Расчет потерь электроэнергии в электрических сетях. Потери электроэнергии в электрических сетях

    Потери мощности в элементах сети.

    Расчет потерь мощности в линиях электропередач.

    Расчет потерь мощности в ЛЕП с равномерно распределенной нагрузкой.

    Расчет потерь мощности в трансформаторах.

    Приведенные и расчетные нагрузки потребителей.

    Расчет потерь электроэнергии.

    Мероприятия по снижению потерь мощности.

Потери мощности в элементах сети

Для количественной характеристики работы элементов электрической сети рассматриваются ее рабочие режимы. Рабочий режим – это установившееся электрическое состояние, которое характеризуется значениями токов, напряжений, активной, реактивной и полной мощностей.

Основной целью расчета режимов является определение этих параметров, как для проверки допустимости режимов, так и для обеспечения экономичности работы элементов сетей.

Определение значений токов в элементах сети и напряжений в ее узлах начинается с построения картины распределения полной мощности по элементу, т.е. с определения мощностей в начале и конце каждого элемента. Такую картину называют потокораспределением.

Рассчитывая мощности в начале и в конце элемента электрической сети, учитывают потери мощности в сопротивлениях элемента и влияние его проводимостей.

Расчет потерь мощности в линиях электропередач

Потери активной мощности на участке ЛЕП (см. рис. 7.1) обусловлены активным сопротивлением проводов и кабелей, а также несовершенством их изоляции. Мощность, теряемая в активных сопротивлениях трехфазной ЛЕП и расходуемая на ее нагрев, определяется по формуле:

где
полный, активный и реактивный токи в ЛЕП;

P, Q, S – активная, реактивная и полная мощности в начале или конце ЛЕП;

U

R – активное сопротивление одной фазы ЛЕП.

Потери активной мощности в проводимостях ЛЕП обусловлены несовершенством изоляции. В воздушных ЛЕП – появлением короны и, в очень незначительной степени, утечкой тока по изоляторам. В кабельных ЛЕП – появлением тока проводимости а его абсорбции. Рассчитываются потери по формуле:

,

где U – линейное напряжение в начале или конце ЛЕП;

G – активная проводимость ЛЕП.

При проектировании воздушных ЛЕП потери мощности на корону стремятся свести к нулю, выбирая такой диаметр провода, когда возможность возникновения короны практически отсутствует.

Потери реактивной мощности на участке ЛЕП обусловлены индуктивными сопротивлениями проводов и кабелей. Реактивная мощность, теряемая в трехфазной ЛЕП, рассчитывается аналогично мощности, теряемой в активных сопротивлениях:

Генерируемая емкостной проводимостью зарядная мощность ЛЕП рассчитывается по формуле:

,

где U – линейное напряжение в начале или конце ЛЕП;

B – реактивная проводимость ЛЕП.

Зарядная мощность уменьшает реактивную нагрузку сети и тем самым снижает потери мощности в ней.

Расчет потерь мощности в леп с равномерно распределенной нагрузкой

В линиях местных сетей (
) потребители одинаковой мощности могут располагаться на одинаковом расстоянии друг от друга (например, источники света). Такие ЛЕП называются линиями с равномерно распределенной нагрузкой (см. рис. 7.2).

В равномерно нагруженной линии трехфазного переменного тока длиной L с суммарной токовой нагрузкойI плотность тока на единицу длины составитI/L . При погонном активном сопротивленииr 0 потери активной мощности составят:

Если бы нагрузка была сосредоточена в конце, то потери мощности определялись бы как:

.

Сравнивая приведенные выражения, видим, что потери мощности в линии с равномерно распределенной нагрузкой в 3 раза меньше.

Введение

Обзор литературы

1.2 Нагрузочные потери электроэнергии

1.3 Потери холостого хода

1.4 Климатические потери электроэнергии

2. Методы расчета потерь электроэнергии

2.1 Методы расчета потерь электроэнергии для различных сетей

2.2 Методы расчета потерь электроэнергии в распределительных сетях 0,38-6-10 кВ

3. Программы расчета потерь электроэнергии в распределительных электрических сетях

3.1 Необходимость расчета технических потерь электроэнергии

3.2 Применение программного обеспечения для расчета потерь электроэнергии в распределительных сетях 0,38 - 6 - 10 кВ

4. Нормирование потерь электроэнергии

4.1 Понятие норматива потерь. Методы установления нормативов на практике

4.2 Нормативные характеристики потерь

4.3 Порядок расчета нормативов потерь электроэнергии в распределительных сетях 0,38 - 6 - 10 кВ

5. Пример расчета потерь электроэнергии в распределительных сетях 10 кВ

Заключение

Список литературы

Введение

Электрическая энергия является единственным видом продукции, для перемещения которого от мест производства до мест потребления не используются другие ресурсы. Для этого расходуется часть самой передаваемой электроэнергии, поэтому ее потери неизбежны, задача состоит в определении их экономически обоснованного уровня. Снижение потерь электроэнергии в электрических сетях до этого уровня - одно из важных направлений энергосбережения .

В течение всего периода с 1991 г. по 2003 г. суммарные потери в энергосистемах России росли и в абсолютном значении, и в процентах отпуска электроэнергии в сеть.

Рост потерь энергии в электрических сетях определен действием вполне объективных закономерностей в развитии всей энергетики в целом. Основными из них являются: тенденция к концентрации производства электроэнергии на крупных электростанциях; непрерывный рост нагрузок электрических сетей, связанный с естественным ростом нагрузок потребителей и отставанием темпов прироста пропускной способности сети от темпов прироста потребления электроэнергии и генерирующих мощностей.

В связи с развитием рыночных отношений в стране значимость проблемы потерь электроэнергии существенно возросла. Разработка методов расчета, анализа потерь электроэнергии и выбора экономически обоснованных мероприятий по их снижению ведется во ВНИИЭ уже более 30 лет. Для расчета всех составляющих потерь электроэнергии в сетях всех классов напряжения АО-энерго и в оборудовании сетей и подстанций и их нормативных характеристик разработан программный комплекс, имеющий сертификат соответствия, утвержденный ЦДУ ЕЭС России, Главгосэнергонадзором России и Департаментом электрических сетей РАО "ЕЭС России".

В связи со сложностью расчета потерь и наличием существенных погрешностей, в последнее время особое внимание уделяется разработке методик нормирования потерь электроэнергии.

Методология определения нормативов потерь еще не установилась. Не определены даже принципы нормирования. Мнения о подходе к нормированию лежат в широком диапазоне - от желания иметь установленный твердый норматив в виде процента потерь до контроля за "нормальными" потерями с помощью постоянно проводимых расчетов по схемам сетей с использованием соответствующего программного обеспечения.

По полученным нормам потерь электроэнергии устанавливаются тарифы на электроэнергию. Регулирование тарифов возлагается на государственные регулирующие органы ФЭК и РЭК (федеральную и региональные энергетические комиссии). Энергоснабжающие организации должны обосновывать уровень потерь электроэнергии, который они считают целесообразным включить в тариф, а энергетические комиссии - анализировать эти обоснования и принимать или корректировать их .

В данной работе рассмотрена проблема расчета, анализа и нормирования потерь электроэнергии с современных позиций; изложены теоретические положения расчетов, приведено описание программного обеспечения, реализующего эти положения, и изложен опыт практических расчетов.

Обзор литературы

Проблема расчета потерь электроэнергии волнует энергетиков уже очень долго. В связи с этим, в настоящее время выпускается очень мало книг по данной теме, т.к мало что изменилось в принципиальном устройстве сетей. Но при этом выпускается достаточно большое количество статей, где производится уточнение старых данных и предлагаются новые решения проблем, связанных с расчетом, нормированием и снижением потерь электроэнергии.

Одной из последних книг, выпущенных по данной теме, является книга Железко Ю.С. "Расчет, анализ и нормирование потерь электроэнергии в электрических сетях" . В ней наиболее полно представлена структура потерь электроэнергии, методы анализа потерь и выбор мероприятий по их снижению. Обоснованы методы нормирования потерь. Подробно описано программное обеспечение, реализующее методы расчета потерь.

Ранее этим же автором была выпущена книга "Выбор мероприятий по снижению потерь электроэнергии в электрических сетях: Руководство для практических расчетов" . Здесь наибольшее внимание было уделено методам расчета потерь электроэнергии в различных сетях и обосновано применение того или иного метода в зависимости от типа сети, а также мероприятиям по снижению потерь электроэнергии.

В книге Будзко И.А. и Левина М.С. "Электроснабжение сельскохозяйственных предприятий и населенных пунктов" авторы подробно рассмотрели проблемы электроснабжения в целом, сделав упор на распределительные сети, питающие сельскохозяйственные предприятия и населенные пункты. Также в книге даны рекомендации по организации контроля за потреблением электроэнергии и совершенствованию систем учета.

Авторы Воротницкий В.Э., Железко Ю.С. и Казанцев В.Н. в книге "Потери электроэнергии в электрических сетях энергосистем" рассмотрели подробно общие вопросы, относящиеся к снижению потерь электроэнергии в сетях: методы расчета и прогнозирования потерь в сетях, анализ структуры потерь и расчет их технико-экономической эффективности, планирование потерь и мероприятий по их снижению.

В статье Воротницкого В.Э., Заслонова С.В. и Калинкини М.А. "Программа расчета технических потерь мощности и электроэнергии в распределительных сетях 6 - 10 кВ" подробно описана программа для расчета технических потерь электроэнергии РТП 3.1 Ее главным достоинством является простота в использовании и удобный для анализа вывод конечных результатов, что существенно сокращает трудозатраты персонала на проведение расчета.

Статья Железко Ю.С. "Принципы нормирования потерь электроэнергии в электрических сетях и программное обеспечение расчетов" посвящена актуальной проблеме нормирования потерь электроэнергии. Автор делает упор на целенаправленное снижение потерь до экономически обоснованного уровня, что не обеспечивает существующая практика нормирования. Также в статье выносится предложение использовать нормативные характеристики потерь, разработанные на основе детальных схемотехнических расчетов сетей всех классов напряжений. При этом расчет может производится при использовании программного обеспечения.

Целью другой статьи этого же автора под названием "Оценка потерь электроэнергии, обусловленных инструментальными погрешностями измерения" не является уточнение методики определения погрешностей конкретных измерительных приборов на основе проверки их параметров. Автором в статье проведена оценка результирующих погрешностей системы учета поступления и отпуска электроэнергии из сети энергоснабжающей организации, включающей в себя сотни и тысячи приборов. Особое внимание уделено систематической погрешности, которая в настоящее время оказывается существенной составляющей структуры потерь.

В статье Галанова В.П., Галанова В.В. "Влияние качества электроэнергии на уровень ее потерь в сетях" уделено внимание актуальной проблеме качества электроэнергии, что оказывает существенное влияние на потери электроэнергии в сетях.

Статья Воротницкого В.Э., Загорского Я.Т. и Апряткина В.Н. "Расчет, нормирование и снижение потерь электроэнергии в городских электрических сетях" посвящена уточнению существующих методов расчета потерь электроэнергии, нормированию потерь в современных условиях, а также новым методам снижения потерь.

В статье Овчинникова А. "Потери электроэнергии в распределительных сетях 0,38 - 6 (10) кВ" делается упор на получение достоверной информации о параметрах работы элементов сетевого хозяйства, и прежде всего о загрузке силовых трансформаторов. Данная информация, по мнения автора, поможет существенно снизить потери электроэнергии в сетях 0,38 - 6 - 10 кВ.

1. Структура потерь электроэнергии в электрических сетях. Технические потери электроэнергии

1.1 Структура потерь электроэнергии в электрических сетях

При передаче электрической энергии в каждом элементе электрической сети возникают потери. Для изучения составляющих потерь в различных элементах сети и оценки необходимости проведения того или иного мероприятия, направленного на снижение потерь, выполняется анализ структуры потерь электроэнергии.

Фактические (отчетные) потери электроэнергии ΔW Отч определяют как разность электроэнергии, поступившей в сеть, и электроэнергии, отпущенной из сети потребителям. Эти потери включают в себя составляющие различной природы: потери в элементах сети, имеющие чисто физический характер, расход электроэнергии на работу оборудования, установленного на подстанциях и обеспечивающего передачу электроэнергии, погрешности фиксации электроэнергии приборами ее учета и, наконец, хищения электроэнергии, неоплату или неполную оплату показаний счетчиков и т.п.

Длина линии (м) / Материал кабеля:

Медь Алюминий

Сечение кабеля (мм?):

0,5 мм? 0,75 мм? 1,0 мм? 1,5 мм? 2,5 мм? 4,0 мм? 6,0 мм? 10,0 мм? 16,0 мм? 25,0 мм? 35,0 мм? 50,0 мм? 70,0 мм? 95,0 мм? 120 мм?

Мощность нагрузки (Вт) или ток (А):

Напряжение сети (В):

Мощность

1 фаза

Коэффициент мощности (cos?):

Ток

3 фазы

Температура кабеля (°C):


Во время проектирования электрических сетей и систем со слабыми токами довольно часто требуются расчеты потерь напряжения в кабелях и проводах. Данные вычисления необходимы для того чтобы выбрать кабель с наиболее оптимальным . При неправильном выборе проводника система электроснабжения очень быстро выйдет из строя или вообще не запустится. Чтобы избежать возможных ошибок, рекомендуется использовать онлайн калькулятор расчета потерь напряжения. Данные, полученные с помощью калькулятора, обеспечат устойчивую и безопасную работу линий и сетей.

Причины энергопотери при передаче электроэнергии

Существенные потери происходят в результате излишнего рассеивания. Из-за лишнего тепла кабель может сильно нагреваться, особенно при больших нагрузках и неправильных расчетах потерь электричества. Под действием избыточного тепла наступает повреждение изоляции, создается реальная угроза здоровью и жизни людей.

Потери электроэнергии нередко происходят из-за слишком большой протяженности кабельных линий, при большой мощности нагрузки. В случае продолжительной эксплуатации, существенно возрастают расходы на оплату электричества. Неправильные расчеты способны вызвать сбои в работе оборудования, например, охранной сигнализации. Потери напряжения в кабеле приобретают важное значение, когда источник питания оборудования имеет низкое напряжение постоянного или переменного тока, номиналом от 12 до 48В.

Как рассчитать потери напряжения

Избежать возможных проблем поможет калькулятор расчета потери напряжения, работающий в онлайн режиме. В таблицу исходных данных помещаются данные о длине кабеля, его сечении и материале, из которого он изготовлен. Для расчетов потребуются сведения о мощности нагрузки, напряжении и токе. Кроме того, учитывается коэффициент мощности и температурные показатели кабеля. После нажатия кнопки появляются данные о энергопотерях в процентах, показатели сопротивления проводника, реактивной мощности и напряжения, испытываемого нагрузкой.

Основной формулой расчета является следующая: ΔU=IхRL, в которой ΔU означает потери напряжения на расчетной линии, I является потребляемым током, определяемым преимущественно параметрами потребителя. RL отражает сопротивление кабеля, в зависимости от его длины и площади сечения. Именно последнее значение играет решающую роль при потере мощности в проводах и кабелях.

Возможности для снижения потерь

Основным способом снижения потерь в кабеле, является увеличение площади его сечения. Кроме того, можно уменьшить длину проводника и снизить нагрузку. Однако последние два способа не всегда можно использовать, в силу технических причин. Поэтому во многих случаях единственным вариантом остается снижение сопротивления кабеля за счет увеличения сечения.

Существенным недостатком большого сечения считается заметный рост материальных затрат. Разница становится ощутимой, когда кабельные системы растягиваются на большие расстояния. Поэтому на стадии проектирования нужно сразу же подбирать кабель с нужным сечением, для чего понадобятся расчеты потери мощности с помощью калькулятора. Данная программа имеет большое значение при составлении проектов на электромонтажные работы, поскольку ручные вычисления занимают много времени, а в режиме онлайн калькулятора подсчет занимает буквально несколько секунд.

Министерства промышленности и энергетики Российской Федерации(Минпромэнерго России)

ПРИКАЗ

Об утверждении методики расчета нормативных (технологических) потерь электроэнергии в электрических сетях

Во исполнение п. 2 Постановления Правительства Российской Федерации от 26 февраля 2004 г. N 109 и п. 3 Постановления Правительства Российской Федерации от 27 декабря 2004 г. N 861, приказываю: 1. Утвердить предлагаемую методику расчета нормативных (технологических) потерь . 2. Контроль за исполнением настоящего приказа возложить на заместителя Министра промышленности и энергетики Российской Федерации А.Г. Реуса. Министр В.Б. Христенко

УТВЕРЖДЕНА

Приказом Минпромэнерго России

Методика расчета нормативных (технологических) потерь электроэнергии в электрических сетях

I. Общие положения

1. Методика предназначена для расчета нормативов технологических потерь электрической энергии в электрических сетях организаций, осуществляющих передачу электрической энергии по электрическим сетям. 2. Нормативы технологических потерь электроэнергии, рассчитанные по данной методике, применяются при расчете платы за услуги по передаче электроэнергии по электрическим сетям. 3. Нормативы технологических потерь электроэнергии в планируемом периоде могут рассчитываться: - на основе данных о схемах, нагрузках сетей и составе работающего оборудования в планируемом периоде методами расчета потерь, установленными настоящей методикой; - на основе нормативных характеристик технологических потерь, рассчитанных в соответствии с настоящей методикой на основе расчетов потерь в отчетном (базовом) периоде. При отсутствии нормативной характеристики допускается определять нормативы потерь в планируемом периоде на основе расчетов потерь в отчетном (базовом) периоде, изменяя нагрузочные потери пропорционально квадрату отношения отпусков электроэнергии в сеть в планируемом и базовом периодах, а потери холостого хода - пропорционально мощности (количеству) работающего оборудования в планируемом и базовом периодах. 4. Термины и определения а) Фактические (отчетные) потери электроэнергии - разность между электроэнергией, поступившей в сеть, и электроэнергией, отпущенной из сети, определяемая по данным системы учета электроэнергии. б) Система учета электроэнергии - совокупность измерительных комплексов, обеспечивающих измерение поступления и отпуска электроэнергии из сети и включающих в себя измерительные трансформаторы тока (ТТ), напряжения (ТН), электрические счетчики, соединительные провода и кабели. Измерительные комплексы могут быть объединены в автоматизированную систему учета электроэнергии. в) Технологические потери электроэнергии - сумма технологических потерь при транспортировке электроэнергии и потерь при реализации электроэнергии. г) Технологические потери при транспортировке электроэнергии - сумма двух составляющих потерь: - потерь в линиях и оборудовании электрических сетей, обусловленных физическими процессами, происходящими при передаче электроэнергии в соответствии с техническими характеристиками и режимами работы линий и оборудования (технические потери ); - расхода электроэнергии на собственные нужды подстанций. д) Потери при реализации электроэнергии - сумма потерь, обусловленных погрешностями системы учета электроэнергии, и потерь, обусловленных хищениями электроэнергии, виновники которых не установлены. Примечание. Потери, обусловленные хищениями электроэнергии, не являются технической характеристикой электрической сети и системы учета электроэнергии и их нормативы в данной методике не рассматриваются. е) Технические потери - сумма трех составляющих потерь в линиях и оборудовании электрических сетей: - потерь, зависящих от нагрузки электрической сети (нагрузочные потери ); - потерь, зависящих от состава включенного оборудования (условно-постоянные потери ); - потерь, зависящих от погодных условий. ж) Расход электроэнергии на собственные нужды подстанций - расход электроэнергии, необходимый для обеспечения работы технологического оборудования подстанций и жизнедеятельности обслуживающего персонала. з) Потери электроэнергии, обусловленные погрешностями системы учета электроэнергии - суммарный небаланс электроэнергии, обусловленный техническими характеристиками и режимами работы всех измерительных комплексов поступления и отпуска электроэнергии. и) Норматив технологических потерь электроэнергии - технологические потери электроэнергии (в абсолютных единицах или в процентах установленного показателя), рассчитанные в соответствии с данной методикой при режимах работы, технических параметрах линий, оборудования сетей и системы учета электроэнергии в рассматриваемом периоде. к) Нормативный метод расчета нагрузочных потерь электроэнергии - метод, использующий при расчете потерь весь объем имеющейся информации о схемах и нагрузках сетей данного напряжения. При увеличении оснащенности сетей средствами измерения и оперативного контроля режимов рекомендуется применение более точных методов из их перечня, установленного методикой. л) Нормативная характеристика технологических потерь электроэнергии - зависимость норматива технологических потерь электроэнергии от структурных составляющих поступления и отпуска электроэнергии.

II . Методы расчета нормативных (технологических) потерь при транспортировке электроэнергии

5. Методы расчета нагрузочных потерь 5.1. Нагрузочные потери электроэнергии за период Т часов (Д дней) могут быть рассчитаны одним из пяти методов в зависимости от объема имеющейся информации о схемах и нагрузках сетей (методы расположены в порядке снижения точности расчета): 1) оперативных расчетов; 2) расчетных суток; 3) средних нагрузок; 4) числа часов наибольших потерь мощности; 5) оценки потерь по обобщенной информации о схемах и нагрузках сети. Потери мощности в сети при использовании для расчета потерь электроэнергии методов 1 - 4 рассчитывают на основе заданной схемы сети и нагрузок ее элементов, определенных с помощью измерений или с помощью расчета нагрузок элементов электрической сети в соответствии с законами электротехники. Потери электроэнергии по методам 2 - 5 должны рассчитываться за каждый месяц расчетного периода с учетом схемы сети, соответствующей данному месяцу. Допускается рассчитывать потери за расчетные интервалы, включающие в себя несколько месяцев, схемы сетей в которых могут рассматриваться как неизменные. Потери электроэнергии за расчетный период определяют как сумму потерь, рассчитанных для входящих в расчетный период месяцев (расчетных интервалов). 5.1.1. Метод оперативных расчетов состоит в расчете потерь электроэнергии по формуле:

Где n - число элементов сети; D t - интервал времени, в течение которого токовую нагрузку I ij i -го элемента сети с сопротивлением R i , принимают неизменной; m - число интервалов времени. Токовые нагрузки элементов сети определяют на основе данных диспетчерских ведомостей, оперативных измерительных комплексов (ОИК) и автоматизированных систем учета и контроля электроэнергии (АСКУЭ). 5.1.2. Метод расчетных суток состоит в расчете потерь электроэнергии по формуле:

Где D W - потери электроэнергии за сутки расчетного месяца со среднесуточным отпуском электроэнергии в сеть W ср.сут и конфигурацией графиков нагрузки в узлах, соответствующей контрольным замерам; k л - коэффициент, учитывающий влияние потерь в арматуре воздушных линий и принимаемый равным 1,02 для линий напряжением 110 кВ и выше и равным 1,0 для линий более низких напряжений; - коэффициент формы графика суточных отпусков электроэнергии в сеть (график с числом значений, равным числу дней в месяце контрольных замеров); Д экв j - эквивалентное число дней в j-м расчетном интервале, определяемое по формуле:

, (3)

Где W мi - отпуск электроэнергии в сеть в i-м месяце с числом дней Д мi ; W м.р - то же, в расчетном месяце; N j - число месяцев в j-м расчетном интервале. При расчете потерь электроэнергии за месяц Д экв j = Д мi . Потери электроэнергии за расчетные сутки D W сут определяют как сумму потерь мощности, рассчитанных для каждого часового интервала расчетных суток. Потери электроэнергии в расчетном периоде определяют как сумму потерь во всех расчетных интервалах года. Допускается определять годовые потери электроэнергии на основе расчета D W сут для зимнего дня контрольных замеров, принимая в формуле (3) N j = 12. Коэффициент определяют по формуле:

, (4)

Где W i - отпуск электроэнергии в сеть за i-й день месяца; Д м - число дней в месяце. При отсутствии данных об отпуске электроэнергии в сеть за каждые сутки месяца коэффициент определяют по формуле:

, (5)

Где Д р и Д н.р - число рабочих и нерабочих дней в месяце (Д м = Д р + Д н.р); k w - отношение значений энергии, потребляемой в средний нерабочий и средний рабочий дни k w = W н.p /W p . 5.1.3. Метод средних нагрузок состоит в расчете потерь электроэнергии по формуле:

, (6)

Где D Р ср - потери мощности в сети при средних за расчетный интервал нагрузках узлов; - коэффициент формы графика суммарной нагрузки сети за расчетный интервал; k к - коэффициент, учитывающий различие конфигураций графиков активной и реактивной нагрузки различных ветвей сети; T j - продолжительность j-го расчетного интервала, ч. Коэффициент формы графика суммарной нагрузки сети за расчетный интервал определяют по формуле:

Где P i - значение нагрузки на i-й ступени графика продолжительностью t i , час; m - число ступеней графика на расчетном интервале; Р ср - средняя нагрузка сети за расчетный интервал. Коэффициент k к в формуле (6) принимают равным 0,99. Для сетей 6 - 20 кВ и радиальных линий 35 кВ вместо значений P i и Р ср в формуле (7) могут использоваться значения тока головного участка I i и I ср. В этом случае коэффициент k к принимают равным 1,02. Допускается определять коэффициент формы графика за расчетный интервал по формуле:

, (8)

Где - коэффициент формы суточного графика дня контрольных замеров, рассчитанный по формуле (7); - коэффициент формы графика месячных отпусков электроэнергии в сеть (график с числом значений, равным числу месяцев в расчетном интервале), рассчитываемый по формуле:

, (9)

Где W м i - отпуск электроэнергии в сеть за i-й месяц расчетного интервала; W ср. мес - среднемесячный отпуск электроэнергии в сеть за месяцы расчетного интервала. При расчете потерь за месяц При отсутствии графика нагрузки значение определяют по формуле:

Коэффициент заполнения графика суммарной нагрузки сети k з определяют по формуле:

, (11)

Где W о - отпуск электроэнергии в сеть за время Т; Т max - число часов использования наибольшей нагрузки сети. Среднюю нагрузку i-го узла определяют по формуле:

Где W i - энергия, потребленная (генерированная) в i-м узле за время Т. 5.1.4. Метод числа часов наибольших потерь мощности состоит в расчете потерь электроэнергии по формуле:

, (13)

Где D Р max - потери мощности в режиме наибольшей нагрузки сети; t о - относительное число часов наибольших потерь мощности, определенное по графику суммарной нагрузки сети за расчетный интервал. Относительное число часов наибольших потерь мощности определяют по формуле:

, (14)

Где Р max - наибольшее значение из m значений Р i в расчетном интервале. Коэффициент k к в формуле (13) принимают равным 1,03. Для сетей 6 - 20 кВ и радиальных линий 35 кВ вместо значений Р i и Р max в формуле (14) могут использоваться значения тока головного участка I i , и I max . В этом случае коэффициент k к принимают равным 1,0. Допускается определять относительное число часов наибольших потерь мощности за расчетный интервал по формуле:

, (15)

Где t c - относительное число часов наибольших потерь мощности, рассчитанное по формуле (14) для суточного графика дня контрольных замеров. Значения t v и t N рассчитывают по формулам:

, (16)

, (17)

где W м.р - отпуск электроэнергии в сеть в расчетном месяце. При расчете потерь за месяц t N = 1. При отсутствии графика нагрузки значение t о определяют по формуле: 5.1.5. Метод оценки потерь по обобщенной информации о схемах и нагрузках сети состоит в расчете потерь электроэнергии на основе зависимостей потерь от суммарной длины и количества линий, суммарной мощности и количества оборудования, полученных на основе технических параметров линий и оборудования или статистических данных. 5.2. Потери электроэнергии должны рассчитываться для характерных рабочих и ремонтных схем. В расчетную схему должны быть включены все элементы сети, потери в которых зависят от ее режима (линии, трансформаторы, высокочастотные заградители ВЧ-связи, токоограничивающие реакторы и т.п.). 5.3. Расчетные значения активных сопротивлений проводов воздушных линий (ВЛ) R n определяют с учетом температуры провода t n ,°С, зависящей от средней за расчетный период температуры окружающего воздуха t в и плотности тока в проводе j , А/мм 2:

R n =R 20 [ 1+0,004(t в -20+8,3j 2 F/300) ] , (19)

Где R 20 - стандартное справочное сопротивление провода сечением F , мм 2 , при t n = 20°С. Примечание. При отсутствии данных о средней плотности тока за расчетный период в каждом элементе электрической сети принимают расчетное значение j = 0,5 А/мм 2 . 5.4. Потери электроэнергии в соединительных проводах и сборных шинах распределительных устройств подстанций (СППС) определяют по формуле:

Где F - среднее сечение проводов (шин); L - суммарная протяженность проводов (шин) на подстанции; j - плотность тока. При отсутствии данных о параметрах, используемых в формуле (20), расчетные потери в СППС принимают в соответствии с табл. П.1 приложения 1 и относят их к условно-постоянным потерям.5.5. Потери электроэнергии в измерительных трансформаторах тока (ТТ) определяют по формуле:

, (21)

Где D P ТТном - потери в ТТ при номинальной нагрузке; b ТТср - среднее значение коэффициента токовой загрузки ТТ за расчетный период. При отсутствии данных о параметрах, используемых в формуле (21), расчетные потери в ТТ принимают в соответствии с табл. П.3 приложения 1 и относят их к условно-постоянным потерям. 6. Нормативные методы расчета нагрузочных потерь 6.1. Нормативным методом расчета нагрузочных потерь электроэнергии в сетях 330 - 750 кВ является метод оперативных расчетов. 6.2. Нормативными методами расчета нагрузочных потерь электроэнергии в сетях 35 - 220 кВ являются: - при отсутствии реверсивных потоков энергии по межсетевым связям 35 - 220 кВ - метод расчетных суток; - при наличии реверсивных потоков энергии - метод средних нагрузок. При этом все часовые режимы в расчетном периоде разделяют на группы с одинаковыми направлениями потоков энергии. Расчет потерь проводят методом средних нагрузок для каждой группы режимов. При отсутствии данных о потреблении энергии на подстанциях 35 кВ временно допускается применение для расчетов потерь в этих сетях метода наибольших потерь мощности. 6.3. Нормативным методом расчета нагрузочных потерь электроэнергии в сетях 6 - 20 кВ является метод средних нагрузок. При отсутствии информации о потреблении энергии на ТП 6 - 20/0,4 кВ допускается определять их нагрузки, распределяя энергию головного участка (за вычетом энергии по ТП, где она известна, и потерь в сети 6 - 20 кВ) пропорционально номинальным мощностям или коэффициентам максимальной загрузки трансформаторов ТП. При отсутствии электрических счетчиков на головных участках фидеров 6 - 20 кВ временно допускается применение для расчетов потерь в этих сетях метода наибольших потерь мощности. 6.4. Нормативным методом расчета нагрузочных потерь электроэнергии в сетях 0,38 кВ является метод оценки потерь на основе зависимостей потерь от обобщенной информации о схемах и нагрузках сети, изложенный ниже. Потери электроэнергии в линии 0,38 кВ с сечением головного участка F г, мм 2 , отпуском электрической энергии в линию W 0.38, за период Д , дней, рассчитывают по формуле:

, (22)

Где L экв - эквивалентная длина линии; tg j - коэффициент реактивной мощности; k 0.38 - коэффициент, учитывающий характер распределения нагрузок по длине линии и неодинаковость нагрузок фаз. Эквивалентную длину линии определяют по формуле:

L экв =L м +0,44 L 2-3 +0,22 L j , (23)

Где L м - длина магистрали; L 2-3 - длина двухфазных и трехфазных ответвлений; L j - длина однофазных ответвлений. Примечание. Под магистралью понимается наибольшее расстояние от шин 0,4 кВ распределительного трансформатора 6 - 20/0,4 кВ до наиболее удаленного потребителя, присоединенного к трехфазной или двухфазной линии. Внутридомовые сети многоэтажных зданий (до счетчиков электрической энергии) включают в длину ответвлений соответствующей фазности.При наличии стальных или медных проводов в магистрали или ответвлениях в формулу (23) подставляют длины линий, определяемые по формуле:

L=L а + 4L с + 0,6L м, (24)

Где L а, L с и L м - длины алюминиевых, стальных и медных проводов, соответственно. Коэффициент k 0,38 определяют по формуле:

k 0.38 = k и (9,67 - 3,32d р - 1,84d р), (25)

Где d р - доля энергии, отпускаемой населению; k и - коэффициент, принимаемый равным 1 для линии 380/220 В и равным 3 для линии 220/127 В. При использовании формулы (22) для расчета потерь в N линиях с суммарными длинами магистралей L м å , двухфазных и трехфазных ответвлений L 2-3 å и однофазных ответвлений L 1 å в формулу подставляют средний отпуск электроэнергии в одну линию W 0,38 =W 0,38 å /N , где W 0,38 å - суммарный отпуск энергии в N линий, и среднее сечение головных участков, а коэффициент k 0,38 , определенный по формуле (25), умножают на коэффициент k N , учитывающий неодинаковость длин линий и плотностей тока на головных участках линий, определяемый по формуле

k N =1,25 + 0,14 d р (26)

При отсутствии данных о коэффициенте заполнения графика и (или) коэффициенте реактивной мощности принимают k з =0,3; tg j =0,6. При отсутствии учета электроэнергии, отпускаемой в линии 0,38 кВ, ее значение определяют, вычитая из энергии, отпущенной в сеть 6 - 20 кВ, потери в линиях и трансформаторах 6 - 20 кВ и энергию, отпущенную в ТП 6-20/0,4 кВ и линии 0,38 кВ, находящиеся на балансе потребителей. 7. Методы расчета условно-постоянных потерь 7.1. К условно-постоянным потерям электроэнергии относятся: - потери холостого хода в силовых трансформаторах (автотрансформаторах) и трансформаторах дугогасящих реакторов; - потери в оборудовании, нагрузка которого не имеет прямой связи с суммарной нагрузкой сети (регулируемые компенсирующие устройства); - потери в оборудовании, имеющем одинаковые параметры при любой нагрузке сети (нерегулируемые компенсирующие устройства, вентильные разрядники (РВ), ограничители перенапряжений (ОПН), устройства присоединения ВЧ-связи (УПВЧ), измерительные трансформаторы напряжения (ТН), включая их вторичные цепи, электрические счетчики 0,22 - 0,66 кВ и изоляция силовых кабелей). 7.2. Потери электроэнергии холостого хода в силовом трансформаторе (автотрансформаторе) определяют на основе приведенных в паспортных данных оборудования потерь мощности холостого хода D Р х, по формуле:

, (27)

Где T р i - число часов работы оборудования в i-м режиме; U i - напряжение на оборудовании в i-м режиме; U ном - номинальное напряжение оборудования. Напряжение на оборудовании определяют с помощью измерений или с помощью расчета установившегося режима сети в соответствии с законами электротехники. 7.3. Потери электроэнергии в шунтирующем реакторе (ШР) определяют по формуле (27) на основе приведенных в паспортных данных потерь мощности D Р р. Допускается определять потери в ШР на основе данных табл. П.1 приложения 1. 7.4. Потери электроэнергии в синхронном компенсаторе (СК) или генераторе, переведенном в режим СК, определяют по формуле:

Где b Q - коэффициент максимальной нагрузки СК в расчетном периоде; D Р ном - потери мощности в режиме номинальной загрузки СК в соответствии с паспортными данными. Допускается определять потери в СК на основе данных табл. П.2 приложения 1. 7.5. Потери электроэнергии в статических компенсирующих устройствах (КУ) - батареях конденсаторов (БК) и статических тиристорных компенсаторах (СТК) - определяют по формуле:

D W КУ = D р ку S ку Т р, (29)

Где D р ку - удельные потери мощности в соответствии с паспортными данными КУ; S ку - мощность КУ (для СТК принимается по емкостной составляющей). При отсутствии паспортных данных значение D р ку принимают равным для БК 0,003 кВт/квар, для СТК 0,006 кВт/квар.7.6. Потери электроэнергии в вентильных разрядниках, ограничителях перенапряжений, устройствах присоединения ВЧ-связи, измерительных трансформаторах напряжения, электрических счетчиках 0,22 - 0,66 кВ и изоляции силовых кабелей принимают в соответствии с данными заводов-изготовителей оборудования. При отсутствии данных завода-изготовителя расчетные потери принимают в соответствии с приложением 1 к настоящей Методике. 8. Методы расчета потерь, зависящих от погодных условий 8.1. Потери, зависящие от погодных условий, включают в себя три вида потерь: - на корону; - от токов утечки по изоляторам воздушных линий; - расход электроэнергии на плавку гололеда. 8.2. Потери электроэнергии на корону определяют на основе данных об удельных потерях мощности, приведенных в табл. 1, и о продолжительностях видов погоды в течение расчетного периода. При этом к периодам хорошей погоды (для целей расчета потерь на корону) относят погоду с влажностью менее 100% и гололед; к периодам влажной погоды - дождь, мокрый снег, туман. Таблица 1 . Удельные потери мощности на корону.

Напряжение ВЛ, тип опоры, число и сечение проводов в фазе

Потери мощности на корону, кВт/км, при погоде,

сухой снег

изморозь

220ст- 1 ´ 300

220ст/2-1 ´ 300

220жб-1 ´ 300

220жб/2- 1 ´ 300

110ст-1 ´ 120

110ст/2-1 ´ 120

110жб-1 ´ 120

110жб/2-1 ´ 120

Примечания: 1. Вариант 500-8 ´ 300 соответствует линии 500 кВ, построенной в габаритах 1150 кВ, вариант 220-3 ´ 500 - линии 220 кВ, построенной в габаритах 500 кВ. 2. Варианты 220/2-1 ´ 300, 154/2-1 ´ 185 и 110/2-1 ´ 120 соответствуют двухцепным линиям. Потери во всех случаях приведены в расчете на одну цепь.3. Индексы "ст" и "жб" обозначают стальные и железобетонные опоры. 8.3. При отсутствии данных о продолжительностях видов погоды в течение расчетного периода потери электроэнергии на корону определяют по табл. 2 в зависимости от региона расположения линии. Распределение территориальных образований Российской Федерации по регионам для целей расчета потерь, зависящих от погодных условий, приведено в приложении 2 к настоящей Методике. Таблица 2 . Удельные годовые потери электроэнергии на корону

Напряжение ВЛ, кВ, число и сечение проводов в фазе

Удельные потери электроэнергии на корону, тыс. кВт/км, в год, в регионе

220ст- 1 ´ 300

220ст/2-1 ´ 300

220жб-1 ´ 300

220жб/2- 1 ´ 300

110ст-1 ´ 120

110ст/2-1 ´ 120

110жб-1 ´ 120

110жб/2-1 ´ 120

Примечание. Значения потерь, приведенные в табл. 2 и 4, соответствуют году с числом дней 365. При расчете нормативных потерь в високосном году применяется коэффициент к = 366/365. 8.4. При расчете потерь на линиях с сечениями, отличающимися от приведенных в табл.1, расчетные значения, приведенные в таблицах 1 и 2, умножают на отношение F т /F ф, где F т - суммарное сечение проводов фазы, приведенное в табл. 1; F ф - фактическое сечение проводов линии.8.5. Влияние рабочего напряжения линии на потери на корону учитывают, умножая данные, приведенные в таблицах 1 и 2, на коэффициент, определяемый по формуле:

К u кор =6,88 U 2 отн - 5,88 U отн, (30)

Где U отн - отношение рабочего напряжения линии к его номинальному значению. 8.6. Потери электроэнергии от токов утечки по изоляторам воздушных линий определяют на основе данных об удельных потерях мощности, приведенных в табл.3, и о продолжительностях видов погоды в течение расчетного периода. По влиянию на токи утечки виды погоды должны объединяться в 3 группы: 1 группа - хорошая погода с влажностью менее 90%, сухой снег, изморозь, гололед; 2 группа - дождь, мокрый снег, роса, хорошая погода с влажностью 90% и более; 3 группа - туман. Таблица 3. Удельные потери мощности от токов утечки по изоляторам ВЛ

Группа погоды

Потери мощности от токов утечки по изоляторам, кВт/км, на ВЛ напряжением, кВ

0,103 0,953 1,587
8.7. При отсутствии данных о продолжительностях различных погодных условий годовые потери электроэнергии от токов утечки по изоляторам воздушных линий принимают по данным табл. 4. Таблица 4 . Удельные годовые потери электроэнергии от токов утечки по изоляторам ВЛ

Номер региона

Потери электроэнергии от токов утечки по изоляторам ВЛ, тыс. кВтч/км в год, при напряжении, кВ

8.8. Нормативный расход электроэнергии на плавку гололеда определяют по табл. 5 в зависимости от района расположения ВЛ по гололеду (гл. 2.5 ПУЭ). Таблица 5 . Удельный расход электроэнергии на плавку гололеда

Число проводов в фазе и сечение, мм 2

Суммарное сечение проводов в фазе, мм 2

Расчетный расход электроэнергии на плавку гололеда, тыс. кВт-ч/км в год, в районе по гололеду:

9. Расход электроэнергии на собственные нужды подстанций Расход электроэнергии на собственные нужды подстанций определяют на основе приборов учета, установленных на трансформаторах собственных нужд (ТСН). При установке прибора учета на шинах 0,4 кВ ТСН потери в ТСН, рассчитанные в соответствии с данной методикой, должны быть добавлены к показанию счетчика.

III . Методы расчета потерь, обусловленных погрешностями системы учета электроэнергии

10. Потери электроэнергии, обусловленные погрешностями системы учета электроэнергии, рассчитывают как сумму значений, определенных для каждой точки учета поступления электроэнергии в сеть и отпуска электроэнергии из сети по формуле:

D W уч = - (D тт b + D ТН + D q b - D U тн + D сч) W /100, (31)

Где D тт b - токовая погрешность ТТ, %, при коэффициенте токовой загрузки b ТТ; D тн - погрешность ТН по модулю напряжения, %; D q b - погрешность трансформаторной схемы подключения счетчика, %, при коэффициенте токовой загрузки b ТТ; D сч - погрешность счетчика, %; D U тн - потеря напряжения во вторичной цепи ТН, %;W - энергия, зафиксированная счетчиком за расчетный период.10.1. Погрешность трансформаторной схемы подключения счетчика определяют по формуле:

D q b = 0,0291 (q I b - q U) tg j , (32)

Где q I b - угловая погрешность ТТ, мин, при коэффициенте токовой загрузки b ТТ; q U - угловая погрешность ТН, мин; tg j - коэффициент реактивной мощности контролируемого присоединения. 10.2. Коэффициент токовой загрузки ТТ за расчетный период определяют по формуле:

, (33)

Где U ном и I ном - номинальные напряжение и ток первичной обмотки ТТ. 10.3. Значения погрешностей в формулах (31) и (32) определяют на основе данных метрологической поверки. При отсутствии данных о фактических погрешностях измерительных комплексов допускается проводить расчет потерь электроэнергии, обусловленных погрешностями системы учета электроэнергии, в соответствии с Приложением 3 к настоящей Методике.

IV . Методы расчета нормативных характеристик технологических потерь электроэнергии

11. Нормативную характеристику технологических потерь электроэнергии определяют на основе расчета потерь в базовом периоде методами, изложенными в разделах II и III настоящей методики, и используют для определения норматива потерь на плановый период. 11.1. Нормативная характеристика технологических потерь электроэнергии имеет вид:

Где W i (j) - значения показателей (поступления и отпуска электроэнергии), отражаемых в отчетности; n - число показателей; W o - отпуск электроэнергии в сеть; Д - число дней расчетного периода, которому соответствуют задаваемые значения энергии; А , В и С - коэффициенты, отражающие составляющие потерь: А ij и B i - нагрузочные потери, С пост - условно-постоянные потери, С пог - потери, зависящие от погодных условий, С с.н - расход электроэнергии на собственные нужды подстанций, В уч - потери, обусловленные погрешностями системы учета электроэнергии.11.2. Нормативную характеристику нагрузочных потерь электроэнергии в замкнутых сетях определяют на основе предварительно рассчитанной характеристики нагрузочных потерь мощности, имеющей вид:

, (35)

Где P i(j) - значения мощностей, соответствующих показателям, отраженным формуле (34); a ij и b i - коэффициенты нормативной характеристики потерь мощности. 11.3. Преобразование коэффициентов характеристики потерь мощности в коэффициенты характеристики потерь электроэнергии производят по формулам:

, (36)

11.4. Для составляющих нормативной характеристики, содержащих произведения значений энергии, значение вычисляют по формуле:

, (38)

Где k ф i и k ф j - коэффициенты формы i-го и j-го графиков активной мощности; r ij - коэффициент корреляции i-го и j-го графиков, рассчитываемый по данным ОИК. При отсутствии расчетов r ij принимают . 11.5. Коэффициент С пост определяют по формуле

С пост = D W пост /Д, (39)

Где D W пост - условно-постоянные потери электроэнергии в базовом периоде. 11.6. Коэффициент С пог определяют по формуле

С пог = D W пог /Д, (40)

Где D W пост - потери электроэнергии, зависящие от погодных условий, в базовом периоде. 11.7. Коэффициент С с.н определяют по формуле

С с.н = W с.н /Д, (41)

Где D W с.н - расход электроэнергии на собственные нужды подстанций в базовом периоде. 11.8. Коэффициент В уч определяют по формуле

B уч = D W уч /W о, (42)

Где D W уч - потери, обусловленные погрешностями системы учета электроэнергии, в базовом периоде. 11.9. Нормативная характеристика нагрузочных потерь электроэнергии в радиальных сетях имеет вид:

, (43)

Где W U - отпуск электроэнергии в сеть напряжением U за Д дней; А U - коэффициент нормативной характеристики. 11.10. Коэффициент A U нормативной характеристики (43) определяют по формуле:

, (44)

Где D W н U - нагрузочные потери электроэнергии в сети напряжением U в базовом периоде. 11.11. Коэффициенты А и С (С пост, С пог и С с.н) для радиальных сетей 6 - 35 кВ в целом по их значениям, рассчитанным для входящих в сеть линий (А i и С i), определяют по формулам:

, (45)

Где W i - отпуск электроэнергии в i-го линию; W å - то же, в сеть в целом; n - количество линий. Коэффициенты A i и Сi , должны быть рассчитаны для всех линий сети. Их определение на основе расчета ограниченной выборки линий не допускается. 11.12. Коэффициент А для сетей 0,38 кВ рассчитывают по формуле (43), в которую в качестве D W нU подставляют значение суммарных нагрузочных потерь во всех линиях 0,38 кВ D W н 0.38 , рассчитанных по формуле (22) с учетом формулы (26).

Приложение 1

(технологических) потерь

электроэнергии в электрических сетях

Расчетные потери электроэнергии в оборудовании

1. Таблица П.1. Потери электроэнергии в шунтирующих реакторах (ШР) и соединительных проводах и сборных шинах распределительных устройств подстанций (СППС)

Вид оборудования

Удельные потери энергии при напряжении. кВ

ШР, тыс. кВт ч/МВА в год

СП ПС, тыс. кВт ч/ подстанцию в год

Примечание. Значения потерь, приведенные в приложении 1, соответствуют году с числом дней 365. При расчете нормативных потерь в високосном году применяется коэффициент к = 366/365. 2. Таблица П.2. Потери электроэнергии в синхронных компенсаторах

Вид оборудования

Потери энергии, тыс. кВт ч в год, при номинальной мощности СК, МВА

СК
Примечание. При мощности СК, отличной от приведенной в табл. П.2, потери определяют с помощью линейной интерполяции. 3. Таблица П.3. Потери электроэнергии в вентильных разрядниках (РВ), ограничителях перенапряжений (ОПН), измерительных трансформаторах тока (ТТ) и напряжения (ТН) и устройствах присоединения ВЧ-связи (УПВЧ)

Вид оборудования

Потери электроэнергии, тыс. кВт ч/год. при напряжении оборудования. кВ

РВ опн
Примечание 1 . Потери электроэнергии в УПВЧ даны на одну фазу, для остального оборудования - на три фазы. Примечание 2 . Потери электроэнергии в ТТ напряжением 0,4 кВ принимают равными 0,05 тыс. кВт ч/год. 4. Потери электроэнергии в электрических счетчиках 0,22 - 0,66 кВ, принимают в соответствии со следующими данными, кВт ч в год на один счетчик: однофазный, индукционный - 18,4; трехфазный, индукционный - 92,0; однофазный, электронный - 21,9; трехфазный, электронный - 73,6. 5. Таблица П.4. Потери электроэнергии в изоляции кабелей

Сечение, мм 2

Потери электроэнергии в изоляции кабеля, тыс. кВтч/км в год, при номинальном напряжении. кВ

Приложение 2

к Методике расчета нормативных

(технологических) потерь

электроэнергии в электрических сетях

Распределение территориальных образований Российской Федерации по регионам для целей расчета потерь, зависящих от погодных условий

Номер региона

Территориальные образования, входящие в регион

Республика Саха-Якутия, Хабаровский край Области : Камчатская, Магаданская, Сахалинская. Республики : Карелия, Коми Области : Архангельская, Калининградская, Мурманская Области : Вологодская, Ленинградская, Новгородская, Псковская Республики : Мари-Эл, Мордовия, Татария, Удмуртия, Чувашская Области : Белгородская, Брянская, Владимирская, Воронежская, Ивановская, Калужская, Кировская, Костромская, Курская, Липецкая, Московская, Нижегородская, Орловская, Пензенская, Пермская, Рязанская, Самарская, Саратовская, Смоленская, Тамбовская, Тверская, Тульская, Ульяновская, Ярославская Республики : Дагестан, Ингушетия, Кабардино-Балкария, Карачаево-Черкесская, Калмыкия, Северная Осетия, Чечня Края: Краснодарский, Ставропольский Области : Астраханская, Волгоградская, Ростовская Республика Башкирия Области : Курганская, Оренбургская, Челябинская Республики : Бурятия, Хакасия Края : Алтайский, Красноярский, Приморский Области : Амурская, Иркутская, Кемеровская, Новосибирская, Омская, Свердловская, Томская, Тюменская, Читинская

Приложение 3

к Методике расчета нормативных

(технологических) потерь

электроэнергии в электрических сетях

Расчет потерь, обусловленных погрешностями системы учета электроэнергии

П.3.1. Потери электроэнергии, обусловленные погрешностями системы учета электроэнергии, определяют на основе данных о классах точности ТТ - К ТТ, ТН - К ТН, счетчиков - К сч, коэффициентах токовой загрузки ТТ - b ТТ и сроках службы счетчиков после последней поверки - Т пов, лет. Приведенные ниже зависимости средних погрешностей ТТ, ТН и счетчиков применяют только для расчета суммарного недоучета по электрической сети в целом. Эти зависимости не допускается применять для корректировки показаний счетчика в конкретной точке учета. П.3.2. Потери электроэнергии, обусловленные погрешностями системы учета электроэнергии, рассчитывают как сумму значений, определенных для каждой точки учета поступления электроэнергии в сеть и отпуска электроэнергии из сети по формуле:

Где D тт i , D тн i и D сч i - средние погрешности ТТ, ТН и счетчика, %, в i-й точке учета; W i - энергия, зафиксированная счетчиком в i-й точке учета за расчетный период. П.3.3. Среднюю погрешность ТТ определяют по формулам: для ТТ с номинальным током I ном 1000 А: при b ТТ 0,05 D ТТ = 30( b ТТ - 0,0833) К ТТ; (П.2) при 0,05 < b ТТ 0,2 D ТТ = 3,3333 ( b ТТ - 0,35) К ТТ; (П.3) при b ТТ > 0,2 D ТТ = 0,625 ( b ТТ - 1)К ТТ; (П.4) для ТТ с номинальным током I ном более 1000 А:

, (П.5)

П.3.4. Среднюю погрешность ТН (с учетом потерь в соединительных проводах) определяют по формуле:

, (П.5)

П.3.5. Среднюю погрешность индукционного счетчика определяют по формуле:

, (П.7)

Коэффициент k принимают равным 0,2 для индукционных счетчиков, изготовленных до 2000 г, и 0,1 - для индукционных счетчиков, изготовленных позже этого срока. При определении нормативного недоучета значение Т

Особенности расчета нормативов потерь электроэнергии для территориальных сетевых организаций

Папков Б. В., доктор техн. наук, Вуколов В. Ю., инж. НГТУ им. Р. Е. Алексеева, Нижний Новгород

Рассмотрены особенности расчета нормативов потерь для территориальных сетевых организаций в современных условиях. Приведены результаты исследования методов расчета потерь в сетях низкого напряжения.

Вопросы, связанные с транспортом и распределением электрической энергии и мощности по электрическим сетям, решаются в условиях естественного монополизма территориальных сетевых организаций (ТСО). Экономическая эффективность их функционирования во многом зависит от обоснованности материалов, предоставляемых в службы государственного регулирования тарифов. При этом серьезных усилий требует расчет нормативов потерь электрической энергии.

В остается нерешенным ряд проблем, возникающих на этапах подготовки обосновывающих материалов по нормативам потерь, их экспертизы, рассмотрения и утверждения. В настоящее время ТСО приходится преодолевать следующие трудности:

необходимость сбора и обработки достоверных исходных данных для расчетов нормативов потерь;

недостаточное количество персонала для сбора и обработки данных измерений нагрузок электрических сетей, выявления бездоговорного и безучетного потребления электроэнергии;

нехватка современных приборов учета электроэнергии для достоверного расчета балансов электроэнергии как по сети в целом, так и по отдельным ее частям: подстанциям, линиям, выделенным участкам сети и т. п.;

отсутствие приборов учета электроэнергии для разделения потерь электроэнергии от собственного потребления и на оказание услуг по передаче электроэнергии субабонентам; специализированного программного обеспечения у ряда ТСО; необходимых материальных, финансовых и людских ресурсов для практической реализации программ и мероприятий по снижению потерь; нормативно-правовой базы для борьбы с бездоговорным и безучетным потреблением электроэнергии;

сложность и трудоемкость расчетов нормативов потерь (особенно в распределительных электрических сетях 0,4 кВ), практическая невозможность достоверной оценки их точности;

недостаточность проработки методов достоверной оценки технико-экономической эффективности мероприятий и программ снижения потерь электроэнергии;

трудности разработки, согласования и утверждения сводных прогнозных балансов электроэнергии на регулируемый период из-за отсутствия соответствующих методик и достоверной статистики по динамике составляющих баланса.

Особое внимание следует уделить расчету потерь электроэнергии в сетях 0,4 кВ вследствие их исключительной социальной важности (по России в целом они составляют около 40 % суммарной протяженности всех электрических сетей). На этом напряжении осуществляется потребление электрической энергии конечными электроприемниками: в большой химии - 40 - 50 %, в машиностроении - 90-95 %, в коммунально-бытовой сфере - практически 100%. От надежности работы сетей 0,4 кВ и их загрузки в значительной степени зависят качество и экономичность электроснабжения потребителей.

Расчет нормативов потерь в сетях 0,4 кВ - один из наиболее трудоемких. Это связано со следующими особенностями:

разнородностью исходной схемотехнической информации и низкой ее достоверностью;

разветвленностью воздушных линий 0,4 кВ, при расчете потерь в которых требуется наличие поопорных схем с соответствующими параметрами;

динамикой изменения схемных и особенно режимных параметров;

исполнением участков сетей с различным числом фаз;

неравномерностью загрузки фаз; неодинаковостью фазных напряжений на шинах питающей ТП.

Необходимо подчеркнуть, что методы расчетов потерь мощности и электроэнергии в сетях 0,4 кВ должны быть в максимальной степени адаптированы к имеющимся в условиях эксплуатации сетей схемным и режимным параметрам с учетом объемов исходной информации.

Обследование 10 ТСО Нижегородской области, выполнение расчетов нормативов потерь, их экспертиза и утверждение позволяют структурировать создаваемые ТСО на следующие группы :

  1. правопреемники АО-энерго;
  2. создаваемые на базе служб главного энергетика промышленного предприятия в соответствии с ограничениями антимонопольного законодательства;
  3. создаваемые с целью обеспечения эксплуатации электрооборудования, оказавшегося "бесхозным" в ходе реализации рыночной реформы в сфере промышленного и сельскохозяйственного производства.

Появление организаций - правопреемников ранее существовавших АО-энерго - связано с реструктуризацией и ликвидацией РАО "ЕЭС России". Расчет и утверждение нормативов потерь для ТСО данной группы требуют минимального вмешательства сторонних исследователей, поскольку для них эта задача неновая: имеются довольно долгая предыстория, персонал с большим опытом расчетов, максимальная информационная обеспеченность. Методические материалы ориентированы главным образом на особенности эксплуатации именно этой группы ТСО.

Анализ проблем, связанных с определением нормативов потерь для предприятий второй группы, показывает, что сегодня остро не хватает персонала, готового применять не адаптированную к реальным условиям работы таких ТСО существующую методику расчета нормативов потерь. В данном случае целесообразно привлекать для расчетов и утверждения нормативов потерь внешние специализированные компании. При этом отпадает необходимость в дорогостоящем специальном сертифицированном программном обеспечении, имеющемся у сторонних исследователей. Если же рассматривать задачу утверждения тарифа на услуги транспорта электроэнергии по заводским сетям как более общую, в которой расчет норматива потерь является всего лишь ее составляющей (хотя и важной), то возникает юридическая проблема правомерности применения ретроспективной технико-экономической информации в условиях изменения формы обслуживания электрооборудования.

При расчете потерь в сетях 0,4 кВ таких ТСО наиболее остро стоит проблема разделения единой системы электроснабжения на транспортную и технологическую части. Под последней подразумеваются участки транспортной сети, обеспечивающие непосредственно конечное преобразование электроэнергии в иные ее виды. Учитывая реальное распределение точек подключения сторонних потребителей, объемы полезного отпуска по уровням напряжения и сложности расчета потерь в сетях 0,4 кВ, практически во всех случаях целесообразно полностью отнести эти сети к технологической части.

ТСО, относимые к третьей группе, образуются в результате вынужденных мер, предпринимаемых государством и частным бизнесом для ликвидации недопустимого положения, когда из-за отказа от непрофильных видов деятельности или банкротства различных предприятий большое количество электроустановок (в основном напряжением 10-6-0,4 кВ) было брошено прежними владельцами. В настоящее время техническое состояние многих таких электроустановок можно охарактеризовать как неудовлетворительное. Однако вывод их из работы невозможен вследствие социальной значимости. С учетом этого в регионах реализуется программа восстановления ветхих и "бесхозных" сетей, финансирование которой осуществляется, в том числе и централизованно, из федерального бюджета. В большинстве случаев электрооборудование принимается на баланс органами местного самоуправления, которые и решают задачу обеспечения его нормального функционирования. На основании опыта Нижегородской области можно сделать вывод, что главное направление использования указанного оборудования - передача его в аренду государственным и частным специализированным компаниям.

Из-за рассредоточения сетей таких ТСО по разным административным районам для решения задач передачи и распределения электроэнергии, обеспечения работоспособности электрических сетей (монтаж, наладка, ремонт и техническое обслуживание электротехнического оборудования и средств защиты электрических сетей) возможны два пути: создание собственной эксплуатационно-ремонтной службы (что вследствие охвата большой территории приведет к увеличению длительности обслуживания оборудования) или заключение договоров на техническое обслуживание со службами АО-энерго. При этом оперативность будет обеспечена, но целесообразность существования организаций такого типа теряет смысл. В настоящее время ТСО третьей группы проводят работы по установке узлов учета электроэнергии, финансируемые в рамках областной программы восстановления ветхих сетей и из иных источников. Решаются вопросы организации системы сбора и обработки информации о показаниях счетчиков электрической энергии с привлечением специализированных организаций. Однако большие стоимость и объем необходимых работ, а также имеющиеся противоречия между участниками процесса формирования системы учета электроэнергии потребуют длительного времени на их полное завершение.

В условиях действующей системы тарифо- образования на транспорт электрической энергии основу расчета составляют информация о технико-экономических характеристиках используемого электрооборудования и ретроспективная информация о фактических издержках на осуществление функционирования ТСО в предыдущем (базовом) периоде. Для вновь создаваемых ТСО третьей группы это - труднопреодолимое препятствие.

С точки зрения расчета норматива электрических потерь ТСО данного класса создают наибольшие проблемы. Основные из них:

практически нет паспортных данных на электрооборудование;

отсутствуют однолинейные схемы электрических сетей, поопорные схемы воздушных линий электропередачи (BJI) и схемы трасс проложенных кабельных линий (КЛ);

часть участков ВЛ и КЛ таких сетей не имеют непосредственных связей с другим оборудованием рассматриваемых ТСО и являются элементами присоединений иных ТСО.

В данной ситуации можно использовать методы принятия решений в условиях недостатка и неопределенности исходной информации. Это позволяет достичь позитивных результатов уже потому, что дается обоснованное предпочтение тем вариантам, которые оказываются наиболее гибкими и обеспечивающими наибольшую эффективность. Один из них - метод экспертных оценок. Его применение для каждой конкретной ТСО третьей группы является единственно возможным способом количественной оценки показателей, необходимых для расчета потерь электроэнергии на начальном этапе функционирования сетевых организаций.

В качестве примера рассмотрим особенности расчета нормативов потерь электроэнергии для организации (условно названной ТСО-энер- го), электрооборудование которой рассредоточено на территории 17 районов Нижегородской области. Источниками исходной информации об электрооборудовании и режимах работы ТСО-энерго к моменту начала обследования были договоры аренды электрооборудования и сооружений, договоры на техническое и оперативное обслуживание, заключенные его администрацией с филиалами ОАО "Нижновэнерго" на местах и с гарантирующим поставщиком электроэнергии по региону. Ввиду невозможности на начальном этапе функционирования ТСО-энерго в качестве электросетевой организации осуществлять учет транспортируемой электрической энергии с помощью электрических счетчиков объемы передаваемой электроэнергии определяли расчетным путем.

В ходе обследования электроустановок была получена дополнительная информация о сетях 0,4 кВ, питающихся от ТП, арендуемых ТСО-энерго у администраций только двух районов области. В результате анализа полученных данных эксперты качественно определили конфигурацию сетей 0,4 кВ исследуемой организации, провели разделение общей длины (общего числа пролетов) фидеров 0,4 кВ на магистральные участки и ответвления (с учетом числа фаз), получили средние значения таких параметров, как число фидеров 0,4 кВ на одно ТП (2,3); сечение головного участка магистрали фидера ЛЭП 0,4 кВ (38,5 мм 2), сечения кабельных (50 мм 2) и воздушных (35 мм") ЛЭП 6 кВ.

Информация об электрических сетях 0,4 кВ всех 17 районов структурирована на основе экстраполяции результатов анализа поопорных схем электрических сетей по выборке из двух. Согласно экспертному заключению, данные районы являются типовыми для ТСО- энерго, и экстраполяция результатов выборки не искажает общую картину конфигурации сетей организации в целом. Ниже приведены полученные значения норматива потерь электроэнергии AW Hn3 , тыс. кВт ч (%), на период регулирования, равный 1 году, для сетей 6- 10 и 0,4 кВ:

    6- 10 кВ 3378,33 (3,78)

    0,4 кВ 12452,89 (8,00)

    Всего 15831,22 (9,96)

В сложившейся ситуации с учетом состояния электроустановок большинства ТСО наи

более эффективным, а иногда и единственно возможным для расчета потерь в сетях 0,4 кВ был метод оценки потерь по обобщенной информации о схемах и нагрузках сети. Однако согласно последней редакции его использование возможно лишь при питании сети низкого напряжения не менее чем от 100 ТП, что существенно ограничивает применение метода для расчета потерь в сетях ТСО. Здесь возможна ситуация, когда полученный расчетным путем и обоснованный наличием подтверждающих документов норматив потерь электроэнергии в сетях низкого напряжения будет значительно ниже отчетных потерь в них ввиду сложности, а иногда и невозможности сбора исходной информации для расчетов. Это в дальнейшем может привести к банкротству ТСО и появлению "бесхозных" электрических сетей. Поэтому были исследованы разные методы расчета нормативов потерь электроэнергии в сетях низкого напряжения с целью проведения сравнительного анализа точности расчета каждого из предлагаемых в подходов.

Для расчета нормативов потерь электроэнергии в сетях 0,4 кВ при известных их схемах применяются те же алгоритмы, что и для сетей 6-10кВ, которые реализуются по методу средних нагрузок или методу числа часов наибольших потерь мощности. Вместе с тем существующими методиками предусмотрены специальные оценочные методы, определяющие порядок расчета нормативов потерь в сетях низкого напряжения (метод оценки потерь по обобщенной информации о схемах и нагрузках сети, а также метод оценки потерь с использованием измеренных значений потерь напряжения) .

Для проведения численного анализа точности расчетов указанными методами определены потери электрической энергии на основе схемы электроснабжения бытовых потребителей 0,4 кВ. Расчетная модель сети 0,4 кВ представлена на рисунке (где Н - нагрузка). Наличие полного объема информации о ее конфигурации и режиме позволяет рассчитать потери электроэнергии AW пятью методами. Результаты расчетов представлены в табл. 1.

Промышленная энергетика №i, 2010

Таблица 1

        Метод расчета
A W, кВт ч (%)
    8 W, %
Метод характерных сезонных суток 11997,51 (3,837)
Метод средних нагрузок 12613,638 (4,034)
Метод числа часов наибольших потерь мощности 12981,83 (4,152)
Метод оценки потерь с использованием измеренных значений потерь напряжения 8702,49 (2,783)
Метод оценки потерь по обобщенной информации о схемах и нагрузках сети 11867,21 (3,796)

Наиболее достоверны результаты, полученные поэлементным расчетом сети 0,4 кВ методом характерных сезонных суток. Однако при этом необходимо иметь полную информацию о конфигурации сети, марках и сечениях проводов, токах в фазных и нулевых проводах, получение которой весьма затруднительно. Более простым с этой точки зрения является расчет потерь электроэнергии методом средних нагрузок или методом числа часов наибольших потерь мощности. Но использование данных методов также требует весьма трудоемкого поэлементного расчета сети при наличии исходной информации о токах и потоках активной мощности по линиям, сбор которой для многих сетевых организаций также практически невозможен. Анализ результатов потерь в расчетной модели путем применения метода средних нагрузок и метода числа часов наибольших потерь мощности показывает завышение потерь электроэнергии по сравнению с результатом, полученным методом характерных сезонных суток.

Использование метода оценки потерь электроэнергии по измеренным значениям потерь напряжения в условиях рассматриваемой модели сети приводит к существенному занижению норматива рассматриваемых потерь. Потери напряжения в линиях 0,4 кВ не могут быть измерены в полном объеме, а их достоверность не может быть оценена при проверке результатов расчета. В связи с этим метод является скорее теоретическим, он неприменим для практических расчетов, результаты которых должны быть приняты регулирующим органом.

Поэтому согласно проведенным исследованиям наиболее эффективным представляется метод оценки потерь электроэнергии по обобщенной информации о схемах и нагрузках сети. Он наименее трудоемок с точки зрения сбора достаточного для расчета количества исходной схемотехнической информации. Результаты при его использовании в расчетной модели имеют малое расхождение с данными поэлементного расчета даже на уровне определения потерь в двух фидерах, питающихся от одной ТП. С учетом реальных схем низкого напряжения существующих ТСО, в которых количество фидеров 0,4 кВ достигает нескольких десятков и сотен, погрешность применения данного метода оценки потерь будет еще меньше, чем на уровне рассмотренной расчетной модели. Другим достоинством этого метода является возможность определения потерь в произвольном количестве линий электропередачи одновременно. К основным его недостаткам следует отнести невозможность детального анализа потерь в сети 0,4 кВ и разработки на основании полученных данных мероприятий по их снижению. Однако при утверждении нормативов потерь электроэнергии в целом по сетевой организации в Министерстве энергетики РФ данная задача - не главная.

Положительный опыт обследования ряда сетевых организаций позволяет проанализировать динамику изменения нормативов потерь электрической энергии в сетях рассматриваемых ТСО. В качестве объектов исследования выбрали две организации второй группы (условно обозначенные ТСО-1 и ТСО-2) и шесть третьей группы (ТСО-3 - ТСО-8). Итоги расчета их нормативов потерь в 2008 - 2009 гг. представлены в табл. 2.

В результате было установлено, что невозможно выделить единые тенденции изменения нормативов потерь в целом для рассмотрен-

Таблица 2

Организация Нормативы потерь в целом по ТСО, %
    в 2008 г.
    в 2009 г.
ТСО-1
ТСО-2
ТСО-3
ТСО-4
ТСО-5
ТСО-6
ТСО-7
ТСО-8
В целом

ных организаций, поэтому необходима разработка мероприятий по снижению потерь для каждой ТСО в отдельности.

        Выводы

  1. Основными направлениями повышения обоснованности нормирования потерь электроэнергии в электрических сетях являются разработка, создание и внедрение автоматизированных информационно-измерительных систем коммерческого учета для рынков электроэнергии, сетевых организаций и предприятий.
  2. Наиболее простой и эффективный, а иногда и единственно возможный для использования на данном этапе развития сетевых организаций - метод оценки потерь по обобщенной информации о схемах и нагрузках сети.
  3. Детальный анализ результатов расчета технических потерь в сетях 0,4 кВ обусловливает эффективность разработки мероприятий по их снижению, поэтому необходимо продолжение исследований методов расчета потерь в этих сетях.

      Список литературы

    1. Порядок расчета и обоснования нормативов технологических потерь электроэнергии при ее передаче по электрическим сетям (утвержден приказом Мин- промэнерго России от 4 октября 2005 г. № 267). - М.: ЦПТИ и ТО ОРГРЭС, 2005.
    2. Вуколов В. Ю., Папков Б. В. Особенности расчета нормативов потерь для электросетевых организаций. Энергосистема: управление, конкуренция, образование. - В кн.: Сб. докладов III международной научно-практической конференции. Т. 2. Екатеринбург: УГТУ-УПИ, 2008.