Примеры исследования несобственных интегралов на сходимость. Признаки сходимости несобственных интегралов. Несобственные интегралы с бесконечным верхним пределом

Как известно, нахождение интеграла может представлять собой достаточно сложную задачу. Было бы большим разочарованием заняться вычислением несобственного интеграла и обнаружить в конце пути, что он расходится. Поэтому представляют интерес методы, позволяющие без серьезных вычислений по одному виду функций сделать заключение о сходимости или расходимости несобственного интеграла. Первая и вторая теоремы сравнения, которые будут рассмотрены ниже, в значительной степени помогают исследовать несобственные интегралы на сходимость.

Пусть f(x)?0. Тогда функции

являются монотонно возрастающими от переменных t или-д (поскольку берем д>0, -д стремится к нулю слева). Если при возрастании аргументов функции F 1 (t) и F 2 (-д) остаются ограниченными сверху, это означает, что соответствующие несобственные интегралы сходятся. На этом основана первая теорема сравнения для интегралов от неотрицательных функций.

Пусть для функции f(x)и g(x) при x?a выполнены условия:

  • 1) 0?f(x)?g(x);
  • 2) Функции f(x) и g(x)непрерывны.

Тогда из сходимости интеграла следует сходимость интеграла, а из расходимости интеграла следует расходимость

Поскольку 0?f(x)?g(x) и функции непрерывны, то

По условию интеграл сходится, т.е. имеет конечную величину. Следовательно, интеграл сходится также.

Пусть теперь интеграл расходится. Предположим, что интеграл сходится, но тогда должен сходиться интеграл, что противоречит условию. Наше предположение неверно, интеграл расходится.

Теорема сравнения для несобственных интегралов 2-го рода.

Пусть для функций f(x) и g(x) на промежутке , неограниченно возрастает при x>+0. Для нее при x>+0 справедливо неравенство <. Несобственный интеграл есть эталонный интеграл 2-го рода, который при p=<1 сходится; следовательно, по 1-й теореме сравнения для несобственных интегралов 2-го рода интеграл сходится также.

Теорема сравнения для несобственных интегралов 1-го рода.

Пусть для функции f(x) и g(x) на промежутке интеграл расходится.

Значит на участке интеграл также расходится.

Таким образом, данный интеграл расходится на всем отрезке [-1, 1]. Отметим, что если бы мы стали вычислять данный интеграл, не обращая внимания на разрыв подынтегральной функции в точке x = 0, то получили бы неверный результат. Действительно,

, что невозможно.

Итак, для исследования несобственного интеграла от разрывной функции, необходимо "разбить" его на несколько интегралов и исследовать их.

Примеры исследования несобственных интегралов на сходимость

Пример 1
.

Таким образом, данный интеграл сходится при a>1 и расходится при a£1.

Пример 2 Исследовать на сходимость . Вычислим интеграл по определению:
.

Таким образом, данный интеграл сходится при a<1 и расходится при a³1.

Пример 3 Исследовать на сходимость .

<0) при x стремящемся к 0, поэтому разобьем исходный интеграл на два

.

Сходимость первого интеграла I1 исследуем с помощью эквивалентной функции: (т. к. n>0), а интеграл сходится при m>-1 (пример 2). Аналогично, для интеграла I2:

А интеграл сходится при m+n<-1 (пример2). Следовательно, исходный интеграл сходится при выполнении одновременно двух условий m>-1 и m+n<-1, и будет расходится при нарушении хотя бы одного из них.

Пример 4 Исследовать на сходимость .

Подынтегральная функция может быть бесконечно большой (если m<0) при x стремящемся к 0, поэтому разобьем исходный интеграл на два:

Так как arctgx »x при x®0, то интеграл I1 эквивалентен интегралу , который сходится при m+1>-1 т. е. при m>-2 (пример1).

Для подынтегральная функции в несобственном интеграле первого рода I2 подберем эквивалентную:

т. к. arctgx » p/2 при x® ¥. Следовательно, по второму признаку сравнения интеграл I2 будет сходится при m+n<-1, и расходится в противном случае.

Объединяя условия сходимости интегралов I1 и I2 получим условия сходимости исходного интеграла: m>-2 и m+n<-1 одновременно.

Замечание. В примерах 2-4 использовался 2 признак сравнения, который обеспечивает необходимые и достаточные условия сходимости, что позволяет, установив сходимость при некотором условии на значения параметров, не доказывать расходимость интеграла при нарушении полученных условий сходимости.

Пример 5 Исследовать на сходимость .

Данный интеграл содержит особую точку 0, в которой подынтегральная функция может обращается в бесконечность при p<0, поэтому снова разобьем исходный интеграл на два:

.

Интеграл I1 является несобственным интегралом второго рода, и подынтегральная функция эквивалентна при x®0 функции xp (e-x ®1 при x®0), т. е. I1 сходится при p>-1 (пример 1).

Интеграл I2 является несобственным интегралом первого рода. Подобрать функцию, эквивалентную подынтегральной функции, такую, чтобы она не содержала показательной функции, не удается. Поэтому использовать признак сравнения 2, как в предыдущих примерах, нельзя. Применим первый признак сравнения, для чего используем следующий известный факт:

При a>0 и любом p. Из этого, и того, что функция xpe-ax непрерывна, следует, что эта функция ограничена, т. е. существует такая константа M>0, что xpe-ax < M. Возьмем, например, a=1/2, и оценим интеграл I2 сверху:

Т. е. интеграл I2 сходится при любом p.

Таким образом, исходный интеграл сходится при p>-1.

Пример 6 Исследовать на сходимость .

Проведем замену переменной: t = lnx, и получим

Разбиение интеграла на два произведено аналогично примеру 5. Интеграл I1 полностью эквивалентен интегралу I1 из примера 5 и, следовательно, сходится при q<1.

Рассмотрим интеграл I2 . При условии 1-p<0 этот интеграл полностью эквивалентен интегралу I2 в примере 5 (доказательство сходимости аналогично, а условие 1-p<0 нужно для выполнения и a=(1-p)/2.).

Итак, I2 сходится при p>1. Однако, на этом исследование сходимости этого интеграла не закончено, так как использованный признак сходимости дает только достаточные условия сходимости. Поэтому нужно исследование сходимости при 1-p£0.

Рассмотрим случай p=1. Тогда интеграл I2 эквивалентен , который сходится при q>1 (заметим, что в этом случае интеграл I1 расходится) и расходится в противном случае.

При p<1 оценим интеграл I2 и покажем его расходимость. Для этого вспомним, что При 1-p>0, и, следовательно, начиная с некоторого А>1 выполнено T - Q E (1- P ) T ³ M=const>0. Тогда для интеграла I2 справедлива оценка

,

Где интеграл в правой части расходится, что и доказывает расходимость интеграла I2 .

Суммируя полученные результаты, получаем что исходный интеграл сходится при q<1 и p>1, в противном случае интеграл расходится.

Пример 6 Исследовать на абсолютную и условную сходимость .

Разобьем исходный интеграл на два:

.

Сходимость. Интеграл I1 эквивалентен , т. е. сходится при p<2 (пример 1) , причем абсолютно, так как подынтегральная функция положительна на отрезке интегрирования.

Интеграл I2 сходится про признаку Дирихле-Абеля при p>0 т. к. первообразная sin(x) ограничена, а функция 1/xp монотонно стремится к нулю при x стремящемся к бесконечности.

Покажем, что при p£0 интеграл расходится. Воспользуемся для этого критерием Коши, а точнее его отрицанием

.

Возьмем в качестве R1и R2 следующие величины: R1=2pk и R2=2pk+p/2, тогда

, при p>0.

Таким образом, интеграл сходится при 0

Абсолютная сходимость Абсолютная сходимость интеграла I1 уже установлена, рассмотрим абсолютную сходимость I2 . Оценим интеграл сверху:

, т. е. интеграл сходится при p>1.

Для доказательства расходимости при p£1 оценим интеграл снизу

.

Разобьем последний интеграл от разности функций на разность интегралов

.

Если оба интеграла сходятся, то и интеграл от разности сходится, если один из интегралов расходится, а другой сходится - то интеграл от разности расходится. В случае расходимости обоих интегралов сходимость интеграла от разности подлежит дальнейшему исследованию. Нас интересует второй из описанных случаев.

Расходится (пример 1) при p<1. сходится по признаку Дирихле-Абеля при 1>p>0 (см. Сходимость), следовательно интеграл оценивается снизу расходящимся интегралом, т. е. расходится.

Случай p³1 нас не интересует, т. к. при этих значениях параметра интеграл расходится.

Таким образом, исходный интеграл сходится абсолютно при 0