Регулирование тепловой нагрузки по погодным условиям. Индивидуальные тепловые пункты

Проблема экономичности работы системы отопления в большинстве случаев заключается в выборе оптимального соответствия между температурой на улице и текущим расходом тепла на здание. Очень часто котельные (это связано со спецификой работы энергетического оборудования) не успевают реагировать на быстрые изменения погодных условий. И тогда мы можем видеть следующую картину: на улице тепло, а радиаторы топят как "сумасшедшие". В это время теплосчетчик накручивает круглые суммы за никому не нужное тепло.

Решить проблему быстрого реагирования на изменения погодных условий в отдельно взятом здании поможет автоматическая система регулирования теплопотребления по погоде. Суть данной системы заключается в следующем: на улице устанавливается электротермометр, измеряющий температуру воздуха в данный момент. Каждую секунду его сигнал сравнивается с сигналом о температуре теплоносителя на выходе из здания (то-есть фактически с температурой самого холодного радиатора в здании) и/или с сигналом о температуре в одном из помещений здания. На основании данного сравнения регулирующий блок автоматически дает команду на электрический регулирующий клапан, который устанавливает оптимальную величину расхода теплоносителя.

Кроме того, подобная система снабжена таймером переключения режима работы системы отопления. Это означает, что при наступлении определенного часа суток и (или) дня недели она автоматически переключает отопление из нормального режима в экономный и наоборот. Специфика некоторых организаций не требует наличия комфортного отопления в ночное время и система в заданный час суток автоматически снизит тепловую нагрузку на здание на заданную величину, а следовательно сэкономит тепло и деньги. Утром, перед началом рабочего дня, система автоматически переключится в нормальный режим работы и прогреет здание. Опыт установки подобных систем показывает, что величина экономии тепла, получаемая от работы подобной системы составляет порядка 15% зимой и 60-70% осенью и весной за счет постоянных периодических потеплений.

Сегодня одним из наиболее эффективных способов энергосбережения является экономия тепловой энергии на объектах ее конечного потребления: в отапливаемых зданиях. Главным условием, обеспечивающим возможность проведения такой экономии, является, прежде всего, обязательное оснащение теплопунктов приборами учета тепла, т.н. теплосчетчиками. Наличие такого прибора позволяет быстро окупить капиталовложения по оснащению отопительных систем энергосберегающим оборудованием и в дальнейшем получить значительную экономию финансовых затрат, идущих обычно на оплату счетов энергетических компаний.

Теплосчетчики. Простейший теплосчетчик сегодня представляет собой прибор, измеряющий температуры и расход теплоносителя на входе и выходе объекта теплоснабжения (см рис.).

График 3. Работа тепловычислителя

По информации от датчиков микропроцессорный вычислитель тепла каждое мгновенье определяет расход тепла на здание и интегрирует его по времени.

Друг от друга технически теплосчетчики отличаются по методу измерения расхода теплоносителя. На сегодняшний день в серийно выпускаемых теплосчетчиках используются расходомеры следующих типов:

  • · Теплосчетчики с расходомерами переменного перепада давления. В настоящее время данный метод сильно устарел и применяется крайне редко.
  • · Теплосчетчики с крыльчатыми (турбинными) расходомерами. Являются наиболее дешевыми приборами для измерения расхода тепла, но имеют ряд характерных недостатков.
  • · Теплосчетчики с ультразвуковыми расходомерами. Одни из самых прогрессивных, точных и надежных на сегодняшний день теплосчетчиков.
  • · Теплосчетчики с электромагнитными расходомерами. По качеству находятся приблизительно на одной ступени с ультразвуковыми. Во всех теплосчетчиках в качестве датчиков для измерения температуры используются стандартные термометры сопротивления.

График 4. Один из типовых вариантов установки одноконтурной автоматической системы регулирования потребления тепла зданием с коррекцией по погодным условиям

Фактическим стандартом любой системы отопления здания “на западе” сегодня является обязательное присутствие в ней т.н. автоматической системы регулирования тепловой нагрузки с коррекцией по погодным условиям. Наиболее типичная схема ее компоновки представлена на рис. 3.

Сигналы о температурах в контрольном помещении и подающем трубопроводе теплоносителя являются корректирующими. Возможен и другой вариант регулирования, когда контроллер будет поддерживать заданную по графику температуру в контрольном помещении. Такого рода прибор обычно снабжается таймером реального времени (часами), учитывающем время суток и переключающим режим энергопотребления здания из “комфортного” в “экономный” и назад в “комфортный”. Это особенно актуально, например, для организаций, в которых нет необходимости поддерживать комфортный режим отопления в помещениях ночью или в выходные дни. Система обладает также функциями ограничения величины поддерживаемой температуры по верхнему либо нижнему пределу и защиты от замерзания.

График 5. Схема циркуляции потоков внутри здания в обычных системах теплообеспечения

Как это не странно, но почему-то во времена Советского Союза в проектах практически всех новостроящихся высотных зданий была заложена одна из самых неоптимальных в плане распределения тепла схем трубной разводки систем отопления, а именно - вертикальная. Наличие такой схемы разводки уже само по себе предполагает температурный перекос по этажам здания.

График 6. Схема циркуляции потоков внутри здания в замкнутом контуре потоков

Пример такого перекоса (вертикальная разводка) изображен на рисунке. Прямой теплоноситель от котельной по подающему трубопроводу поднимается на верхний этаж здания и оттуда медленно спускается вниз по стоякам через радиаторы системы отопления, собираясь внизу в коллектор обратного трубопровода. Из-за малой скорости протекания теплоносителя по стоякам и возникает температурный перекос - все тепло отдается на верхних этажах и горячая вода просто не успевает дойти до нижних этажей, остывая по дороге.

В результате - на верхних этажах очень жарко, и находящиеся там люди вынуждены открывать форточки, через которые выходит то самое тепло, которого не хватает нижним этажам.

Наличие в здании подобного температурного перекоса подразумевает под собой:

Отсутствие комфорта в помещениях здания;

Постоянные потери 10-15% тепла (через форточки);

Невозможность экономии тепла: любая попытка снизить тепловую нагрузку еще более усугубит ситуацию с перекосом температур (т.к. скорость протекания теплоносителя по радиаторам станет еще меньше).

Решить подобную проблему сегодня можно только с помощью:

  • · полной переделки всей системы отопления здания, что кстати говоря, очень трудоемкое и дорогое удовольствие;
  • · установки в элеватор циркуляционного насоса, который увеличит скорость циркуляции теплоносителя по зданию.

Подобные системы широко распространены на «западе». Результаты опытов, проведенных западными коллегами, превзошли все ожидания: в осенний и весенний периоды, за счет частых временных потеплений, расход тепла на оборудованных данными системами объектах составил всего 40-50%. То есть экономия тепла в это время составила порядка 50-60%. Зимой снижение нагрузки было значительно меньше: оно достигало 7 -15% и получалось, в основном, за счет проведения прибором автоматического “ночного” снижения температуры в обратном трубопроводе на 3-5 оС. В целом же, общая усредненная экономия тепла за весь отопительный период, на каждом из объектов составила около 30-35% по отношению к прошлогоднему потреблению. Срок окупаемости установленного оборудования составил (в зависимости, конечно, от тепловой нагрузки здания) от 1-го до 5 месяцев.

Схема 7. циркуляционного насоса

Наиболее впечатляющие результаты от внедрения были достигнуты в г. Ильичевске, где подобными системами в 1998 г. были оборудованы 24 ЦТП ООАО “Ильичевсктеплокоммунэнерго” (ИТКЭ). Только благодаря этому ИТКЭ получило возможность снизить расход газа в своих котельных на 30 % по отношению к предыдущему отопительному периоду и одновременно существенно уменьшить время работы своих сетевых насосов, так как регуляторы в значительной мере способствовали выравниванию гидравлического режима тепловых сетей по времени.

Аппаратная реализация подобной системы может быть различна. Может быть использовано оборудование как отечественного так импортного производства.

Немаловажным элементом в данной схеме является циркуляционный насос. Бесшумный, бесфундаментный циркуляционный насос осуществляет следующую функцию: увеличение скорости протекания теплоносителя по радиаторам здания. Для этого между подающим и обратным трубопроводом устанавливается перемычка, через которую осуществляется подмешивание части обратного теплоносителя к прямому. Один и тот же теплоноситель быстро и несколько раз проходит по внутреннему контуру здания. Благодаря этому температура в подающем трубопроводе падает, а за счет увеличения в несколько раз скорости протекания теплоносителя по внутреннему контуру здания, в обратном трубопроводе температура поднимается. Происходит равномерное распределение тепла по зданию.

Насос снабжен всеми необходимыми устройствами защиты и работает полностью в автоматическом режиме.

Его наличие необходимо по следующим причинам: во-первых, он в несколько раз увеличивает скорость циркуляции теплоносителя по внутреннему контуру системы отопления, чем повышается комфортность в помещениях здания. А во-вторых, он необходим потому, что регулирование тепловой нагрузки производится путем снижения расхода теплоносителя. В случае однотрубной разводки системы отопления в здании (а это стандарт именно отечественных систем) это автоматически увеличит перекос температур в помещениях: из-за снижения скорости протекания теплоносителя практически все тепло станет отдаваться в первых по его ходу радиаторах, что значительно ухудшит ситуацию с распределением тепла в здании и снизит эффективность регулирования.

Перспективность внедрения подобного оборудования трудно переоценить. Это эффективное средство решения проблемы энергосбережения на объектах конечного потребителя тепла, которое способно при столь относительно малых затратах дать столь высокий экономический эффект.

Кроме этого существуют различные методы оптимизации и выбор того или иного определяется специалистом исходя из специфики объекта.

В соответствии с требованиями нормативной документации и ФЗ №261 "Об энергосбережении…" должна стать нормой, как для объектов нового строительства, так и для существующих зданий, так как это является основным инструментом управления теплоснабжением. Сегодня такие системы, вопреки сложившемуся мнению, вполне доступны для большинства потребителей. Они функциональны, обладают высокой надежностью и позволяют оптимизировать процесс потребления тепловой энергии. Срок окупаемости затрат на установку оборудования находится в пределах одного года.

Система автоматического регулирования теплопотребления () позволяет снизить потребление тепловой энергии за счет следующих факторов:

  1. Устранения поступления в здание избытков тепловой энергии (перетопов);
  2. Снижения температуры воздуха в ночное время;
  3. Снижения температуры воздуха в праздничные дни.

Укрупненные показатели экономии тепловой энергии от применения САРТ, установленного в индивидуальном тепловом пункте () здания представлены рис. №1.

Рис.1 Общая экономия достигает 27% и более*

*по данным ООО НПП “Элеком”

Основные элементы классической САРТ в общем виде показаны на рис. №2.

Рис.2 Основные элементы САРТ в ИТП*

*вспомогательные элементы условно не показаны

Назначение погодного контроллера:

  1. Измерение температур наружного воздуха и теплоносителя;
  2. Управление клапаном КЗР в зависимости в соответствии с заложенными программами (графиками) регулирования;
  3. Обмен данными с сервером.

Назначение подмешивающего насоса:

  1. Обеспечение постоянного расхода теплоносителя в системе отопления;
  2. Обеспечение переменного подмеса теплоносителя.

Назначение клапана КЗР: управление поступлением теплоносителя из тепловой сети.

Назначение датчиков температуры: измерение температур теплоносителя и наружного воздуха.

Дополнительные опции:

  1. Регулятор перепада давления. Регулятор предназначен для поддержания постоянного перепада давления теплоносителя и позволяет исключить отрицательное влияние нестабильного перепада давления тепловой сети на работу САРТ. Отсутствие регулятора перепада давления может привести к неустойчивому функционированию системы, снижению экономического эффекта и срока службы оборудования.
  2. Датчик температуры воздуха в помещении. Датчик предназначен для контроля температуры воздуха внутри помещения.
  3. Сервер сбора данных и управления. Сервер предназначен для удаленного контроля работоспособности оборудования и коррекции отопительных графиков по показаниям датчиков температуры воздуха внутри помещения.

Принцип работы классической схемы САРТ состоит в качественном регулировании, дополненном количественным регулированием. Качественное регулирование - это изменение температуры теплоносителя, поступающего в систему отопления здания, а количественное регулирование - это изменение количества теплоносителя, поступающего из тепловой сети. Происходит этот процесс таким образом, что количество теплоносителя, поступаемого из тепловой сети, меняется, а количество теплоносителя, циркулирующего в системе отопления, остается постоянным. Таким образом, сохраняется гидравлический режим системы отопления здания и происходит изменение температуры теплоносителя, поступающего в отопительные приборы. Сохранение гидравлического режима постоянным является необходимым условием для равномерного прогрева здания и эффективной работы системы отопления.

Физически процесс регулирования происходит так: погодный контроллер, в соответствии с заложенными в него индивидуальными программами регулирования и в зависимости от текущих температур наружного воздуха и теплоносителя, подает управляющие воздействия на клапан КЗР. Приходя в движение, запорный орган клапана КЗР уменьшает или увеличивает расход сетевой воды из тепловой сети по подающему трубопроводу до узла смешения. Одновременно с этим, за счет насоса в узле смешения, производится пропорциональный отбор теплоносителя из обратного трубопровода и подмешивание его в подающий, что при сохранении гидравлики системы отопления (количества теплоносителя в системе отопления) приводит к требуемым изменениям температуры теплоносителя, поступающего в радиаторы отопления. Процесс снижения температуры поступающего теплоносителя, уменьшает количество тепловой энергии, которая отбирается в единицу времени от радиаторов отопления, что и приводит к экономии.

Схемы САРТ в ИТП зданий у разных производителей могут непринципиально отличаться, но во всех схемах основными элементами являются: погодный контроллер, насос, клапан КЗР, датчики температуры.

Хочется отметить, что в условиях экономического кризиса все большее количество потенциальных заказчиков становятся чувствительными к цене. Потребители начинают искать альтернативные варианты с наименьшим составом оборудования и стоимостью. Иногда на этом пути возникает ошибочное желание сэкономить на установке подмешивающего насоса. Такой подход не оправдан для САРТ, монтируемых в ИТП зданий.

Что произойдет если не установить насос? А произойдет следующее: в результате работы клапана КЗР гидравлический перепад давления и, соответственно, количество теплоносителя в системе отопления будут постоянно меняться, что неизбежно приведет к неравномерному прогреву здания, неэффективной работе отопительных приборов и риску остановки циркуляции теплоносителя. Кроме этого, при отрицательных температурах наружного воздуха может произойти “размораживание” системы отопления.

Экономить на качестве погодного контроллера так же не стоит, т.к. современные контроллеры позволяют выбирать такой график управления клапаном, который при сохранении комфортных условий внутри объекта, позволяет получить значительные объемы экономии тепловой энергии. Сюда входят такие эффективные программы управления теплопотреблением как: устранение перетопов; снижение потребления в ночные часы и нерабочие дни; устранение завышения температуры обратной воды; защита от “размораживания” системы отопления; коррекция отопительных графиков по температуре воздуха в помещении.

Подводя итог сказанному, хочется отметить важность профессионального подхода к выбору оборудования системы погодного автоматического регулирования теплопотребления в ИТП здания и еще раз подчеркнуть, что минимально достаточными основными элементами такой системы являются: насос, клапан, погодный контроллер и датчики температуры.

23-летний опыт выполнения работ, система качества ИСО 9001, лицензии и сертификаты на производство и ремонт средств измерений, допуски СРО (проектирование, монтаж, энергоаудит), аттестат аккредитации в области обеспечения единства измерений и рекомендации клиентов, включая государственные органы, муниципальные администрации, крупные промышленные предприятия, позволяют предприятию «ЭЛЕКОМ» реализовывать высокотехнологичные решения для энергосбережения и повышения энергетической эффективности с оптимальным соотношением цена/качество.

Погодное регулирование - это регулирование температуры воды в системе отопления в зависимости от наружной температуры. Процесс регулирования под управлением контроллера выполняется в узле смешения регулирующим клапаном, смешивающий теплоноситель из подающего трубопровода с более высокой температурой с теплоносителем из обратного трубопровода с низкой температурой. Таким образом регулируется температура теплоносителя, поступающего непосредственно в приборы отопления - радиаторы, конвекторы. Погодная компенсация, осуществляемая в индивидуальных тепловых пунктах (ИТП), гарантирует наиболее комфортные условия для проживания и работы и в существенной степени влияют на показания теплосчетчиков в АСКУЭ в сторону уменьшения энергопотребления, и, соответственно экономят энергоресурсы.

Система погодного регулирования – очень надежный новейший способ, позволяющий сэкономить тепловую энергию. Работает она с поправкой не только на изменение температуры окружающей среды, но и на температуру, изменяющуюся в помещении. Температура устанавливается в автоматическом режиме по заданному температурному графику дифференцировано по дням недели и даже по часам суток. Установка и грамотная эксплуатация данной системы в комплексе с приборами учета тепловой энергии обеспечит экономию энергоресурсов, и соответственно, Ваших денег.

Системы погодного регулирования устанавливают с целью автоматического обеспечения в помещениях требуемой температуры и снижения платежей за тепло. Наше предложение по установке модульного исполнения погодного регулирования СУАПР является очень конкурентоспособным.

Предмет предложения. Поставка Смесительных Узлов Автоматического Погодного Регулирования (СУАПР) производства ООО “Теплотрон”.
Назначение СУАПР. Снижение платежей за потребляемую тепловую энергию жителями многоквартирных домов (на 18 % — 25 %) и обеспечение постоянной комфортной температуры во всех жилых помещениях.

  1. Краткое описание СУАПР.

Большинство жилых и общественных зданий обеспечивается теплом от ТЭЦ и котельных. Температура теплоносителя, подаваемого потребителям, регулируется централизованно на источниках тепла, в соответствии с температурой наружного воздуха. Существующие системы теплоснабжения в основном оснащены водоструйными элеваторами, которые не позволяют регулировать температуру подаваемого в здания теплоносителя. Снижение температуры теплоносителя в общественных зданиях во время отсутствия в них людей и в жилых зданиях в определенные переходные периоды позволяет существенно снизить затраты на отопление.

Применение разработанного специалистами ООО “Теплотрон” смесительного узла автоматического погодного регулирования СУАПР (зарегистрирован в Госреестре РФ под № 010/019586), который устанавливается взамен нерегулируемого водоструйного элеватора позволяет добиться комфортных условий для пребывания людей и снизить затраты на отопление с минимальными временными и материальными затратами. За счет соответствия тепловой нагрузки, габаритных и присоединительных размеров при внедрении СУАПР не требуется проектирования и проведения сварочных работ по реконструкции теплового пункта. Вся работа по реконструкции ИТП состоит в демонтаже существующего элеватора и установке на его место СУАПР с соответствующими тепловой нагрузкой и типоразмерами. При установке СУАПР не требуется проект (в ряде случаев теплоснабжающие компании согласовывают данное техническое решение на основе представленного типового проекта), высококвалифицированный персонал, отпадает необходимость сварочных работ. Наладка СУАПР производится в заводских условиях, никаких дополнительных настроек на объекте не требуется. Таким образом, применение СУАПР по сравнению с традиционными системами автоматического погодного регулирования позволяет существенно снизить материальные и временные затраты на внедрение, а значит сократить сроки окупаемост и.

Согласно письма — Заместителя руководителя Северо-Западного управления Федеральной Службы по экологическому и атомному надзору (РОСТЕХНАДЗОР), разрешение на допуск в эксплуатацию СУАПР не требуется.

Элеватор водоструйный типа 40с10бк СУАПР с аналогичными размерами и
тепловой нагрузкой

СУАПР оснащается интеллектуальным контроллером РПТ-1.2Д, который, получая сигнал от трех датчиков температуры (наружный воздух, подающий и обратный трубопровод), по заданному алгоритму управляет запорно-регулирующим клапаном КРТ с электроприводом и промышленным насосом (или двумя насосами) . РПТ-1.2Д, КРТ и Термодатчики также производятся компанией “Теплотрон”.
РПТ-1.2Д является 2-х контурным регулятором, что позволяет при необходимости организовать регулирование на только отопления, но и ГВС с минимальными затратами.
Благодаря применению СУАПР достигается автоматическое регулирование параметров теплопотребления (контроль над параметрами поступающего теплоносителя, обеспечение соблюдения температурного графика, регулирование параметров теплоносителя в соответствии с температурой наружного воздуха) с целью поддержания комфортных условий во внутренних помещениях здания и рационального использования тепловой энергии. Отмечаем, что составные части СУАПР (контроллер РПТ-1.2.Д, запорно-регулирующие клапана КРТ, термодатчики) нашли широкое применение в различных регионах РФ и стран Евразийского Союза.

Пример монтажа СУАПР (система отопления жилого 5-ти этажного дома):


Таким образом, СУАПР представляет собой полноценный узел автоматического погодного регулирования модульного исполнения. Во всех помещениях здания, в котором установлен СУАПР, автоматически поддерживается требуемая (заданная) температура.

2. Подбор СУАПР под конкретный объект, монтаж и запуск в эксплуатацию.

Модель СУАПР (всего производится семь моделей СУАПР) подбирается в зависимости от тепловой нагрузки (расходов теплоносителя) системы теплоснабжения здания. Все требуемые данные, в том числе и геометрические размеры установленного нерегулируемого элеватора, заносятся в опросный лист на СУАПР. Обычно опросный лист на СУАПР заполняется Заказчиком или специализированной организацией. Правильно заполненный опросный лист является результатом обследования объекта и гарантирует простоту монтажа и работоспособность СУАПР .

Изготовленный под конкретный объект СУАПР поставляется в собранном состоянии, готовый к установке, в ящиках размером 1000 мм х 1000мм х 600 мм. Масса брутто не более 55 кг . При установке СУАПР сварочных работ не требуется . СУАПР устанавливается в посадочные гнезда демонтированного нерегулируемого элеватора. Средняя продолжительность работ по установке СУАПР двумя сантехниками — 4-6 часов (с учетом демонтажа нерегулируемого элеватора). Для установки СУАПР не требуется специальных знаний.

После монтажа СУАПР необходимо:

— поместить датчик температуры наружного воздуха (входит в состав СУАПР) на северную стену здания;
— подвести питание 220 В к СУАПР.
СУАПР поставляется полностью готовым к работе на конкретном объекте и не требует дополнительных настроек. В случае необходимости СУАПР легко перенастраивается непосредственно на объекте под требуемый температурный график. Настройка СУАПР производится с клавиатуры РПТ-1.2.Д без применения дополнительных инструментов и программного обеспечения. Возможно дистанционное считывание информации и управление СУАПР посредством задействования GSM-модемов.
В стандартном исполнении СУАПР контроллер РПТ-1.2.Д размещается на раме СУАПР. Возможно размещение РПТ-1.2.Д в отдельном щите автоматики. Требуемое размещение РПТ-1.2.Д указывается в опросном листе.
Типовые проекты на СУАПР при необходимости будут согласованы с теплоснабжающими организациями города Таганрога и Ростова на Дону.
Для технической поддержки внедренного оборудования будут привлечены представители ООО “Теплотрон” по Ростовской области.

3. Стоимость СУАПР

Ниже в таблицах (№ 2 и №3) приведены прайсовые стоимости моделей СУАПР (склад Санкт-Петербург) в зависимости от тепловой нагрузки здания.
Таблица №2.

Гкал/час

Модификация СУАПР

(один насос)

Расход воды

из сети, т/час

Цена за штуку,

рубли

СУАПР№1-102 0,5-1 0,04-0,08 212 400
СУАПР№2-102 1-2 0,08-0,16 218 300
СУАПР№3-102 2-3 0,16-0,24 285 560
СУАПР№4-102 3-5 0,24-0,4 297 360
СУАПР№5-102 5-10 0,4-0,8 319 780
СУАПР№6-102 10-15 0,8-1,2 339 840
СУАПР№7-102 15-25 1,2-2 368 160

Таблица №3. Cтоимость СУАПР (рубли РФ с учетом НДС 18%)

Гкал/час

Модификация СУАПР

(два насоса)

Расход воды

из сети, т/час

Цена за штуку,

рубли

СУАПР№1-202 0,5-1 0,04-0,08 271 400
СУАПР№2-202 1-2 0,08-0,16 289 100
СУАПР№3-202 2-3 0,16-0,24 368 160
СУАПР№4-202 3-5 0,24-0,4 379 960
СУАПР№5-202 5-10 0,4-0,8 414 180
СУАПР№6-202 10-15 0,8-1,2 446 040
СУАПР№7-202 15-25 1,2-2 486 160

При заказе СУАПР от 2-х штук возможно предоставление скидок до 15 % и работа по договору с частичной отсрочкой платежа.

Срок отгрузки СУАПР – 4 недели
Примерная стоимость доставки одного СУАПР до города Таганрог – 4 000 рублей
Гарантийный срок на СУАПР – 18 месяцев с даты отгрузки
Экономическая эффективность применения СУАПР.
Опыт внедрения СУАПР на жилых и общественных зданиях говорит о том, что теплопотребление при установке СУАПР снижается:
— административные и общественные здания на 23 % – 30 %;
— жилые здания на 18 % — 25 %.

Рассчитать экономический эффект от применения СУАПР для конкретного здания можно с помощью счетчика, размещенного на сайте www.суапр.рф

  1. Конкурентные преимущества СУАПР

— Блочное исполнение, малые размеры и вес, что обеспечивает легкость монтажа и обслуживания. СУАПР свободно заносится в любой дверной проем в собранном состоянии и может быть размещен в любом подвале.
— Геометрические размеры и нагрузки совпадают с аналогичными параметрами нерегулируемых элеваторов, что позволяет производить монтаж без сварочных работ.
— При монтаже СУАПР требуется кратковременное (не более 4 часов) отключение здания от системы теплоснабжения, что позволяет производить работы в отопительный период.
— СУАПР поставляется со всеми необходимыми настройками под конкретный объект. В случае необходимости СУАПР легко перенастраивается под требуемый температурный график. Для монтажа и эксплуатации СУАПР не требуются высокопрофессиональные специалисты .
— Низкая стоимость СУАПР и минимальные затраты на его внедрение обеспечивают данному изделию самый быстрый срок окупаемости.

Услуги автоматизации систем центрального отопления, теплоснабжения с целью экономии тепла в Перми и Пермском крае. Автоматика центрального отопления, теплоснабжения устанавливается в многоквартирные и многоэтажные дома, жилые здания, заводы, детские сады, школы, МКД, ТСЖ. Автоматическая регулировка потребления тепловой энергии повышает энергоэффективность зданий, подключённых к центральным тепловым сетям.

Погодозависимая автоматика отопления, теплоснабжения. Погодное регулирование это разновидность автоматических систем управления потребления тепловой энергии на отоплении. Основной принцип автоматической регулировки, заложенный в системе - поддержание температуры теплоносителя от фактической температуры наружного воздуха, согласно температурного графика.

Узнайте подробней!

Стоимость установки системы автоматического регулирования потребления тепловой энергии.

Узнайте стоимость установки!

Нажимая "Отправить", Вы даёте согласие на обработку своих персональных данных в соответстии с Федеральным законом №152-ФЗ "О персональных данных" и принимаете условия.*

Гарантия 5 лет.

7 лет юридическому лицу, а значит - работу выполним в срок, а гарантия будет исполнена.

Регулировка центрального отопления, теплоснабжения ТСЖ, МКД вручную

Автоматическая регулировка тепла, отопления, теплоснабжения.

Для создания комфортного отопления в квартире обязательным элементом подразумевает использование автоматики. Не будете же вы постоянно сидеть в тепловом пункте и контролировать в ручном режиме работу теплового узла. Да и комфортные условия в доме лучше обеспечить не открытыми форточками, хотя проветривание в комнатах никто и не отменял, а установлением желаемой температуры. Создать мягкий климат в доме не просто, при резких колебаниях температуры помещений и частых сквозняках. Вот эти задачи и выполняет автоматика систем отопления.

Автоматизация системы отопления никогда ещё не была настолько доступной, убедитесь в этом сами!

Техническая возможность установки автоматики определяется инженером-теплотехником на месте. Выезд специалиста бесплатный и ни к чему не обязывает.

Узнайте возможность установки!

Закажите бесплатный выезд инженера!

Нажимая "Отправить", Вы даёте согласие на обработку своих персональных данных в соответстии с Федеральным законом №152-ФЗ "О персональных данных" и принимаете условия.*

Экономия тепла, отопления, теплоснабжения.

За счёт чего достигается экономия?

  • Потребитель сам решает, когда и сколько тепла потреблять.
  • Равномерное распределение тепла по дому.
  • Предотвращение перетопов и перегрева в жилых домах, предприятиях.
  • Отсутствие закипания теплообменников пластинчатых или кожухотрубных.
  • Ограничение поступления лишнего теплоносителя в дом.
  • Увеличение срока службы трубопроводов, системы отопления.
  • Контроль ИТП online, с оповещением об аварийных ситуациях.
  • Вы не платите за чужое, не использованное отопление в оттепели.

Комфорт проживания.

  • Нет нужды использовать электрообогреватели.
  • Сквозняки из-за широко открытых окон и дверей балконов в прошлом.
  • Духота в квартире не досаждает.
  • Холодные батареи уже не у вас.

Система автоматического управления отоплением, теплоснабжением здания.

Объект работает без постоянного обслуживающего персонала, а информация выводится на диспетчерский пульт управления либо на сотовый телефон.

Функция удалённого управления позволяет на расстоянии менять настройки системы корректировать её работу в ручном режиме. Видеть параметры системы в режиме онлайн.

Центральные тепловые пункты круглогодично обеспечивают жителей теплом в отопительный сезон. Основная Задача АСУ ИТП - это круглосуточный контроль и управление подачей теплоносителя с постоянным давлением, поддержание заданной температуры в помещении. Для эффективности обслуживания информация от исполнительных механизмов и датчиков собирается и передается на единый диспетчерский пульт по средствам проводной (кабельный интернет) и беспроводной (сотовой) связи. Это позволяет отслеживать работу оборудования АСУ теплового пункта в режиме реального времени и при необходимости выполнять корректировку рабочих параметров оборудования.

Регуляторы тепла, отопления, теплоснабжения .

Регуляторы предназначены для автоматического изменения расхода теплоносителя в системе отопления на центральных и индивидуальных тепловых пунктах, а также для автоматического регулирования температуры в системах приточной вентиляции путем воздействия на клапан с электрическим приводом. Приборами предусмотрено регулирование разности температур воды в подающем и обратном трубопроводах систем отопления либо температуры воды в подающем трубопроводе по графику отопительных систем в зависимости от температуры наружного воздуха. Причем регулятор при определенном значении температуры наружного воздуха и дальнейшем ее понижении поддерживает постоянное значение регулируемого параметра теплоносителя, исключая разрегулировку тепловых сетей, работающих по графику с верхней срезкой. Регулятором предусмотрена коррекция графика отпуска тепла при отклонениях температуры внутреннего воздуха от заданного значения.

Насосы циркуляционные, корректирующие.

Насосы в системе автоматики выполняют очень важную функцию:

  • Поддерживают расчётную циркуляцию теплоносителя в системе отопления на время закрытия регулирующего клапана.
  • Увеличивают скорость циркуляции теплоносителя в системе отопления, в случаях, когда теплоснабжающая организация не обеспечивает расчётные параметры теплоснабжения.

Автономность работы системы автоматики отопления, теплоснабжения.

В наших системах применяется специальная безаварийная схема, которая позволяет при аварийных ситуациях на теплосетях автоматически переводить систему в прежний режим работы (по-старому). Отключение электричества, связи не скажется на нормальном теплоснабжении системы отопления здания.

Как снизить, уменьшить, убавить плату за отопление?

Утепление фасадов, крыш, дверей, окон позволит поднять температуру помещения, но не экономить, т.к. жители просто-напросто начнут выпускать излишки тепла через окна, хотя эти мероприятия являются необходимыми для решения комплексной задачи энергосбережения и повышения энергоэффективности.

Что же делать?

Избежать перегрева помещений, после проведённых мероприятий по повышению теплового сопротивления ограждающих конструкций, поможет автоматическая регулировка системы отопления. Система создаст условия, при которых тепло будет поступать в пределах разумной достаточности, создавая для всех жителей комфорт проживания.

Регулировка батарей и радиаторов отопления.

Отдельная поквартирная регулировка отопления не состоялась т.к. жители, которые находятся днём дома поджимают отопление в своей квартире, обогреваясь в это время теплом излучаемым стенами, полом, потолком соседних квартир. По итогу месяца, цифры в счетах за отопление сильно разнятся между квартирами. Многие жильцы находят в этом не справедливость.

Ручная регулировка тепла, системы отопления.


Принцип: Чем холоднее на улице, тем интенсивнее должна работать отопительная система и, наоборот, при повышении температуры воздуха в доме выше предельного значения, температура теплоносителя в приборах отопления должна снижаться.

Самый простой способ регулирования системы отопления состоит в ручном управлении работой узла управления - ограничение поступления теплоносителя, перекрытием запорной арматуры (задвижки, шаровые краны, поворотные затворы). Уровень, на который прижат кран можно определить по показаниям теплосчётчика. На тепловычислителе необходимо выбрать режим индикации параметров - мгновенный расход теплоносителя.

Почему ручная регулировка не прижилась?

После прижатия задвижки, расход теплоносителя из тепловой сети падает, а система отопления дома тормозится. Циркуляция воды по стоякам системы отопления замедляется, разность температуры между подачей и обраткой растёт. Вследствие этих процессов, к последним батареям на стояке доходит остывший теплоноситель.

В домах с верхней разливом системы отопления - на верхних этажах будет избыток тепла, в то время как, нижние будут мёрзнуть.

В домах с нижней разливом системы отопления наоборот - верхние этажи замерзают, нижние вынуждены избыток тепла выпускать на улицу.

Недостатки Ручной регулировки отопления:

  • Происходит торможение циркуляции теплоносителя.
  • Появляется разбалансировка системы отопления.
  • В одном крыле холодно, в другом жарко.
  • При резком похолодании слесарь может не успеть открыть задвижку.
  • В случае чрезмерного закрытия задвижки, теплосчётчик может выдать ошибку.
  • Изнашивается запорная арматура, она не предназначена для регулировки.
  • Слесарь привязан к тепловому узлу.
  • Необходимость лично реагировать на изменения погоды.

Узнайте подробней о ручной регулировке!

Полчите бесплатную консультацию теплотехника!

Нажимая "Отправить", Вы даёте согласие на обработку своих персональных данных в соответстии с Федеральным законом №152-ФЗ "О персональных данных" и принимаете условия.*

Как происходит регулировка системы отопления?

  • Погодозависимая автоматическая регулировка по температурному графику зависимости температуры теплоносителя от температуры наружного воздуха;
  • Регулировка теплопотребления для поддержания заданных параметров температуры воздуха в помещениях с центральным отоплением.
  • Программное снижение расхода теплоносителя на отопление в ночное время, выходные и праздничные дни.
  • Ограничение температуры обратной сетевой воды по графику ее зависимости от температуры наружного воздуха в соответствии с требованиями теплоснабжающей организации в системах отопления

Теплоноситель от системы центрального теплоснабжения поступает к вам в ИПТ, на узел управления. Далее теплоноситель поступает в систему отопления дома. Пройдя по всем батареям, теплоноситель со всех стояков собирается в трубу обратки и попадает вновь в ваш узел управления. Контролер автоматики анализирует параметры температуры на улице, подающем трубопроводе (подаче), обратном трубопроводе (обратке) и в автоматическом режиме производит регулировку потребления теплоносителя, определяя, какой объём теплоносителя и какой температуры необходимо подать в систему отопления дома, согласно выстроенным ПИД-коэффициентам. ПИД-коэффициенты настраиваются инженерами сервисной службы, при настройки системы.

ПИД коэффициент - Пропорционально-интегрально-дифференцирующий коэффициент. Используется в системах автоматического регулирования для расчёта управляющего сигнала с целью получения высокой точности процесса.

Схемы автоматизации тепловых сетей.

Первый контур отопления - 150/70 °C

Второй контур отопления - 95/70 °C

  • смазка подвижных механизмов клапанов
  • проверка работы обратных клапанов, запорной арматуры
  • в ручном режиме контрольное управление клапанами, насосами
  • сверка показаний датчиков температуры с эталонным
  • анализ архивных данных
  • поддержание настоек системы автоматики в заданных техническими условиями пределах
  • диагностика технического состояния и предупреждение отказов систем управления и оборудования
  • Рядом с узлом располагается схема теплового пункта формата А3 и инструкция по эксплуатации САР.

    При грамотной организации процесса обслуживания АСУ ТП возможен переход от системы планово-предупредительных ремонтов к проведению работ в соответствии с реальным состоянием оборудования.

    Стоимость сервисного обслуживание 480 руб./мес.

    Получить консультацию сервис-инженера!

    Предлагаем услуги по проектированию автоматизированных систем регулирования потребления тепловой энергии на отоплении в сфере ЖКХ, подключенных к центральному теплоснабжению.

    Компания «АТК» специализируется на разработке и согласовании проектов автоматических систем регулирования, потребления теплоносителя в ресурсоснабжающих организациях для следующих потребителей:

    • многоквартирных жилых домов (ТСЖ, МКД, ТСН, УК)
    • офисных центров
    • промышленных предприятий, заводов
    • зданий бюджетной сферы (школ, детских садов, гимназии)

    В чём особенность ЖКХ: Проектно-техническую документацию необходимо согласовывать с множеством организаций: АХССО, РОСТЕХНАДЗОР, ПСК, ТГК, НОВОГОР. Выдерживать проверки КРУ.

    В каждой сфере есть свои особенности. Наши клиенты считают нас классными специалистами в сфере ЖКХ. В подтверждение этого их добрые отзывы.

    Стоимость проектирования автоматической регулировки зависит от количества контуров, объёма здания, сложности монтажа, температурного графика (150/70 или 95/70).

    В проекте на регулировку теплопотребления, предлагаем комплексное решение задач: диспетчеризации, удалённого управления системой, настройке регулятора, инструкция для Вашего обслуживающего персонала, обучение Ваших сотрудников.

    Узнайте стоимость проекта!

    Несмотря на морозы, можно увидеть как люди держат открытыми форточки — это говорит о несбалансированности отопительной системы в доме. Отопление работает без учета фактической необходимости: на улице резко потеплело, а батареи остались горячими. Открывая форточки жильцы фактически выкидывают деньги из окна, но что поделаешь, если ТЭЦ не может быстро сменить температуру. Если в доме есть тепловой пункт, то тепло от ТЭЦ будет потребляться по мере необходимости, а соотвественно платить за лишнее не придется.

    Система погодного регулирования отопления позволяет экономить до 35% расхода тепловой энергии. Если учесть, что многоквартирный дом (управляющая компания, ЖСК, ТСЖ) платят за отопление в отопительный сезон от двухсот до четырехсот тысяч рублей в месяц, то экономию и комфорт от системы жильцы почувствуют уже через месяц!

    Функционирование системы автоматического регулирования теплопотребления
    Регулирование производится полностью в автоматическом режиме, при правильном подборе оборудования узел работает независимо от перепада давления на вводе, а благодаря насосной циркуляции теплоноситель достигает крайних стояков и радиаторов с требуемыми параметрами. В административных зданиях возможна организация понижения температуры воздуха в помещениях в ночное время, выходные и праздничные дни, что даст значительную дополнительную экономию.

    Компоненты систем регулирования теплопотребления

    Контроллер — головной управляющий орган системы автоматизированного регулирования. Он связывает воедино весь комплекс приборов и устройств узла: в него стекаются данные о параметрах в системе и производится управление всеми исполнительными механизмами.
    Регулирующий клапан — основной рабочий орган узла регулирования. Может быть двух- или трехходовым. Его задача регулировать расход теплоносителя в подающем трубопроводе в зависимости от температуры наружного воздуха.
    Циркуляционный насос — обеспечивает циркуляцию теплоносителя в системе отопления, благодаря чему, даже удаленные стояки имеют достаточное снабжение теплом. На узлах рекомендуется установка сдвоенных насосов, обеспечивающих безотказную работу всего комплекса.
    Датчик температуры измерительный прибор, предназначенный для измерения температуры теплоносителя в системе отопления и наружного воздуха. Функционирование основано на изменении сопротивления материалов чувствительного элемента датчика в зависимости от температуры среды.

    Назначение системы автоматического регулирования теплопотребления

    — создание комфортных условий для проживания и работы в помещениях здания, за счет поддержания заданного температурного режима по датчикам, размещенным в контрольных помещениях зданий;
    — экономия тепловой энергии за счет понижения температуры теплоносителя в ночные часы, в выходные и праздничные дни;
    — экономия тепловой энергии за счет устранения вынужденных «перетопов» (подачи на объект теплоносителя с завышенной температурой теплоносителя) в переходные и межсезонные периоды;
    — регулирование параметров теплоносителя в зависимости от температуры наружного воздуха с минимальной инерцией. Гибкий температурный график возможен только для индивидуальных теплопунктов, температурный график тепловых сетей не предусматривает быстрого реагирования на изменение погодных условий (это связано со спецификой работы энергетического оборудования);
    — регулирование температуры теплоносителя в обратном трубопроводе теплосети для исключения применения штрафных санкций со стороны энергоснабжающих организаций за превышение данной температуры;
    — экономия за счет сокращение численности обслуживающего персонала;

    Как это работает?

    Датчик наружного воздуха (выведенный на теневую сторону улицы) измеряет уличную температуру. Два датчика на подающем и обратном трубопроводе измеряют температуру теплосети. Логический программируемый контроллер вычисляет необходимую дельту и управляя клапаном (КЗР) регулирует скорость потока теплоносителя. С целью защиты от полного перекрывания в клапане предусмотрена защита. Для предотвращения застоя стояков (попадания воздуха) насос обеспечивает циркуляцию теплоносителя в системе, через обратный клапан. Узел погодного регулирования также оборудован автоматическим воздухоотводчиком. Если теплосеть не имеет необходимого перепада (что бывает крайне редко), то проблема легко устраняется установкой автоматического балансировочного клапана.

    Система имеет полнопроходной байпас и на 100% гарантирует отсутствие перебоев с теплоснабжением в зимнее время.