Применение частотного регулирования. Сборка преобразователя частоты для асинхронного двигателя своими руками. Доставка во все регионы России

Созданный в конце XIX столетия, трёхфазный асинхронный двигатель стал незаменимой составляющей современного промышленного производства.

Для плавного пуска и остановки такого оборудования требуется специальное устройство – преобразователь частоты. Особо актуально наличие преобразователя для крупных двигателей с большой мощностью. С помощью этого дополнительного устройства можно регулировать пусковые токи, то есть, контролировать и ограничивать их величину.

Если регулировать пусковой ток исключительно механическим способом, не удастся избежать энергетических потерь и уменьшения срока службы оборудования. Показатели этого тока в пять-семь раз превышают номинальное напряжение, что недопустимо для нормальной работы оборудования.

Принцип работы современного преобразователя частоты подразумевает использование электронного управления. Они не только обеспечивают мягкий пуск, но и плавно регулируют работу привода, придерживаясь соотношения между напряжением и частотой строго по заданной формуле.

Основное преимущество устройства – экономия в потреблении электроэнергии, составляющая в среднем 50%. А также возможность регулировки с учётом потребностей конкретного производства.

Устройство функционирует по принципу двойного преобразования напряжения.

  1. выпрямляется и фильтруется системой конденсаторов.
  2. Затем в работу вступает электронное управление – образуется ток с указанной (запрограммированной) частотой.

На выходе выдаются прямоугольные импульсы, которые под воздействием обмотки статора двигателя (её индуктивности) становятся близкими к синусоиде.

На что обратить внимание при выборе?

Производители делают упор на стоимость преобразователя. Поэтому многие опции доступны только у дорогих моделей. При выборе устройства следует определиться с основными требованиями для конкретного использования.

  • Управление может быть векторным или скалярным. Первое даёт возможность точной регулировки. Второе лишь поддерживает одно, заданное соотношение между частотой и напряжением на выходе и подходит только для простых приборов, вроде вентилятора.
  • Чем выше указанная мощность, тем универсальнее будет устройство — обеспечится взаимозаменяемость и упростится обслуживание оборудования.
  • Диапазон напряжения сети должен быть максимально широким, что обезопасит при перепадах его норм. Понижение не так опасно для устройства, как повышение. При последнем — вполне могут взорваться сетевые конденсаторы.
  • Частота должна полностью соответствовать потребностям производства. Нижний предел указывает на диапазон регулирования скорости привода. Если нужен более широкий, потребуется векторное управление. На практике применяются частоты от 10 до 60 Гц, реже до 100Гц.
  • Управление осуществляется через различные входы и выходы. Чем их больше, тем лучше. Но большее количество разъёмов существенно увеличивает стоимость устройства и усложняет его настройку.
  • Дискретные входы (выходы) используются для ввода команд управления и выхода сообщений о событиях (например, о перегреве), цифровые – для ввода сигналов цифровых (высокочастотных), аналоговые – для ввода сигналов обратной связи.

  • Шина управления подключаемого оборудования должна совпадать с возможностями схемы частотного преобразователя по количеству входов и выходов. Лучше иметь небольшой запас для модернизации.
  • Перегрузочные способности. Оптимален выбор устройства с мощностью на 15% больше мощности используемого двигателя. В любом случае нужно прочесть документацию. Производители указывают все основные параметры двигателя. Если важны пиковые нагрузки, следует выбрать преобразователь с показателем пикового тока на 10% больше указанного.

Сборка преобразователя частоты для асинхронного двигателя своими руками

Собрать инвертор или преобразователь можно самостоятельно. В настоящее время в сети находится множество инструкций и схем такой сборки.

Основная задача – получить «народную» модель. Дешёвую, надёжную и рассчитанную на бытовое применение. Для работы оборудования в промышленных масштабах, конечно, лучше отдать предпочтение устройствам, реализуемым магазинами.
Порядок действий по сборке схемы частотного преобразователя для электродвигателя

Для работы с домашней проводкой, с напряжением 220В и одной фазой. Примерная мощность двигателя до 1кВт.

На заметку. Длинные провода нужно снабдить помехоподавляющими кольцами.

Регулировка вращения ротора двигателя вмещается в диапазон частоты 1:40. Для малых частот необходимо фиксированное напряжение (IR компенсация).

Подключение частотного преобразователя к электродвигателю

Для однофазной проводки на 220В (использования в домашних условиях) подключение осуществляется по схеме «треугольник». Выходной ток не должен превышать 50% от номинального!

Для трёхфазной проводки на 380В (промышленного использования) подключение двигателя к частотному преобразователю осуществляется по схеме «звезда».

Преобразователь (или ) имеет соответствующие клеммы, помеченные буквами.

  • R, S, T– сюда подключаются провода сети, очерёдность не имеет значения;
  • U , V , W – для включения асинхронного двигателя (если двигатель вращается в обратную сторону, нужно поменять местами любой из двух проводов на этих клеммах).
  • Отдельно предусмотрена клемма для заземления.

Для продления срока эксплуатации преобразователя необходимо соблюдать следующие правила:

  1. Регулярно очищать внутренности устройства от пыли (лучше выдувать её небольшим компрессором, так как пылесос с загрязнением не всегда справится – пыль уплотняется).
  2. Своевременно заменять узлы. Электролитические конденсаторы рассчитаны на пять лет, предохранители на десять лет эксплуатации. А вентиляторы охлаждения на два-три года использования. Внутренние шлейфы следует заменять раз в шесть лет.
  3. Контролировать внутреннюю температуру и напряжение на шине постоянного тока.
  4. Повышение температур приводит к засыханию термопроводящей пасты и разрушению конденсаторов. На силовых компонентах привода её следует менять ни реже одного раза в три года.

  5. Придерживаться условий эксплуатации. Температура окружающей среды не должна превышать +40 градусов. Недопустима высокая влажность и запылённость воздуха.

Управление асинхронным мотором (например, ) – довольно сложный процесс. Преобразователи, изготовленные кустарно, дешевле промышленных аналогов и вполне подходят для использования в бытовых целях. Однако для применения на производстве предпочтительнее установить инверторы, собранные в заводских условиях. Обслуживание таких дорогих моделей под силу только хорошо обученному техническому персоналу.

Частотно-регулируемый привод (частотно-управляемый привод, ЧУП, Variable requency Drive, VFD) - система управления частотой вращения ротора асинхронного (синхронного) электродвигателя. Состоит из собственно электродвигателя и частотного преобразователя.

Преобразователь частоты (частотный преобразователь) - это устройство состоящее из выпрямителя (моста постоянного тока), преобразующего переменный ток промышленной частоты в постоянный и инвертора (преобразователя) (иногда с ШИМ), преобразующего постоянный ток в переменный требуемых частоты и амплитуды. Выходные тиристоры (GTO) или IGBT обеспечивают необходимый ток для питания электродвигателя. Для исключения перегрузки преобразователя при большой длине фидера между преобразователем и фидером ставят дроссели, а для уменьшения электромагнитных помех - EMC-фильтр. При скалярном управлении формируются гармонические токи фаз двигателя. Векторное управление - метод управления синхронными и асинхронными двигателями, не только формирующим гармонические токи (напряжения) фаз, но и обеспечивающим управление магнитным потоком ротора (моментом на валу двигателя).

Применение частотного привода

Преобразователи частоты применяются в:

  • судовом электроприводе большой мощности
  • прокатных станах (синхронная работа клетей)
  • высокооборотном приводе вакуумных турбомолекулярных насосов (до 100.000 об/мин.)
  • конвейерных системах
  • резательных автоматах
  • станках с ЧПУ - синхронизация движения сразу нескольких осей (до 32 - например в полиграфическом или упаковывающем оборудовании) (сервоприводы)
  • автоматически открывающихся дверях
  • мешалках, насосах, вентиляторах, компрессорах
  • бытовых кондиционерах
  • стиральных машинах
  • городском электротранспорте, особенно в троллейбусах.

Наибольший экономический эффект даёт применение ЧРП в системах вентиляции, кондиционирования и водоснабжения, где применение ЧРП стало фактически стандартом.

Преимущества применения ЧРП

  • Высокая точность регулирования
  • Экономия электроэнергии в случае переменной нагрузки (то есть работы эл. двигателя с неполной нагрузкой).
  • Равный максимальному пусковой момент.
  • Возможность удалённой диагностики привода по промышленной сети
    • распознавание выпадения фазы для входной и выходной цепей
    • учёт моточасов
    • старение конденсаторов главной цепи
    • неисправность вентилятора
  • Повышенный ресурс оборудования
  • Уменьшение гидравлического сопротивления трубопровода из-за отсутствия регулирующего клапана
  • Плавный пуск двигателя, что значительно уменьшает его износ
  • ЧРП как правило содержит в себе ПИД-регулятор и может подключатся напрямую к датчику регулируемой величины (например, давления).
  • Управляемое торможение и автоматический перезапуск при пропадании сетевого напряжения
  • Подхват вращающегося электродвигателя
  • Стабилизация скорости вращения при изменении нагрузки
  • Значительное снижение акустического шума электродвигателя, (при использовании функции «Мягкая ШИМ»)
  • Дополнительная экономия электроэнергии от оптимизации возбуждения эл. двигателя
  • Позволяют заменить собой автоматический выключатель

Недостатки применения частотного привода

  • Большинство моделей ЧРП являются источником помех (требуется установка Фильтров высокочастотных помех)
  • Сравнительно высокая стоимость для ЧРП большой мощности (окупаемость минимум 1-2 года)

Применение частотных преобразователей на насосных станциях

Классический метод управления подачей насосных установок предполагает дросселирование напорных линий и регулирование количества работающих агрегатов по какому-либо техническому параметру (например, давлению в трубопроводе). Насосные агрегаты в этом случае выбираются исходя из неких расчётных характеристик (как правило, с запасом по производительности) и постоянно функционируют с постоянной частотой вращения, без учета изменяющихся расходов, вызванных переменным водопотреблением. При минимальном расходе насосы продолжают работу с постоянной частотой вращения, создавая избыточное давление в сети (причина аварий), при этом бесполезно расходуется значительное количество электроэнергии. Так, к примеру, происходит в ночное время суток, когда потребление воды резко падает. Основной эффект достигается не за счет экономии электроэнергии, а благодаря существенному уменьшению расходов на ремонт водопроводных сетей.

Появление регулируемого электропривода позволило поддерживать постоянное давление непосредственно у потребителя. Широкое применение в мировой практике получил частотно регулируемый электропривод с асинхронным электродвигателем общепромышленного назначения. В результате адаптации общепромышленных асинхронных двигателей к их условиям эксплуатации в управляемых электроприводах создаются специальные регулируемые асинхронные двигатели с более высокими энергетическими и массогабаритностоимостными показателями по сравнению с неадаптированными. Частотное регулирование скорости вращения вала асинхронного двигателя осуществляется с помощью электронного устройства, которое принято называть частотным преобразователем. Вышеуказанный эффект достигается путём изменения частоты и амплитуды трёхфазного напряжения, поступающего на электродвигатель. Таким образом, меняя параметры питающего напряжения (частотное управление), можно делать скорость вращения двигателя как ниже, так и выше номинальной. Во второй зоне (частота выше номинальной) максимальный момент на валу обратно пропорционален скорости вращения.

Метод преобразования частоты основывается на следующем принципе. Как правило, частота промышленной сети составляет 50 Гц. Для примера возьмём насос с двухполюсным электродвигателем. С учетом скольжения скорость вращения двигателя составляет около 2800 (зависит от мощности) оборотов в минуту и даёт на выходе насосного агрегата номинальный напор и производительность (так как это его номинальные параметры, согласно паспорту). Если с помощью частотного преобразователя понизить частоту и амплитуду подаваемого на него переменного напряжения, то соответственно понизятся скорость вращения двигателя, и, следовательно, изменится производительность насосного агрегата. Информация о давлении в сети поступает в блок частотного преобразователя от специального датчика давления, установленного у потребителя, на основании этих данных преобразователь соответствующим образом меняет частоту, подаваемую на двигатель.

Современный преобразователь частоты имеет компактное исполнение, пыле и влагозащищённый корпус, удобный интерфейс, что позволяет применять его в самых сложных условиях и проблемных средах. Диапазон мощности весьма широк и составляет от 0,18 до 630 кВт и более при стандартном питании 220/380 В и 50-60 Гц. Практика показывает, что применение частотных преобразователей на насосных станциях позволяет:

  • экономить электроэнергию (при существенных изменениях расхода), регулируя мощность электропривода в зависимости от реального водопотребления (эффект экономии 20-50 %);
  • снизить расход воды, за счёт сокращения утечек при превышении давления в магистрали, когда расход водопотребления в действительности мал (в среднем на 5 %);
  • уменьшить расходы (основной экономический эффект) на аварийные ремонты оборудования (всей инфраструктуры подачи воды за счет резкого уменьшения числа аварийных ситуаций, вызванных в частности гидравлическим ударом, который нередко случается в случае использования нерегулируемого электропривода (доказано, что ресурс службы оборудования повышается минимум в 1,5 раза);
  • достичь определённой экономии тепла в системах горячего водоснабжения за счёт снижения потерь воды, несущей тепло;
  • увеличить напор выше обычного в случае необходимости;
  • комплексно автоматизировать систему водоснабжения, тем самым снижая фонд заработной платы обслуживающего и дежурного персонала, и исключить влияние «человеческого фактора» на работу системы, что тоже немаловажно.

По имеющимся данным срок окупаемости проекта по внедрению преобразователей частоты составляет от 3 месяцев до 2 лет.

Потери мощности при торможении электродвигателя

Во многих установках на регулируемый электропривод возлагаются задачи не только плавного регулирования момента и скорости вращения электродвигателя, но и задачи замедления и торможения элементов установки. Классическим решением такой задачи является система привода с асинхронным двигателем с преобразователем частоты, оснащённым тормозным переключателем с тормозным резистором.

При этом в режиме замедления/торможения электродвигатель работает как генератор, преобразуя механическую энергию в электрическую, которая в итоге рассеивается на тормозном резисторе. Типичными установками, в которых циклы разгона чередуются с циклами замедления являются тяговый привод электротранспорта, подъёмники, лифты, центрифуги, намоточные машины и т. п. Функция электрического торможения вначале появилась на приводе постоянного тока (например, троллейбус). В конце ХХ века появились преобразователи частоты со встроенным рекуператором, которые позволяют возвращать энергию, полученную от двигателя, работающего в режиме торможения, обратно в сеть. В этом случае, установка начинает «приносить деньги» фактически сразу после ввода в эксплуатацию.

Принцип работы частотного преобразователя

Согласно последним данным статистики примерно 70% всей выработанной электроэнергии в мире потребляет электропривод. И с каждым годом этот процент растет.

При правильно подобранном способе управления электродвигателем возможно получение максимального КПД, максимального крутящего момента на валу электромашины, и при этом повысится общая производительность механизма. Эффективно работающие электродвигатели потребляют минимум электроэнергии и обеспечивают максимальную экономичность.

Для электродвигателей, работающих от преобразователя частоты ПЧ, эффективность во многом будет зависеть от выбранного способа управления электрической машиной. Только поняв достоинства каждого способа, инженеры и проектировщики систем электроприводов смогут получить максимальную производительность от каждого способа управления.
Содержание:

Способы контроля

Многие люди, работающие в сфере автоматизации, но не сталкивающиеся вплотную с процессами разработки и внедрения систем электроприводов полагают, что управление электродвигателем состоит из последовательности команд, вводимых с помощью интерфейса от пульта управления или ПК. Да, с точки зрения общей иерархии управления автоматизированной системой это правильно, однако есть еще способы управления самим электродвигателем. Именно эти способы и будут оказывать максимальное влияние на производительность всей системы.

Для асинхронных электродвигателей, подключенных к преобразователю частоты, существует четыре основных способа управления:

  • U/f – вольт на герц;
  • U/f с энкодером;
  • Векторное управление с разомкнутым контуром;
  • Векторное управление с замкнутым контуром;

Все четыре метода используют широтно-импульсную модуляцию ШИМ, которая изменяет ширину фиксированного сигнала путем изменения длительности импульсов для создания аналогового сигнала.

Широтно-импульсная модуляция применяется к преобразователю частоты путем использования фиксированного напряжения шины постоянного тока. путем быстрого открытия и закрытия (правильней сказать коммутации) генерируют выходные импульсы. Варьируя ширину этих импульсов на выходе получают «синусоиду» нужной частоты. Даже если форма выходного напряжения транзисторов импульсная, то ток все равно получается в виде синусоиды, так как электродвигатель имеет индуктивность, которая влияет на форму тока. Все методы управления основываются на ШИМ модуляции. Разница между методами управления заключается лишь в методе вычисления подаваемого напряжения на электродвигатель.

В данном случае несущая частота (показана красным) представляет собой максимальную частоту коммутации транзисторов. Несущая частота для инверторов, как правило, лежит в пределах 2 кГц – 15 кГц. Опорная частота (показана синим) представляет собой сигнал задания выходной частоты. Для инверторов применимых в обычных системах электроприводов, как правило, лежит в пределах 0 Гц – 60 Гц. При накладывании сигналов двух частот друг на друга, будет выдаваться сигнал открывания транзистора (обозначен черным цветом), который подводит силовое напряжение к электродвигателю.

Способ управления U/F

Управление вольт-на-герц, наиболее часто называемое как U/F, пожалуй, самый простой способ регулирования. Он часто используется в несложных системах электропривода из-за своей простоты и минимального количества необходимых для работы параметров. Такой способ управления не требует обязательной установки энкодера и обязательных настроек для частотно-регулируемого электропривода (но рекомендовано). Это приводит к меньшим затратам на вспомогательное оборудование (датчики, провода обратных связей, реле и так далее). Управление U/F довольно часто применяют в высокочастотном оборудовании, например, его часто используют в станках с ЧПУ для привода вращения шпинделя.

Модель с постоянным моментом вращения имеет постоянный вращающий момент во всем диапазоне скоростей при одинаковом соотношении U/F. Модель с переменным соотношением вращающего момента имеет более низкое напряжение питания на низких скоростях. Это необходимо для предотвращения насыщения электрической машины.

U/F — это единственный способ регулирования скорости асинхронного электродвигателя, который позволяет регулирование нескольких электроприводов от одного преобразователя частоты. Соответственно все машины запускаются и останавливаются одновременно и работают с одной частотой.

Но данный способ управления имеет несколько ограничений. Например, при использовании способа регулирования U/F без энкодера нет абсолютно никакой уверенности, что вал асинхронной машины вращается. Кроме того, пусковой момент электрической машины при частоте 3 Гц ограничивается 150%. Да, ограниченного крутящего момента более чем достаточно для применения в большинстве существующего оборудования. Например, практически все вентиляторы и насосы используют способ регулирования U/F.

Данный метод относительно прост из-за его более «свободной» спецификации. Регулирование скорости, как правило, лежит в диапазоне 2% — 3% максимальной выходной частоты. Отклик по скорости рассчитывается на частоту свыше 3 Гц. Скорость реагирования частотного преобразователя определяется быстротой его реакции на изменение опорной частоты. Чем выше скорость реагирования – тем быстрее будет реакция электропривода на изменение задания скорости.

Диапазон регулирования скорости при использовании способа U/F составляет 1:40. Умножив это соотношение на максимальную рабочую частоту электропривода, получим значение минимальной частоты, на которой сможет работать электрическая машина. Например, если максимальное значение частоты 60 Гц, а диапазон составляет 1:40, то минимальное значение частоты составит 1,5 Гц.

Паттерн U/F определяет соотношение частоты и напряжения в процессе работы частотно-регулируемого электропривода. Согласно ему, кривая задания скорости вращения (частота электродвигателя) будет определять помимо значения частоты еще и значения напряжения, подводимого к клеммам электрической машины.

Операторы и технические специалисты могут выбрать необходимый шаблон регулирования U/F одним параметром в современном частотном преобразователе. Предустановленные шаблоны уже оптимизированы под конкретные применения. Также существуют возможности создания своих шаблонов, которые будут оптимизироваться под конкретную систему частотно-регулируемого электропривода или электродвигателя.

Такие устройства как вентиляторы или насосы имеют момент нагрузки, который зависит от скорости их вращения. Переменный крутящий момент (рисунок выше) шаблона U/F предотвращает ошибки регулирования и повышает эффективность. Эта модель регулирования уменьшает токи намагничивания на низких частотах за счет снижения напряжения на электрической машине.

Механизмы с постоянным крутящим моментом, такие как конвейеры, экструдеры и другое оборудование используют способ регулирования с постоянным моментом. При постоянной нагрузке необходим полный ток намагничивания на всех скоростях. Соответственно характеристика имеет прямой наклон во всем диапазоне скоростей.


Способ управления U/F с энкодером

Если необходимо повысить точность регулирования скорости вращения в систему управления добавляют энкодер. Введение обратной связи по скорости с помощью энкодера позволяет повысить точность регулирования до 0,03%. Выходное напряжение по-прежнему будет определятся заданным шаблоном U/F.

Данный способ управления не получил широкого применения, так как представляемые им преимущества по сравнению со стандартными функциями U/F минимальны. Пусковой момент, скорость отклика и диапазон регулирования скорости – все идентично со стандартным U/F. Кроме того, при повышении рабочих частот могут возникнуть проблемы с работой энкодера, так как он имеет ограниченное количество оборотов.

Векторное управление без обратной связи

Векторное управление (ВУ) без обратной связи используется для более широкого и динамичного регулирования скорости электрической машины. При пуске от преобразователя частоты электродвигатели могут развивать пусковой момент в 200% от номинального при частоте всего 0,3 Гц. Это значительно расширяет перечень механизмов, где может быть применен асинхронный электропривод с векторным управлением. Этот метод также позволяет управлять моментом машины во всех четырех квадрантах.

Ограничение вращающего момента осуществляется двигателем. Это необходимо для предотвращения повреждения оборудования, машин или продукции. Значение моментов разбивают на четыре различных квадранта, в зависимости направления вращения электрической машины (вперед или назад) и в зависимости от того, реализует ли электродвигатель . Ограничения могут устанавливаться для каждого квадранта отдельно или же пользователь может задать общий вращающий момент в преобразователе частоты.

Двигательный режим асинхронной машины будет при условии, что магнитное поле ротора отстает от магнитного поля статора. Если магнитное поле ротора начнет опережать магнитное поле статора, то тогда машина войдет в режим рекуперативного торможения с отдачей энергии, проще говоря – асинхронный двигатель перейдет в генераторный режим.

Например, машина по закупорке бутылок может использовать ограничение момента в квадранте 1 (направление вперед с положительным моментом) для предотвращения чрезмерного затягивания крышки бутылки. Механизм производит движение вперед и использует положительный момент для того, чтобы закрутить крышку бутылки. А вот устройство, такое как лифт, с противовесом тяжелее, чем пустая кабина, будет использовать квадрант 2 (обратное вращение и положительный момент). Если кабина подымается на верхний этаж, то крутящий момент будет противоположен скорости. Это необходимо для ограничения скорости подъема и недопущения свободного падения противовеса, так как он тяжелее, чем кабина.

Обратная связь по току в данных преобразователях частоты ПЧ позволяет устанавливать ограничения по моменту и току электродвигателя, поскольку при увеличении тока растет и момент. Выходное напряжение ПЧ может изменятся в сторону увеличения, если механизм требует приложения большего крутящего момента, или уменьшатся, если достигнуто его предельно допустимое значение. Это делает принцип векторного управления асинхронной машиной более гибким и динамичным по сравнению с принципом U/F.

Также частотные преобразователи с векторным управлением и разомкнутым контуром имеют более быстрый отклик по скорости – 10 Гц, что делает возможным его применение в механизмах с ударными нагрузками. Например, в дробилках горной породы нагрузка постоянно меняется и зависит от объема и габаритов обрабатываемой породы.

В отличии от шаблона управления U/F векторное управление использует векторный алгоритм, для определения максимально эффективного напряжения работы электродвигателя.

Векторное управления ВУ решает данную задачу благодаря наличию обратной связи по току двигателя. Как правило, обратная связь по току формируется внутренними трансформаторами тока самого преобразователя частоты ПЧ. Благодаря полученному значению тока преобразователь частоты проводит вычисления вращающего момента и потока электрической машины. Базовый вектор тока двигателя математически расщепляется на вектор тока намагничивания (I d) и крутящего момента (I q).

Используя данные и параметры электрической машины ПЧ вычисляет векторы тока намагничивания (I d) и крутящего момента (I q). Для достижения максимальной производительности, преобразователь частоты должен держать I d и I q разведенными на угол 90 0 . Это существенно, так как sin 90 0 = 1, а значение 1 представляет собой максимальное значение крутящего момента.

В целом векторное управление асинхронным электродвигателем осуществляет более жесткий контроль. Регулирование скорости составляет примерно ±0,2% от максимальной частоты, а диапазон регулирования достигает 1:200, что позволяет сохранять вращающий момент при работе на низких скоростях.

Векторное управление с обратной связью

Векторное управление с обратной связью использует тот же алгоритм управления, что и ВУ без обратной связи. Основное различие заключается в наличии энкодера, что дает возможность частотно-регулируемому электроприводу развивать 200% пусковой момент при скорости 0 об/мин. Этот пункт просто необходим для создания начального момента при трогании с места лифтов, кранов и других подъемных машин, чтоб не допустить просадки груза.

Наличие датчика обратной связи по скорости позволяет увеличить время отклика системы более 50 Гц, а также расширить диапазон регулирования скорости до 1:1500. Также наличие обратной связи позволяет управлять не скоростью электрической машиной, а моментом. В некоторых механизмах именно значение момента имеет большую важность. Например, мотальная машина, механизмы закупорки и другие. В таких устройствах необходимо регулировать момент машины.

Частотно регулируемый привод

Частотно-регулируемый привод (частотно-управляемый привод, ЧУП, Variable Frequency Drive, VFD) - система управления скоростью вращения асинхронного (синхронного) электродвигателя . Состоит из собственно электродвигателя и частотного преобразователя.

Частотный преобразователь (преобразователь частоты) - это устройство состоящее из выпрямителя (моста постоянного тока), преобразующего переменный ток промышленной частоты в постоянный и инвертора (преобразователя) (иногда с ШИМ), преобразующего постоянный ток в переменный требуемых частоты и амплитуды. Выходные тиристоры (GTO) или дроссель, а для уменьшения электромагнитных помех - EMC -фильтр.

Применение

ЧРП применяются в конвейерных системах, резательных автоматах, управлении приводами мешалок, насосов, вентиляторов, компрессоров и т.п. ЧРП нашёл место в бытовых кондиционерах. Всё большую популярность ЧРП приобретает в городском электротранспорте, особенно в троллейбусах . Применение позволяет:

  • повысить точность регулирования
  • снизить расход электроэнергии в случае переменной нагрузки.

Применение преобразователей частоты на насосных станциях

Классический метод управления подачей насосных установок предполагает дросселирование напорных линий и регулирование количества работающих агрегатов, по какому-либо техническому параметру (например, давлению в трубопроводе). Насосные агрегаты в этом случае выбираются исходя из неких расчётных характеристик (как правило, в большую сторону) и постоянно функционируют в заданном режиме с постоянной частотой вращения, не учитывая при этом колебания расходов и напоров, вызванных переменным водопотреблением. Т.е. простыми словами, даже когда не требуется значительных усилий, насосы продолжают работу в заданном рабочем темпе, при этом расходуя значительное количество электроэнергии. Так, к примеру, происходит в ночное время суток, когда потребление воды резко падает.

Рождение регулируемого электропривода позволило пойти от обратного в технологии системы подачи: теперь не насосная установка диктует условия, а непосредственно сами характеристики трубопроводов . Широкое применение в мировой практике получил частотно регулируемый электропривод с асинхронным электродвигателем общепромышленного применения. Частотное регулирование скорости вращения вала асинхронного двигателя, осуществляется с помощью электронного устройства, которое принято называть частотный преобразователь. Вышеуказанный эффект достигается путём изменения частоты и амплитуды трёхфазного напряжения, поступающего на электродвигатель. Таким образом, меняя параметры питающего напряжения (частотное управление), можно делать скорость вращения двигателя как ниже, так и выше номинальной.

Метод преобразования частоты основывается на следующем принципе. Как правило, частота промышленной сети составляет 50 Гц. Для примера возьмём насос с двухполюсным электродвигателем. При такой частоте сети скорость вращения двигателя составляет 3000 (50 Гц х 60 сек) оборотов в минуту и даёт на выходе насосного агрегата номинальный напор и производительность (т.к. это его номинальные параметры, согласно паспорту). Если с помощью частотного преобразователя, понизить частоту подаваемого на него переменного напряжения, то соответственно понизятся скорость вращения двигателя, а, следовательно, измениться напор и производительность насосного агрегата. Информация о давлении в сети поступает в блок частотного преобразователя при помощи специального датчика давления, установленного в трубопроводе, на основании этих данных преобразователь соответствующим образом меняет частоту, подаваемую на двигатель.

Современный преобразователь частоты имеет компактное исполнение, пыле и влагозащищённый корпус, удобный интерфейс , что позволяет применять его в самых сложных условиях и проблемных средах. Диапазон мощности весьма широк и составляет от 0,4 до 500 кВт и более при стандартном питании 220/380 В и 50-60 Гц. Практика показывает, что применение частотных преобразователей на насосных станциях позволяет:

Экономить электроэнергию, настроив работу электропривода в зависимости от реального водопотребления (эффект экономии 20-50%);

Снизить расход воды, за счёт сокращения утечек при превышении давления в магистрали, когда расход водопотребления в действительности мал (в среднем на 5%);

Уменьшить расходы на профилактический и капитальный ремонт сооружений и оборудования (всей инфраструктуры подачи воды), в результате пресечения аварийных ситуаций, вызванных в частности гидравлическим ударом , который нередко случается в случае использования нерегулируемого электропривода (доказано, что ресурс службы оборудования повышается минимум в 1,5 раза);

Достичь определённой экономии тепла в системах горячего водоснабжения за счёт снижения потерь воды, несущей тепло;

Увеличить напор выше обычного в случае необходимости;

Комплексно автоматизировать систему водоснабжения, тем самым снижая фонд заработной платы обслуживающего и дежурного персонала, и исключить влияние «человеческого фактора» на работу системы, что тоже немаловажно. По оценкам уже реализованных объектов, срок окупаемости проекта по внедрению преобразователей частоты составляет 1-2 года.

Потери энергии при торможении двигателя

Во многих установках на регулируемый электропривод возлагаются задачи не только плавного регулирования момента и скорости вращения электродвигателя, но и задачи замедления и торможения элементов установки. Классическим решением такой задачи является система привода с асинхронным двигателем с преобразователем частоты, оснащённым тормозным переключателем с тормозным резистором.

При этом в режиме замедления/торможения электродвигатель работает как генератор, преобразуя механическую энергию в электрическую, которая в итоге рассеивается на тормозном резисторе. Типичными установками, в которых циклы разгона чередуются с циклами замедления являются подъёмники, лифты, центрифуги, намоточные машины и т.п.

Однако, в настоящий момент уже существуют преобразователи частоты со встроенным рекуператором, которые позволяют возвращать энергию, полученную от двигателя, работающего в режиме торможения, обратно в сеть. Интересно также, что для некоторого ряда мощностей стоимость установки преобразователя частоты с тормозными резисторами часто сопоставима со стоимостью установки преобразователя частоты со встроенным рекуператором, даже без учёта сэкономленной электроэнергии.

В этом случае, установка начинает "приносить деньги" фактически сразу после ввода в эксплуатацию.

Производители

  • НТЦ "Приводная техника", торговая марка "Моментум" (г. Челябинск)

См. также

Внешние ссылки

Wikimedia Foundation . 2010 .

Частотно регулируемый привод (частотно управляемый привод, ЧУП, Variable Frequency Drive, VFD) система управления скоростью вращения асинхронного (синхронного) электродвигателя. Состоит из собственно электродвигателя и частотного преобразователя … Википедия

Привод: В механике Привод (тоже самое силовой привод) совокупность устройств, предназначенных для приведения в действие машин. Состоит из двигателя, трансмиссии и системы управления. Различают привод групповой (для нескольких машин) и… … Википедия

- (сокращённо электропривод) это электромеханическая система для приведения в движение исполнительных механизмов рабочих машин и управления этим движением в целях осуществления технологического процесса. Современный электропривод … … Википедия

Частотно регулируемый привод (частотно управляемый привод, ЧУП, Variable Frequency Drive, VFD) система управления скоростью вращения асинхронного (синхронного) электродвигателя. Состоит из собственно электродвигателя и частотного преобразователя … Википедия

У этого термина существуют и другие значения, см. Преобразователь частоты. Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия

Для улучшения этой статьи желательно?: Проставить интервики в рамках проекта Интервики. Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное … Википедия

Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия

Описание:

Частотный преобразователь в комплекте с асинхронным электродвигателем позволяет заменить электропривод постоянного тока. Системы регулирования скорости двигателя постоянного тока достаточно просты, но слабым местом такого электропривода является электродвигатель. Он дорог и ненадежен. При работе происходит искрение щеток, под воздействием электроэрозии изнашивается коллектор.Такой электродвигатель не может использоваться в запыленной и взрывоопасной среде.

Асинхронные электродвигатели превосходят двигатели постоянного тока по многим параметрам: они просты по устройству и надежны, так как не имеют подвижных контактов. Они имеют меньшие по сравнению с двигателями постоянного тока размеры, массу и стоимость при той же мощности. Асинхронные двигатели просты в изготовлении и эксплуатации.

Основной недостаток асинхронных электродвигателей – сложность регулирования их скорости традиционными методами (изменением питающего напряжения, введением дополнительных сопротивлений в цепь обмоток).

Управление асинхронным электродвигателем в частотном режиме до недавнего времени было большой проблемой, хотя теория частотного регулирования была разработана еще в тридцатых годах. Развитие частотно-регулируемого электропривода сдерживалось высокой стоимостью преобразователей частоты. Появление силовых схем с IGBT-транзисторами, разработка высокопроизводительных микропроцессорных систем управления позволило различным фирмам Европы, США и Японии создать современные преобразователи частоты доступной стоимости.

Известно, что регулирование частоты вращения исполнительных механизмов можно осуществлять при помощи различных устройств: механических вариаторов, гидравлических муфт, дополнительно вводимыми в статор или ротор резисторами, электромеханическими преобразователями частоты, статическими преобразователями частоты.

Применение первых четырех устройств не обеспечивает высокого качества регулирования скорости, неэкономично, требует больших затрат при монтаже и эксплуатации.
Статические преобразователи частоты являются наиболее совершенными устройствами управления асинхронным приводом в настоящее время.

Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту f1 питающего напряжения, можно в соответствии с выражением

неизменном числе пар полюсов p изменять угловую скорость магнитного поля статора.

Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.

Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики.

Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.

Закон изменения напряжения зависит от характера момента нагрузки . При постоянном моменте нагрузки Mс=const напряжение на статоре должно регулироваться пропорционально частоте :

Для вентиляторного характера момента нагрузки это состояние имеет вид:

При моменте нагрузки, обратно пропорциональном скорости:

Таким образом, для плавного бесступенчатого регулирования частоты вращения вала асинхронного электродвигателя, преобразователь частоты должен обеспечивать одновременное регулирование частоты и напряжения на статоре асинхронного двигателя.

Преимущества использования регулируемого электропривода в технологических процессах

Применение регулируемого электропривода обеспечивает энергосбережение и позволяет получать новые качества систем и объектов. Значительная экономия электроэнергии обеспечивается за счет регулирования какого-либо технологического параметра. Если это транспортер или конвейер, то можно регулировать скорость его движения. Если это насос или вентилятор – можно поддерживать давление или регулировать производительность. Если это станок, то можно плавно регулировать скорость подачи или главного движения.

Особый экономический эффект от использования преобразователей частоты дает применение частотного регулирования на объектах, обеспечивающих транспортировку жидкостей. До сих пор самым распространённым способом регулирования производительности таких объектов является использование задвижек или регулирующих клапанов, но сегодня доступным становится частотное регулирование асинхронного двигателя, приводящего в движение, например, рабочее колесо насосного агрегата или вентилятора.


Перспективность частотного регулирования наглядно видна из рисунка 1

Таким образом, при дросселировании поток вещества, сдерживаемый задвижкой или клапаном, не совершает полезной работы. Применение регулируемого электропривода насоса или вентилятора позволяет задать необходимое давление или расход, что обеспечит не только экономию электроэнергии, но и снизит потери транспортируемого вещества.

Структура частотного преобразователя

Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.

Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.

Силовой трехфазный импульсный инвертор состоит из шести транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.

В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями.

Принцип работы преобразователя частоты

Преобразователь частоты состоит из неуправляемого диодного силового выпрямителя В, автономного инвертора, системы управления ШИМ, системы автоматического регулирования, дросселя Lв и конденсатора фильтра Cв (рис.2). Регулирование выходной частоты fвых. и напряжения Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления.

Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.

Длительность этих состояний внутри периода ШИМ модулируется по синусоидальному закону. При высоких (обычно 2…15 кГц) тактовых частотах ШИМ, в обмотках электродвигателя, вследствие их фильтрующих свойств, текут синусоидальные токи.


Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики. Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.

Структура частотного преобразователя

Большинство современных преобразователей частоты построено по схеме двойного преобразования. Входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в звене постоянного тока B, сглаживается фильтром состоящим из дросселя и конденсатора фильтра Cв, а затем вновь преобразуется инвертором АИН в переменное напряжение изменяемой частоты и амплитуды. Регулирование выходной частоты fвых . и напряжения Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления. Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.



Длительность подключения каждой обмотки в пределах периода следования импульсов модулируется по синусоидальному закону. Наибольшая ширина импульсов обеспечивается в середине полупериода, а к началу и концу полупериода уменьшается. Таким образом, система управления СУИ обеспечивает широтно-импульсную модуляцию (ШИМ) напряжения, прикладываемого к обмоткам двигателя.Амплитуда и частота напряженияопределяются параметрами модулирующей синусоидальной функции. Таким образом, на выходе преобразователя частоты формируется трехфазное переменное напряжение изменяемой частоты и амплитуды.

Мы всегда рады видеть у себя наших старых партнеров и ждем новых.


Доставка во все регионы России!