
Для питания качера – любой блок питания 12-30В с током от 0,3 А.

Параметры авторской обмотки Тесла

Вторичная – 700 витков проводом толщиной 0,15 мм на каркасе 4 см.
Первичная – 5 витков проводом 1,5мм на каркасе 5 см.
Питание – 12-24 В с током до 1 А.

Видео канала “How-todo”.

Clone PI-W и, вот, дело дошло до изготовления поисковой моно-катушки. А так как в настоящее время я испытываю некоторые финансовые затруднения, то передо мной стояла непростая задача - сделать катушку самому из максимально дешевых материалов.

Забегая вперед, сразу скажу, что с задачей я справился. В итоге у меня получился вот такой датчик:

Кстати говоря, получившаяся катушка-кольцо отлично подойдет не только для Clone, но и практически для любого другого импульсника (Кощей, Tracker, Пират).

Рассказывать буду очень подробно, так как дъявол зачастую кроется в деталях. Тем более, что коротких историй изготовления катушек в инете пруд пруди (типо, берем вот это, тут отрезаем, обматываем, склеиваем и готово!) А начинаешь делать сам и оказывается, что о самом важном упомянули вскользь, а кое о чем вообще забыли сказать... И получается, что все сложнее, чем казалось в самом начале.

Здесь такого не будет. Готовы? Поехали!

Задумка

Проще всего для самостоятельного изготовления мне показалась такая конструкция: берем диск из листового материала толщиной ~4-6 мм. Диаметр этого диска определяется диаметром будущей обмотки (в моем случае он должен быть равен 21 см).

Затем к этому блинчику с обоих сторон приклеиваем два диска чуть большего диаметра, чтобы получилась как бы шпулька для намотки проволоки. Т.е. такая сильно увеличенная по диаметру, но сплюснутая по высоте катушка.

Для наглядности попробую изобразить это на чертеже:

Надеюсь, основная задумка ясна. Просто три диска, склеенные между собой по всей площади.

Выбор материала

В качестве материала я планировал взять оргстекло. Оно отлично обрабатывается и клеится дихлорэтаном. Но, к сожалению, так и не смог найти его забесплатно.

Всякие колхозные материалы типа фанеры, картона, крышек от ведер и т.п. я сразу отбросил, как непригодные. Хотелось чего-то прочного, долговечного и желательно водонепроницаемого.

И тогда мой взор обратился к стеклоткани...

Ни для кого не секрет, что из стеклоткани (или из стекломата, стеклохолста) делают все, что душе угодно. Даже моторные лодки и бамперы для автомобилей. Ткань пропитывают эпоксидной смолой, придают ей нужную форму и оставляют до полного отвердения. Получается прочный, водостойкий, легкообратываемый материал. А это как раз то, что нам нужно.

Итак, нам нужно сделать три блинчика и уши для крепления штанги.

Изготовление отдельных частей

Блины №1 и №2

Расчеты показали, что для получения листа толщиной 5.5 мм нужно взять 18 слоев стеклоткани. Чтобы снизить расход эпоксидки, стеклоткань лучше заранее нарезать кружочками требуемого диаметра.

Для диска диаметром 21 см как раз хватило 100 мл эпоксидной смолы.

Каждый слой нужно тщательно промазать, а затем всю стопку положить под пресс. Чем больше будет давление, тем лучше - лишняя смола выдавится, масса конечного изделия станет чуточку меньше, а прочность чуточку больше. Я нагрузил сверху примерно сотню килограмм и оставил до утра. На следующий день получился вот такой блинчик:

Это самая массивная часть будущей катушки. Весит он - будь здоров!

Потом расскажу, как за счет этой запчасти можно будет ощутимо снизить массу готового датчика.

Точно таким же образом был сделан диск диаметром 23 см и толщиной 1.5 мм. Его масса - 89 г.

Блин №3

Третий диск клеить не пришлось. В моем распоряжении оказался лист стеклотекстолита подходящего размера и толщины. Это была печатная плата от какого-то древнего устройства:

К великому сожалению, плата была с металлизированными отверстиями, поэтому пришлось потратить какое-то время на их высверливание.

Я решил, что это будет верхний диск, поэтому проделал в нем отверстие под ввод кабеля.

Уши для штанги

Остатков текстолита как раз хватило на уши для крепления корпуса датчика к штанге. Выпилил по два кусочка на каждое ухо (чтобы было прочно!)

В ушах надо сразу же просверлить отверстия под пластиковый болт, так как потом будет очень неудобно этим заниматься.

Кстати, это крепежный болт для стульчака унитаза.

Итак, все составляющие нашей катушки готовы. Осталось все это склеить в один большой бутерброд. И не забыть завести внутрь кабель.

Сборка в одно целое

Сначала верхний диск из дырявого стеклотекстолита склеил со средним блинчиком из 18 слоев стеклоткани. На это ушло буквально несколько миллилитров эпоксидки - этого хватило, чтобы промазать обе склеиваемые поверхности по всей площади.


Монтаж ушей

С помощью лобзика пропилил пазы. В одном месте, естественно, слегка перестарался:

Чтобы ухи хорошо легли, сделал небольшой скос на краях пропилов:

Теперь надо было решить, какой вариант лучше? Уши-то можно поставить по-разному...

Катушки промышленного производства чаще сделаны по правому варианту, мне же больше нравится левый. Я вообще частенько принимаю левые решения...

По идее, правый способ лучше сбалансирован, т.к. крепление штанги оказывается ближе к центру тяжести. Но далеко не факт, что после облегчения катушки, ее центр тяжести не сместится в ту или иную сторону.

Левый способ крепления чисто визуально выглядит приятнее (ИМХО), к тому же в этом случае общая длина металлоискателя в сложенном виде будет на пару сантиметров меньше. Для того, кто планирует возить прибор в рюкзаке, это может оказаться важным.

В общем, я свой выбор сделал и приступил к вклеиванию. Обильно намазал бокситкой, надежно зафиксировал в нужном положении и оставил застывать:

После застывания, все торчащее с обратной стороны сошкурил наждачкой:

Ввод кабеля

Затем с помощью круглого надфиля подготовил канавки для проводников, завел соединительный кабель через отверстие и вклеил его намертво:

Для предотвращения сильных перегибов, кабель в месте ввода нужно было как-то усилить. Для этих целей я заюзал, невесть откуда взявшуюся у меня, вот такую резиновую фигнюшку:

Оставалось приклеить третий блин (донышко).

Доделываем каркас

Чтобы приклеить третий блинчик потребовалось несколько миллилитров бокситки и пару часов времени на то, чтобы все схватилось. Вот результат:
Таким образом, я получил жесткий и прочный каркас, полностью подготовленный для намотки провода.

Герметизация обмотки

В качестве обмоточного провода был использован медный эмалированный провод диаметром 0.71 мм. После намотки 27 витков, датчик потяжелел еще на 65 грамм:

Теперь обмотку надо было как-то законопатить. В качестве замазки применил смесь эпоксидной смолы и мелко нарезанного стекловолокна (узнал про этот суперский рецепт из ).

Короче, настругал немного стеклоткани:

и круто замешал ее с бокситкой с добавлением пасты от шариковой ручки. Получилась вязкая субстанция, похожая на мокрые волосы. Таким составом можно замазывать любые щели без проблем:

Кусочки стекловолокна придают шпатлевке необходимую вязкость, а после застывания обеспечивают повышенную прочность клеевого шва.

Чтобы смесь как следует уплотнилась, а смола пропитала витки провода, обмотал все это изолентой в натяг:

Изолента должна быть обязательно зеленой или, на худой конец, синей.

После того, как все хорошенько застыло, мне стало интересно, насколько прочной получилась конструкция. Оказалось, что катушка спокойно выдерживает мой вес (около 80 кг).

На самом деле такая сверхпрочная катушка нам не нужна, гораздо важнее ее вес. Слишком большая масса датчика обязательно даст о себе знать болью в плече, особенно, если вы планируете вести длительный поиск.

Облегчайзинг

Чтобы уменьшить вес катушки, было решено выпилить некоторые участки конструкции:

Данная манипуляция позволила скинуть 168 грамм лишнего веса. При этом прочность датчика практически не уменьшилась, в чем можно убедиться благодаря данному видео:

Теперь задним умом понимаю, как можно было изготовить катушку еще немного легче. Для этого надо было заранее наделать больших отверстий в среднем блинчике (перед тем, как все склеивать). Что-то типа такого:

Пустоты внутри конструкции почти не сказались бы на прочности, но зато снизили бы общую массу еще грамм на 20-30. Сейчас, конечно, уже поздняк метаться, но на будущее учту.

Еще один путь облегчения конструкции датчика - уменьшить ширину наружного кольца (где уложены витки провода) миллиметров на 6-7. Конечно, это можно сделать и сейчас, но пока нет такой необходимости.

Финишная окраска

Нашел отличную краску для стеклотекстолита и изделий из стекловолокна - эпоксидная смола с добавлением красителя нужного цвета. Так как вся конструкция моего датчика изготовлена на основе бокситки, то краска на основе смолы будет иметь отличную адгезию, и ляжет как родная.

В качестве красителя черного цвета применил алкидную эмаль ПФ-115, добавляя ее до получения нужной укрывистости.

Как показала практика, слой такой краски держится очень прочно, а выглядит так, будто изделие обмакнули в жидкий пластик:

При этом цвет может быть любым в зависимости от используемой эмали.

Итоговая масса поисковой катушки вместе с кабелем после покраски - 407 г

Кабель отдельно весит ~80 грамм.

Проверка

После того, как наша самодельная катушка для металлоискателя была полностью готова, надо было проверить ее на отсутствие внутреннего обрыва. Самый простой способ проверки - тестером измерить сопротивление обмотки, которое в норме должно быть очень низким (максимум 2.5 Ома).

В моем случае сопротивление катушки вместе с двумя метрами соединительного кабеля оказалось в районе 0.9 Ом.

К сожалению, таким простым способом не получится выявить межвитковое замыкание, поэтому приходится рассчитывать на свою аккуратность при намотке. Замыкание, если оно есть, сразу же проявит себя после запуска схемы - металлоискатель будет потреблять повышенный ток и иметь крайне низкую чувствительность.

Заключение

Итак, считаю, что поставленная задача была выполнена успешно: мне удалось сделать очень прочную, водостойкую и не слишком тяжелую катушку из самых бросовых материалов. Список расходов:

  • Лист стеклотекстолита 27 х 25 см - бесплатно;
  • Лист стеклоткани, 2 х 0.7 м - бесплатно;
  • Эпоксидная смола, 200 г - 120 руб;
  • Эмаль ПФ-115, черная, 0.4 кг - 72 руб;
  • Намоточный провод ПЭТВ-2 0.71 мм, 100 г - 250 руб;
  • Соединительный кабель ПВС 2х1.5 (2 метра) - 46 руб;
  • Кабельный ввод - бесплатно.

Теперь передо мной стоит задача изготовления точно такой же нищебродской штанги. Но это уже .

Катушка Тесла – плоская спираль, обладающая наравне с индуктивностью большой собственной ёмкостью. Патент на изобретение подан в январе 1894 года. Автором, естественно, стал Никола Тесла. Под этим названием массово известен трансформатор, принцип действия прибора основывается на колебательных контурах.

Война токов

Сегодня это читается, как научный роман, но на стыке XIX и XX века действительно велась война токов. Все началось, когда за наладку работы генератора в Европе компания не заплатила молодому Тесла ни копейки. Хотя награда обещалась солидная. Недолго думая, Тесла покидает родину и плывёт в США. На пути исследователя преследуют неудачи, в итоге путешествие окончилось благополучно. Взять эпизод, когда в дороге теряются все деньги. Отказаться? Нет!

Тесла чудом пробирается на корабль и половину пути находится под эгидой капитана корабля, подкармливающего путешественника в собственной столовой. Отношения чуть охладились, когда молодой Тесла оказался замечен в центре возникшей на палубе потасовки, где раздавал с правой и левой, благодаря внушительному росту (при малом весе). В результате Тесла прибыл на берег и в первый день умудрился помочь с починкой генератора местному торговцу, заработав небольшое вознаграждение.

Имея на руках рекомендательные письма, Никола идёт устраиваться в компанию, где работает денно и нощно, проводя время сна на лежанке в лаборатории. Эдисон сыграл плохую шутку с молодым будущим визави: пообещал солидную награду за улучшения в работе электрического оборудования. Сложность быстро решилась, а изобретатель резьбы для цоколя лампочки сослался на коммерческий розыгрыш. Тесла уже мысленно распределил обещанную награду на проведение опытов, и шутка не вызвала у изобретателя тёплого душевного отклика. Молодой иммигрант покидает компанию с целью создать собственную.

Одновременно Тесла лелеет идеи на предмет борьбы с любителем розыгрышей. Во время прогулки с другом вдруг понимает, как реализовать теорию вращающегося поля Араго: требуется две фазы переменного тока. На момент 80-х годов XIX века идея считалась поистине революционной. Прежде двигатели, лампочки накала (в стадии совершенствования) и большинство лабораторных опытов обходились постоянным током. Так делал Георг Ом.

Тесла берет патент на двухфазный двигатель и заявляет, что возможны и сложные системы. Идеи заинтересовывают Вестингауза, начинается долгая история о правоте. Эдисон, как обычно, не скупился в средствах. Ходят истории, что он брал генератор переменного тока и истязал им до смерти животных. Якобы электрический стул придуман Эдисоном в соавторстве с неизвестным. Причём первый конструктор случайно или намеренно допустил ошибку, да так, что осуждённый мучился долгое время, в довершение буквально взорвался, выплеснув наружу внутренние органы.

Второго бедолагу адвокатам Вестингауза удалось спасти, заменив казнь на пожизненное заключение. Спасение не остановило Эдисона, вознамерившегося к стулу изобрести вдобавок и стол. Тесла постарался продемонстрировать ответный ход, выдвинув ряд аргументов:

Предприимчивые американские дельцы даже карты игральные выпустили, где фигурировала упомянутая война токов. К примеру, на изображении джокера размещена известная башня Ворденклиф, на строение ориентировались писатели-фантасты, режиссёры аналогичного толка кинокартин. Исторические факты уточняют, насколько напряжённой оказалась борьба – причина блеска изобретательского гения. Свитая из 50 витков толстого кабеля катушка Тесла конструктивно входила в состав башни Ворденклифа…

Конструкция катушки Тесла

Это потрясающая возможность, особым образом уложив витки медного провода, экономить на конденсаторных блоках. Если читатели в теме, то слышали про корректоры фазы для снижения трат на электроэнергию. Это конденсаторные блоки, компенсирующие индуктивное сопротивление потребителя. Особенно актуально для трансформаторов и двигателей. Лишние траты показывает лишь счётчик реактивной мощности. Это мнимая энергия, полезной работы у потребителя не выполняющая. Циркулируя туда и сюда, разогревает активные сопротивления проводников. В местности, где ведётся учёт полной мощности (к примеру, предприятия) это ощутимо увеличивает счета на оплату поставщикам электроэнергии.

Теперь несложно понять, как изобретение Тесла планировалось использовать в промышленности. Изобретатель в патенте US 512340 приводит две схожие конструкции катушки:

  • На первом чертеже представлена плоская спираль. Один вывод катушки Тесла находится на периферии, второй берётся из середины. Конструкция проста в работе. При разнице потенциалов между выводами в 100 В и количестве витков в тысячу, в среднем, между соседними точками спирали падает 0,1 В. Для вычисления цифры делим 100 на 1000. Собственная ёмкость пропорциональна квадрату 0,1 и не окажется слишком большой.
  • Тогда Тесла предлагает взглянуть на второй чертёж, где представлена катушка бифилярная. Это плоская спираль, но два провода вьются рядом. Причём концы второго контура закорочены и соединены с выводом первого. Получается, что альтернативная нить по длине обнаруживает одинаковый потенциал. Если представить, что к конструкции приложено 100 В, результат изменится. Действительно, теперь поблизости идут провода двух разных нитей, причём на единственной по длине — исключительно нуль. В результате, в среднем, разница потенциалов составляет 50 В, а собственная ёмкость катушки Тесла больше, нежели у предыдущей схемы, в 250000 раз. Это значительная разница, и очевидно, возможно найти выгодные параметры сети. К примеру, Тесла работал на частотах 200 — 300 кГц.

Изобретатель указывает, что испробовал различные формы и конфигурации. В смысле полезности квадрат не отличается от представленного на рисунках круга или прямоугольника. Форму волен выбирать конструктор. Катушки Тесла не находят сегодня массового применения. Изобретателю воспротивились предприниматели. Неизвестен разговор, произошедший между бизнесменами и Эдисоном, но, числясь акционерами новой ГЭС, магнаты прослышали, что башня Ворденклифа, построенная на удобном месте, способна стать первой пташкой в передаче энергии на расстояния без проводов.

Спонсор строительства был хозяином медных заводов и хотел просто продавать металл. Беспроводной метод передачи энергии невыгоден. Если бы Дж. П. Морган знал, что сегодня большая часть кабелей изготавливается из алюминия, возможно, отнёсся бы иначе, но вышло, что Никола Тесла достраивал башню в гордом одиночестве, и конструкция не приняла предполагаемого размаха.

По второй версии Никола Тесла задумал создавать энергию из воздуха, о чем судачат на Ютуб. Некий изобретатель доказывает, что в сердцевину магнита, на равном удалении от полюсов втягивается энергия эфира, и требуется уметь преобразовать её в электричество. Изложена кратко идея Теслы. Мастер-самоучка, осмелившийся на выставке представить генератор свободной энергии на 13 кВт, исчез в неизвестном направлении заодно с семьёй. Подобные факты наводят на мысль, что у башни Ворденклифа оказалось гораздо больше противников, чем принято думать.

По замыслу Тесла предвиделось 30 фабрик в мире. Они производили бы и принимали энергию, вели широкое вещание. По-видимому, посчитали, что это станет крахом местной экономики, хотя двигатели Бедини и сегодня строят, используя теории Тесал. Итак, катушки лежали в основе передающих и приёмных устройств: конструкция идентичная. Но сегодня эти любопытные изобретения надёжно забыты, если не считать микрополосковых технологий, где встречаются квадратные и круглые спирали-индуктивности аналогичного толка.

Трансформатор Тесла

Выше сказано, что в основе передающих устройств лежали катушки Тесла, допустимо назвать резонансными трансформаторами. Посредством трансформаторной связи на катушку Тесла закачивается высокий потенциал. Заряд идёт до пробоя разрядника, потом начинаются колебания на резонансной частоте. Если одна трансформаторная связь через катушку с большим количеством витков передаёт высокое напряжение на излучатель или разрядник.

Любой волен убедиться, что конструкция башни Ворденклиф напоминает гриб, но в основании лежит плоская катушка Тесла. В качестве излучателя применяется больших объёмов тор, обладающий ёмкостным сопротивлением. В современном виде промежуточный контур содержит обычные конденсаторы, настраиваемые под параметры «бублика». Большим достоинством конструкции считается отсутствие ферромагнитных материалов.

Мы можем увидеть и приобрести в магазин миниатюрную катушку Тесла в виде игрушки или декоративного светильника. Принцип действия такой же как у самого Тесла. Не чем не отличается, кроме масштабов и напряжения.

Давайте попробуем сделать катушку Тесла в домашних условиях.

— это резонансный трансформатор. В основном это LC схемы, настроенные на одну резонансную частоту.

Высоковольтный трансформатор используется для зарядки конденсатора.

Как только конденсатор достигает достаточного уровня заряда, он разряжается на разрядник и там проскакивает искра. Происходит короткое замыкание первичной обмотки трансформатора и в ней начинаются колебания.

Поскольку ёмкость конденсатора фиксирована, схема настраивается путем изменения сопротивления первичной обмотки, изменяя точку подключения к ней. При правильной настройке, очень высокое напряжение будет в верхней части вторичной обмотки, что приведет к впечатляющим разрядам в воздухе. В отличие от традиционных трансформаторов, соотношение витков между первичной и вторичной обмотками практически не влияет на напряжение.

Этапы строительства

Спроектировать и построить катушку Тесла довольно легко. Для новичка это кажется сложной задачей (мне это тоже казалось сложным), но можно получить рабочую катушку, следуя инструкциям в этой статье и проделав небольшие расчеты. Конечно, если вы хотите очень мощную катушку, нет никакого способа кроме изучения теории и проведения множества расчетов.

Вот основные шаги, с которых следует начать:

  1. Выбор источника питания. Трансформаторы которые используются в неоновых вывесках, вероятно, лучше всего подойдут для начинающих, так как они относительно дешевые. Я рекомендую трансформаторы с выходным напряжением не меньше чем 4кВ.
  2. Изготовление разрядника. Это могут быть просто два винта, вкрученных в паре миллиметров друг от друга, но я рекомендую приложить немного больше усилий. Качество разрядника сильно влияет на производительность катушки.
  3. Расчет ёмкости конденсатора. Используя формулу ниже, рассчитайте резонансную емкость для трансформатора. Значение конденсатора должно быть примерно в 1,5 раза больше этого значения. Вероятно, лучшим и наиболее эффективным решение будет сборка конденсаторов. Если вы не хотите тратить деньги, можете попробовать изготовить конденсатор сами, но он может не работать, а его емкость трудно определить.
  4. Изготовление вторичной обмотки. Используйте 900-1000 витков эмалированной медной проволоки 0,3-0,6мм. Высота катушки обычно равна 5 её диаметрам. Водосточная труба из ПВХ, возможно, не самый лучший, но доступный материал для катушки. Полый металлический шар прицеплен к верхней части вторичной обмотки, а её нижняя часть заземлена. Для этого желательно использовать отдельное заземление, т.к. при использовании общедомового заземления есть шанс испортить другие электроприборы.
  5. Изготовление первичной обмотки. Первичная обмотка может быть сделана из толстого кабеля, или ещё лучше из медной трубки. Чем толще трубка, тем меньше резистивных потерь. 6 миллиметровой трубы вполне достаточно для большинства катушек. Помните, что толстые трубы намного сложнее сгибать и медь трескается при многочисленных перегибах. В зависимости от размера вторичной обмотки, от 5 до 15 витков с шагом от 3 до 5 мм должно хватить.
  6. Соедините все компоненты, настройте катушку, и все готово!

Перед тем как начать делать катушку Тесла настоятельно рекомендуется ознакомиться с правилами ТБ и работы с высокими напряжениями!

Также обратите внимание, что не были упомянуты схемы защиты трансформатора. Они не были использованы, и пока проблем нет. Ключевое слово здесь — пока.

Катушка делалась в основном из тех деталей, которые были в наличии.
Это были:
4кВ 35mA трансформатор от неоновой вывески.
0.3мм медная проволока.
0.33μF 275V конденсаторы.
Пришлось докупить 75мм водосточную трубу ПВХ и 5 метров 6мм медной трубки.

Вторичная обмотка


Вторичная обмотка сверху и снизу покрыта пластиковой изоляцией, для предотвращения пробоя

Вторичная обмотка была первым изготовленным компонентом. Я намотал около 900 витков провода вокруг сливной трубы высотой около 37см. Длина использованного провода была примерно 209 метров.

Индуктивности и емкости вторичной обмотки и металлической сферы (либо тороида) можно рассчитать по формулам которые можно найти на других сайтах. Имея эти данные можно рассчитать резонансную частоту вторичной обмотки:
L = [(2πf) 2 C] -1

При использовании сферы диаметром 14см, резонансная частота катушки равна примерно 452 кГц.

Металлическая сфера или тороид

Первой попыткой было изготовление металлической сферы путем обвертывания пластикового шара фольгой. Я не смог разгладить фольгу на шаре достаточно хорошо, и решил изготовит тороид. Я сделал небольшой тороид, обмотав алюминиевой лентой гофрированную трубу, свернутую в круг. Я не смог получить очень гладкий тороид, но он работает лучше, чем сфера из-за своей формы и за счет большего размера. Для поддержки тороида под него был подложен фанерный диск.

Первичная обмотка

Первичная обмотка состоит из медных трубок диаметром 6 мм, намотанных по спирали вокруг вторичной. Внутренний диаметр обмотки 17см, внешний 29см. Первичная обмотка содержит 6 витков с расстоянием 3 мм между ними. Из-за большого расстояния между первичной и вторичной обмоткой, они могут быть слабо связаны между собой.
Первичная обмотка вместе с конденсатором является LC генератором. Необходимая индуктивность может быть рассчитана по следующей формуле:
L = [(2πf) 2 C] -1
С — емкость конденсаторов, F-резонансная частота вторичной обмотки.

Но эта формула и калькуляторы основанные на ней дают лишь приблизительное значение. Правильный размер катушки должен быть подобран экспериментально, поэтому лучше сделать её слишком большой, чем слишком маленькой. Моя катушка состоит из 6 витков и подключена на 4 витке.

Конденсаторы

Сборка из 24 конденсаторов с гасящим резистором 10МОм на каждом

Так как у меня было большое количество мелких конденсаторов, я решил собрать их в один большой. Значение конденсаторов может быть рассчитано по следующей формуле:
C = I ⁄ (2πfU)

Значение конденсатора для моего трансформатора 27.8 нФ. Фактическое значение должно быть немного больше или меньше этого, так как быстрый рост напряжения в связи с резонансом может привести к поломке трансформатора и / или конденсаторов. Небольшую защиту от этого обеспечивают гасящие резисторы.

Моя сборка конденсаторов состоит из трех сборок с 24 конденсаторами в каждой. Напряжение в каждой сборке 6600 В, общая ёмкость всех сборок 41.3нФ.

Каждый конденсатор имеет свой 10 МОм гасящий резистор. Это важно, так как отдельные конденсаторы могут сохранять заряд в течение очень долгого времени после того, как питание было отключено. Как видно из рисунка ниже, номинальное напряжение конденсатора является слишком низким, даже для 4 кВ трансформатора. Чтобы хорошо и безопасно работать оно должно быть по крайней мере, 8 или 12 кВ.

Разрядник

Мой разрядник это просто два винта с металлическим шариком в середине.
Расстояние регулируется таким образом, что разрядник будет искрить только тогда, когда он является единственным подключенным к трансформатору. Увеличение расстояния между ними теоретически может увеличить длину искры, но есть риск разрушения трансформатора. Для большей катушки необходимо строить разрядник с воздушным охлаждением.

Характеристики

Колебательный контур
Трансформатор NST 4кВ 35мА
Конденсатор 3 × 24 275VAC 0.33μF
Разрядник: два шурупа и металлический шар

Первичная обмотка
Внутренний диаметр 17см
Диаметр трубки обмотки 6 мм
Расстояние между витками 3 мм
Длина трубки первичной обмотки 5м
Витки 6

Вторичная обмотка
Диаметр 7,5 см
Высота 37 см
Проволока 0.3мм
Длина провода около 209m
Витки: около 900

Идея получения «бестопливного» электричества в домашних условиях чрезвычайно интересна. Любое упоминание о действующей технологии мгновенно приковывает внимание людей, желающих безвозмездно получить в свое распоряжение упоительные возможности энергетической независимости. Чтобы сделать правильные выводы по данной тематике, необходимо изучить теорию и практику.

Генератор собрать можно без больших затруднений, в любом гараже

Как создать вечный генератор

Первое, что приходит на ум при упоминании подобных устройств, это изобретения Тесла. Этого человека нельзя назвать фантазером. Наоборот, он известен своими проектами, которые были успешно реализованы на практике:

  • Он создал первые трансформаторы и генераторы, работающие на токах высокой частоты. Фактически он основал соответствующее направление электротехнического ВЧ оборудования. Некоторые результаты его экспериментов используются до сих пор в правилах безопасности.
  • Тесла создал теорию, на базе которой появились конструкции электрических машин многофазного типа. Многие современные электродвигатели созданы на основе его разработок.
  • Многие исследователи справедливо полагают, что передачу информации на расстояние с помощью радиоволн также изобрел Тесла.
  • Его идеи были реализованы в патентах знаменитого Эдисона, как утверждают историки.
  • Гигантские башни, генераторы энергии, которые были построены Тесла, использовались для множества экспериментов, фантастических даже по современным меркам. Они создавали полярное сияние на широте Нью-Йорка и вызывали вибрации, сопоставимые по силе с мощными природными землетрясениями.
  • Тунгусский метеорит, говорят, был в действительности результатом эксперимента изобретателя.
  • Небольшая черная коробочка, которую Тесла установил в серийный автомобиль с электромотором, обеспечивала полноценное многочасовое питание техники без аккумуляторов и проводов.

Опыты в районе Тунгуски

Здесь перечислена только часть изобретений. Но даже краткие описания некоторых из них позволяют предположить, что Тесла своими руками создал «вечный» двигатель. Впрочем, сам изобретатель использовал для расчетов не заклинания и чудеса, но вполне материалистичные формулы. Следует отметить, однако, что они описывали теорию эфира, которая не признается современной наукой.

Для проверки на практике можно использовать типовые схемы приборов.

Если с помощью осциллографа сделать измерения колебаний, которые образует «классическая» катушка Тесла, будут сделаны интересные выводы.

Осциллограммы напряжений при разных видах индуктивной связи

Сильная связь индуктивного типа обеспечена стандартным способом. Для этого в каркас устанавливается сердечник из трансформаторного железа, или другого подходящего материала. В правой части рисунка приведены соответствующие колебания, результаты измерений на первичной и вторичной катушке. Явно видна корреляция процессов.

Теперь нужно обратить внимание на левую часть рисунка. После подачи на первичную обмотку кратковременного импульса колебания постепенно затухают. Однако на второй катушке зарегистрирован иной процесс. Колебания здесь имеют явно выраженную инерционную природу. Они не затухают еще некоторое время без внешней подпитки энергией. Тесла полагал, что данный эффект объясняет наличие эфира, среды с уникальными свойствами.

В качестве прямых доказательств этой теории приводят следующие ситуации:

  • Самостоятельный заряд конденсаторов, не подсоединенных к источнику энергии.
  • Существенное изменение нормальных параметров электростанций, которое вызывает реактивная мощность.
  • Появление коронных разрядов на неподключенной к сети катушке, при размещении ее на большом расстоянии от работающего аналогичного устройства.

Последний из процессов происходит без дополнительных затрат энергии, поэтому следует рассмотреть его более внимательно. Ниже приведена принципиальная схема катушек Тесла, которую можно собрать без больших затруднений своими руками дома.

Принципиальная схема катушек Тесла

В следующем перечне приведены основные параметры изделий и особенности, которые надо учитывать в процессе монтажа:

  • Для крупной конструкции первичной обмотки понадобится трубка из меди, диаметром около 8 мм. Эта катушка состоит из 7-9 витков, укладывающихся с расширением по спирали в верхнюю сторону.
  • Вторичную обмотку можно сделать на каркасе из полимерной трубы (диаметр от 90 до 110 мм). Хорошо подходит фторопласт. Этот материал обладает отличными изоляционными характеристиками, сохраняет целостность структуры изделия в широком диапазоне температур. Проводник подбирают такой, чтобы сделать 900-1100 витков.
  • Внутри трубы помещают третью обмотку. Чтобы собрать ее правильно, используют многожильный провод в толстой оболочке. Площадь сечения проводника должна быть 15-20 мм 2 . От количества ее витков будет зависеть величина напряжения на выходе.
  • Для точной настройки резонанса все обмотки настраиваются на одну частоту с применением конденсаторов.

Практическая реализация проектов

Приведенный в предыдущем пункте пример описывает только часть устройства. Там нет точного указания электрических величин, формул.

Своими руками сделать подобную конструкцию можно. Но придется искать схемы возбуждающего генератора, совершать многочисленные эксперименты по взаимному расположению блоков в пространстве, подбирать частоты и резонансы.

Говорят, что кому-то удача улыбнулась. Но в открытом доступе найти полные данные, или заслуживающие доверия доказательства невозможно. Поэтому далее будут рассмотрены только реальные изделия, которые действительно можно сделать дома самому.

На следующем рисунке изображена принципиальная электрическая схема. Она собирается из недорогих стандартных деталей, которые можно приобрести в любом специализированном магазине. Их номиналы и обозначения указаны на чертеже. Затруднения могут возникнуть при поиске лампы, которая не выпускается в настоящее время серийно. Для замены можно использовать 6П369С. Но надо понимать, что этот вакуумный прибор рассчитан на меньшую мощность. Так как элементов немного, допустимо использование простейшего навесного монтажа, без изготовления специальной платы.

Электрическая схема генератора

Обозначенный на рисунке трансформатор – это катушка Тесла. Ее наматывают на трубке из диэлектрика, руководствуясь данными из следующей таблицы.

Количество витков в зависимости от обмотки и диаметра проводника

Свободные провода высоковольтной катушки устанавливают вертикально.

Чтобы обеспечить эстетичность конструкции, можно сделать своими руками специальный корпус. Он же пригодится для надежной фиксации блока на ровной поверхности и последующих экспериментов.

Один из вариантов конструкции генератора

После включения аппарата в сеть, если все сделано правильно, а элементы исправны, можно будет любоваться коронарным свечением.

Приведенную в предыдущем разделе схему из трех катушек, можно использовать совместно с этим устройством для опытов с целью создания личного источника бесплатной электроэнергии.

Коронарное излучение над катушкой

Если предпочтительна работа с новыми комплектующими деталями, стоит рассмотреть следующую схему:

Схема генератора на полевом транзисторе

Основные параметры элементов приведены на чертеже. Пояснения к сборке и важные дополнения указаны в следующей таблице.

Пояснения и дополнения к сборке генератора на полевом транзисторе

Деталь Основные параметры Примечания
Полевой транзистор Можно использовать не только тот, который отмечен на схеме, но и другой аналог, работающий с токами от 2,5-3 А и напряжением более 450 V. Перед монтажными операциями необходимо проверить функциональное состояние транзистора и других деталей.
Дроссели L3, L4, L5 Допустимо применение стандартных деталей из блока строчной развертки телевизора. Рекомендуемая мощность – 38 Вт
Диод VD 1 Возможно использование аналога. Номинальный ток прибора от 5 до 10 А
Катушка Тесла (Первичная обмотка) Создается из 5-6 витков толстого провода. Его прочность позволяет не использовать дополнительный каркас. Толщина проводника из меди – от 2 до 3 мм.
Катушка Тесла (Вторичная обмотка) Состоит из 900-1100 витков на трубчатой основе из диэлектрического материала с диаметром от 25 до 35 мм. Эта обмотка высоковольтная, поэтому пригодится ее дополнительная пропитка лаком, или создание защитного слоя фторопластовой пленкой. Для создания обмотки используют медный провод 0,3 мм в диаметре.

Скептики, отрицающие саму возможность использования «дармовой» энергии, а также те люди, которые не имеют элементарных навыков для работы с электротехникой, могут сделать своими руками следующую установку:

Безграничный источник бесплатной энергии

Пусть читателя не смущает отсутствие множества деталей, формул и объяснений. Все гениальное – просто, не правда ли? Здесь изображена принципиальная схема одного изобретения Тесла, которое до наших дней дошло без искажений, исправлений. Эта установка вырабатывает ток из солнечного света без специальных батарей и преобразователей.

Дело в том, что в потоке излучения ближайшей к Земле звезды есть частицы с положительными зарядами. При ударах о поверхность металлической пластины происходит процесс накопления заряда в электролитическом конденсаторе, который «минусом» подключен к стандартному заземлителю. Для увеличения эффективности приемник энергии устанавливают как можно выше. Подойдет алюминиевая фольга для запекания еды в духовке. Своими руками с использованием подручных средств можно сделать основу для ее закрепления и поднять устройство на большую высоту.

Но не стоит спешить в магазин. Производительность такой системы минимальна (ниже таблица с информацией по устройству).

Точные данные эксперимента

В солнечный день после 10 часов измерительный прибор показал 8 вольт на клеммах конденсатора. За несколько секунд в таком режиме разряд полностью был израсходован.

Очевидные выводы и важные дополнения

Несмотря на то что простое решение пока не предъявлено общественности, нельзя утверждать, что электромагнитный генератор великого изобретателя Тесла не существует. Теорию эфира не признает современная наука. Нынешние системы экономики, производства, политики будут уничтожены бесплатными или очень дешевыми источниками энергии. Разумеется, есть много противников их появления.

Этот человек смог создать действующий генератор

Видео. Генератор своими руками.

Но с помощью приведенных выше схем можно собрать своими руками действующие модели для экспериментов. Возможно, что изготовленная катушка будет обладать уникальными параметрами, способными изменить ход истории.