Организационная структура управления тэц и основные функции персонала

Принцип работы теплоэлектроцентрали (ТЭЦ) основан на уникальном свойстве водяного пара – быть теплоносителем. В разогретом состоянии, находясь под давлением, он превращается в мощный источник энергии, приводящий в движение турбины теплоэлектростанций (ТЭС) — наследие такой уже далекой эпохи пара.

Первая тепловая электростанция была построена в Нью-Йорке на Перл-Стрит (Манхэттен) в 1882 году. Родиной первой российской тепловой станции, спустя год, стал Санкт-Петербург. Как это ни странно, но даже в наш век высоких технологий ТЭС так и не нашлось полноценной замены: их доля в мировой энергетике составляет более 60 %.

И этому есть простое объяснение, в котором заключены достоинства и недостатки тепловой энергетики. Ее «кровь» — органическое топливо – уголь, мазут, горючие сланцы, торф и природный газ по-прежнему относительно доступны, а их запасы достаточно велики.

Большим минусом является то, что продукты сжигания топлива причиняют серьезный вред окружающей среде. Да и природная кладовая однажды окончательно истощится, и тысячи ТЭС превратятся в ржавеющие «памятники» нашей цивилизации.

Принцип работы

Для начала стоит определиться с терминами «ТЭЦ» и «ТЭС». Говоря понятным языком – они родные сестры. «Чистая» теплоэлектростанция – ТЭС рассчитана исключительно на производство электроэнергии. Ее другое название «конденсационная электростанция» – КЭС.


Теплоэлектроцентраль – ТЭЦ — разновидность ТЭС. Она, помимо генерации электроэнергии, осуществляет подачу горячей воды в центральную систему отопления и для бытовых нужд.

Схема работы ТЭЦ достаточно проста. В топку одновременно поступают топливо и разогретый воздух — окислитель. Наиболее распространенное топливо на российских ТЭЦ – измельченный уголь. Тепло от сгорания угольной пыли превращает воду, поступающую в котел в пар, который затем под давлением подается на паровую турбину. Мощный поток пара заставляет ее вращаться, приводя в движение ротор генератора, который преобразует механическую энергию в электрическую.

Далее пар, уже значительно утративший свои первоначальные показатели – температуру и давление – попадает в конденсатор, где после холодного «водяного душа» он опять становится водой. Затем конденсатный насос перекачивает ее в регенеративные нагреватели и далее — в деаэратор. Там вода освобождается от газов – кислорода и СО 2 , которые могут вызвать коррозию. После этого вода вновь подогревается от пара и подается обратно в котел.

Теплоснабжение

Вторая, не менее важная функция ТЭЦ – обеспечение горячей водой (паром), предназначенной для систем центрального отопления близлежащих населенных пунктов и бытового использования. В специальных подогревателях холодная вода нагревается до 70 градусов летом и 120 градусов зимой, после чего сетевыми насосами подается в общую камеру смешивания и далее по системе тепломагистралей поступает к потребителям. Запасы воды на ТЭЦ постоянно пополняются.

Как работают ТЭС на газе

По сравнению с угольными ТЭЦ, ТЭС, где установлены газотурбинные установки, намного более компактны и экологичны. Достаточно сказать, что такой станции не нужен паровой котел. Газотурбинная установка – это по сути тот же турбореактивный авиадвигатель, где, в отличие от него, реактивная струя не выбрасывается в атмосферу, а вращает ротор генератора. При этом выбросы продуктов сгорания минимальны.

Новые технологии сжигания угля

КПД современных ТЭЦ ограничен 34 %. Абсолютное большинство тепловых электростанций до сих пор работают на угле, что объясняется весьма просто — запасы угля на Земле по-прежнему громадны, поэтому доля ТЭС в общем объеме выработанной электроэнергии составляет около 25 %.

Процесс сжигания угля многие десятилетия остается практически неизменным. Однако и сюда пришли новые технологии.


Особенность данного метода состоит в том, что вместо воздуха в качестве окислителя при сжигании угольной пыли используется выделенный из воздуха чистый кислород. В результате, из дымовых газов удаляется вредная примесь – NОx. Остальные вредные примеси отфильтровываются в процессе нескольких ступеней очистки. Оставшийся на выходе СО 2 закачивается в емкости под большим давлением и подлежит захоронению на глубине до 1 км.

Метод «oxyfuel capture»

Здесь также при сжигании угля в качестве окислителя используется чистый кислород. Только в отличие от предыдущего метода в момент сгорания образуется пар, приводящий турбину во вращение. Затем из дымовых газов удаляются зола и оксиды серы, производится охлаждение и конденсация. Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.

Метод «pre-combustion»

Уголь сжигается в «обычном» режиме – в котле в смеси с воздухом. После этого удаляется зола и SO 2 – оксид серы. Далее происходит удаление СО 2 с помощью специального жидкого абсорбента, после чего он утилизируется путем захоронения.

Пятерка самых мощных теплоэлектростанций мира

Первенство принадлежит китайской ТЭС Tuoketuo мощностью 6600 МВт (5 эн/бл. х 1200 МВт), занимающей площадь 2,5 кв. км. За ней следует ее «соотечественница» — Тайчжунская ТЭС мощностью 5824 МВт. Тройку лидеров замыкает крупнейшая в России Сургутская ГРЭС-2 – 5597,1 МВт. На четвертом месте польская Белхатувская ТЭС – 5354 МВт, и пятая – Futtsu CCGT Power Plant (Япония) – газовая ТЭС мощностью 5040 МВт.



При использовании в качестве греющей рабочей среды горячей воды ее берут из бойлерных установок, а из пластинчатого аппарата возвращают на повторный подогрев.  

Пар из регенеративных отборов турбины может быть подан также на - испарительную и бойлерную установки, на калориферы перед воздухоподогревателем котельного агрегата и на другие нужды.  

Внешний вид насоса типа Д.| Характеристики насоса Д-320-70.  

Конденсатные насосы применяются для удаления конденсата, а также как горячие, дренажные насосы бойлерных установок. Они предназначены для перекачивания конденсата и дренажа при температуре до 393 К.  

Характеристика насоса типа бНДс.| Внешний вид и схема включения колес четырехступенчатого насоса марки ЗВ-200Х4.  

Конденсатные насосы применяются для удаления конденсата, а также как горячие, дренажные насосы бойлерных установок. Они предназначены для перекачивания конденсата с температурой до 50 С и дренажа при температуре до 120 С.  

В течение одиннадцатой пятилетки предусмотрено полностью перевести жилые поселки всех действующих АЭС на теплоснабжение от бойлерных установок электростанций и прекратить расходование органического топлива для этих целей. Кроме того, в тех случаях, когда имеются достаточно концентрированные тепловые нагрузки на (приемлемом расстоянии, предусматривается полное или частичное (в пределах возможностей АЭС) снабжение этих потребителей тепловой энергией от АЭС. В частности, намечается подача тепловой энергии от Ростовской АЭС в г. Волгодонск и на завод Атоммаш, а также от Балаковской АЭС в г. Балаково и предприятия, в нем расположенные.  

В целях максимальной экономии конденсата отопление вновь вводимых в эксплуатацию цехов рекомендуется организовывать водяным от их центральной бойлерной установки, находящейся непосредственно в котельной.  

При обогреве цеховых и межцеховых технологических трубопроводов протяженностью до 500 м горячей водой от ТЭЦ или от специальных бойлерных установок диаметры обогревающих спутников могут приниматься в зависимости от условного диаметра обогреваемого трубопровода. При паровом обогреве трубопроводов протяженностью до 250 м диаметры обогревающих спутников и их число принимают по специальным нормам. Обогревающие спутники трубопроводов большой протяженности должны разбиваться на участки с отдельным подводом и отводом греющей среды.  

Группа теплосилового оборудования осуществляет технический надзор за соблюдением службами отдела и цехами завода правил технической эксплуатации котельных, бойлерных установок, водонасосных и компрессорных установок, азотно-кислородных, ацетиленовых, газогенераторных станций, сосудов, работающих под давлением, промышленных печей, работающих на жидком, газообразном и твердом топливе, и мазутохранилищ. Участвует в составлении планов ППР, ведет проектирование новых установок и модернизацию существующего теплосилового оборудования, организует обследование и наладку оборудования с целью увеличения их производительности.  

При обогреве цеховых и межцеховых технологических трубопроводов протяженностью до 500 м - горячей водой от ТЭЦ или от специальных бойлерных установок диаметры обогревающих спутников могут приниматься в зависимости от условного диаметра обогреваемого трубопровода. При паровом обогреве трубопроводов протяженностью до 250 м диаметры обогревающих спутников и их число принимают по специальным нормам. Обогревающие спутники трубопроводов большой протяженности должны разбиваться на участки с отдельным подводом и отводом греющей среды.  

Тупиковая система подачи воды с предварительным прогревом варочной камеры экономически более выгодна, так как циркуляционная система требует увеличения мощности бойлерной установки в соответствии с кратностью циркуляции и дает более повышенный расход пара. Тупиковая система подачи перегретой воды намного проще и дешевле циркуляционной, потери перегретой воды будут примерно в 2 раза меньше, чем при циркуляционной.  

Монтаж внутреннего санитарно-технического оборудования гражданских и промышленных зданий, как и монтаж громоздкого и тяжелого оборудования (например, котельных агрегатов, бойлерных установок и др.), целесообразно выполнять одновременно с процессами возведения основных конструкций здания. Совмещенный метод монтажа санитарно-технического оборудования является прогрессивным, так как обеспечивает сокращение общего срока строительства, открывает возможность полнее использовать грузоподъемное оборудование, имеющееся на строительной площадке.  

При отпуске тепла для отопления и вентиляции потеря конденсата вне станции может быть сведена к нулю применением типовой схемы водяного отопления и бойлерной установки (гл. Отпуск технологического пара сопровождается обычно значительной потерей конденсата вне станции. При этом конденсат иногда теряется для станции полностью.  

К атегория: Водяное отопление

Бойлерные

Бойлерами называют теплообменные аппараты, в которых происходит нагрев воды другим теплоносителем- водой с более высокой температурой по сравнению с нагреваемой или паром. В соответствии с этим бойлеры подразделяются на водоводяные и пароводяные. В зависимости от конструкции пароводяные бойлеры в свою очередь подразделяются на емкие и скоростные.

Бойлерные установки применяют для нагрева воды в системах горячего водоснабжения до температуры +65 °С и нагрева воды, циркулирующей в системах водяного отопления, до температуры +95 °С.

Емкие бойлеры применяются в небольших системах горячего водоснабжения с неравномерным потреблением горячей воды. Скоростные бойлеры могут применяться во всех остальных случаях, в том числе в периоды «пик», и тогда при неравномерном водопотреблении в схему включают баки-аккумуляторы, накапливающие горячую воду при малом водопотреблении и отдающие воду при потреблении, превосходящем расчетную производительность бойлерной установки. Схемы, при которых применяются бойлерные установки, приведены в соответствующих разделах книги.

Емкие бойлеры имеют малое гидравлическое сопротивление по ходу нагреваемой воды, поэтому они могут работать под давлением городского водопровода, подключаемого к нижней части корпуса. В скоростных бойлерах, имеющих значительное гидравлическое сопротивление, движение нагреваемой воды осуществляется за счет работы центробежных насосов.

В зависимости от потребной теплопроизводительно-сти обычно устанавливают несколько бойлеров, работающих параллельно на общую сеть. В мелких неответственных системах горячего водоснабжения допускается установка одного бойлера. В системах центрального отопления устанавливают три бойлера: два рабочих и один - резервный.

Все бойлеры обеспечиваются запорными устройствами, позволяющими отключать их как по греющему, так и по нагреваемому теплоносителю. Для предохранения от разрушения давлением воды или пара бойлеры снабжают предохранительными клапанами, устанавливаемыми непосредственно на его корпусе или на трубопроводе нагреваемой воды между корпусом и задвижкой. Контроль за действием бойлеров осуществляется при помощи термометров и манометров, устанавливаемых на них.

В скоростных пароводяных бойлерах пар подается сверху в межтрубное пространство, а конденсат отводится через нижний штуцер. В емких бойлерах пар подводится в верхний штуцер змеевика, а конденсат отводится через нижний штуцер. У каждого бфйлера устанавливают конденсатоотводчик, обеспечивающий полную конденсацию пара в бойлере. В тех случаях, когда конденсат самотеком стекает в котел, коденсатоотводчик не устанавливают.

Конденсат после отводчиков обычно поступает в общий конденсатопровод, прокладываемый с уклоном к конденсационному баку, куда он и стекает самотеком. Однако возможна работа конденсатоотводчиков и с противодавлением. В этом случае конденсатоотводчик подбирают в зависимости от величины противодавления, т. е. высоты столба воды, на которую она должна подниматься после него. Обычно эта высота не должна превышать 40% величины давления в трубопроводе перед прибором, у которого установлен конденсато-отводчик. Эту величину выражают в метрах водяного столба.

Рис. 1. Установка водоводяного бойлера: а - на стойке; 6 - на стеие

После конденсатоотводчика, работающего с противодавлением, устанавливают обратный клапан, обеспечивающий невозможность выхода конденсата из конден-сатопровода через конденсатоотводчик даже в случае понижения давления в нем.

В водоводяных бойлерах греющая вода при установке их в системах отопления проходит по трубам, а в системах горячего водоснабжения - в межтрубном пространстве.

Общие трубопроводы для группы бойлеров прокладывают по тем же правилам, что и для котельных установок, т. е. также принимают меры по удалению воздуха путем* соблюдения уклонов паропроводов и кон-денсатопроводов, спуска воды и заполнения системы, установки грязевиков, изоляции и т. д.

Бойлеры могут устанавливаться на подставках и различного рода кронштейнах (рис. 1). Между ними должен оставаться зазор, необходимый для монтажа и производства изоляционных работ. При групповой установке бойлеров их размещают попарно, обеспечивая проход не менее 700 мм между каждой парой для работы обслуживающего персонала. Перед каждым бойлером должно быть свободное расстояние, позволяющее при ремонте вынимать из его корпуса змеевик или трубки без снятия бойлера с места.



- Бойлерные

Эффективная работа теплового оборудования ТЭЦ невозможна без эксплуатации производственной (сетевой и подпиточной) воды нормативного качества. Несоблюдение отраслевых стандартов приводит к:

  • повышенному расходу энергоресурсов;
  • учащению профилактических работ по очистке теплопроводов и теплообменников от нерастворимых образований;
  • ускоренному износу оборудования, внеплановым ремонтам и даже серьезным авариям.

Нормативы подготовки воды для ТЭЦ

Работа водоподготавливающего оборудования теплогенерирующих предприятий (ТЭС, ГРЭС, ТЭЦ и т.п.) регламентируется РД 24.031.120-91, ГОСТ 20995-75, методы контроля качества производственной воды тепловых станций – ОСТ 34-70-953.23-92, ОСТ 34-70-953.13-90, а также прочей техдокументацией и техусловиями.

Ключевые задачи водоподготовки для ТЭЦ:

  • снижение рисков образования наростов на пути теплоносителя, вызванных накоплением взвешенных частиц, солевыми отложениями, биологическими образованиями;
  • препятствование коррозии металлических элементов системы;
  • получение водного и парового теплоносителя высокого качества;
  • повышение КПД тепловых машин и транспортных коммуникаций, как следствие, минимизация эксплуатационных расходов.

Этапы водоподготовки для ТЭЦ

Установки, включенные в схему водоподготовки ТЭЦ, должны обеспечивать, определенные требованиями РД 24.031.120-91 уровни:

Доведение параметров производственной воды до требуемых уровней возлагается на комплекс водоподготовки, включающий следующие основные этапы:

1. Отделение крупных механических и коллоидных взвесей.

На этом этапе водоподготовки для ТЭЦ осуществляется извлечение из подпиточной жидкости нерастворенных частиц, всегда присутствующих в ней в виде мелкого и пылеватого песка, иловых, органических, а также прочих мелкодисперсных составляющих. Механические взвеси усиливают абразивную нагрузку на оборудование ТЭЦ, способствуют увеличению гидравлического сопротивления в трубопроводах за счет формирования твердых отложений на их внутренних стенках.

Рабочим телом традиционных фильтров для улавливания нерастворимых частиц являются насыпные материалы (гравий, песок). Для ультратонкой очистки может использовать более современный вариант фильтрации на основе волоконных мембран.

2. Осаждение осадкообразующих химических соединений.

Методы этого этапа направлены на выделение из раствора ионов элементов, которые при нагреве образуют нерастворимые соединения, накапливающиеся в системе, так же как и механические взвеси. В основном подобная проблема возникает с солями магния, кальция, а также солями и окислами железа.

Задача системы водоподготовки ТЭЦ по обессоливанию питательной воды решается реагентными, обратноосмотическими, ионообменными, магнитными и прочими технологиями промышленного масштаба. В каталоге компании «ВВТ Рус» представлен обширный ассортимент средств немецкого производства для решения этих задач.

3. Связывание коррозионных химических соединений.

Агрессивные химические вещества, присутствующие в водных растворах, представляют не меньшую опасность, чем инертные солевые отложения. К числу таких веществ, в первую очередь, относятся растворенные газы – кислород и углекислота. Они способствуют интенсивной коррозии металлов, причем интенсивность процесса с повышением температуры теплоносителя нарастает лавинообразно. Проблема решается методами дегазации, ионного обмена, введением в теплоноситель профильных реагентов.

Компания ВВТ РУС реализует реагентные составы для химводоподготовки для ТЭЦ в полном соответствии с действующими нормативами. Препараты способны одновременно решать задачи второго и третьего этапов нормализации качества воды для любого оборудования теплоэнергетики. Подобный подход позволяет значительно упростить построение всей схемы водоподготовки, а также обеспечить потребителю экономию средств.

Более подробную информацию о продукции можно получить у наших сотрудников.

1 – электрический генератор; 2 – паровая турбина; 3 – пульт управления; 4 – деаэратор; 5 и 6 – бункеры; 7 – сепаратор; 8 – циклон; 9 – котел; 10 – поверхность нагрева (теплообменник); 11 – дымовая труба; 12 – дробильное помещение; 13 – склад резервного топлива; 14 – вагон; 15 – разгрузочное устройство; 16 – конвейер; 17 – дымосос; 18 – канал; 19 – золоуловитель; 20 – вентилятор; 21 – топка; 22 – мельница; 23 – насосная станция; 24 – источник воды; 25 – циркуляционный насос; 26 – регенеративный подогреватель высокого давления; 27 – питательный насос; 28 – конденсатор; 29 – установка химической очистки воды; 30 – повышающий трансформатор; 31 – регенеративный подогреватель низкого давления; 32 – конденсатный насос.

На схеме, представленной ниже, отображен состав основного оборудования тепловой электрической станции и взаимосвязь ее систем. По этой схеме можно проследить общую последовательность технологических процессов протекающих на ТЭС.

Обозначения на схеме ТЭС:

  1. Топливное хозяйство;
  2. подготовка топлива;
  3. промежуточный пароперегреватель;
  4. часть высокого давления (ЧВД или ЦВД);
  5. часть низкого давления (ЧНД или ЦНД);
  6. электрический генератор;
  7. трансформатор собственных нужд;
  8. трансформатор связи;
  9. главное распределительное устройство;
  10. конденсатный насос;
  11. циркуляционный насос;
  12. источник водоснабжения (например, река);
  13. (ПНД);
  14. водоподготовительная установка (ВПУ);
  15. потребитель тепловой энергии;
  16. насос обратного конденсата;
  17. деаэратор;
  18. питательный насос;
  19. (ПВД);
  20. шлакозолоудаление;
  21. золоотвал;
  22. дымосос (ДС);
  23. дымовая труба;
  24. дутьевой вентилятов (ДВ);
  25. золоуловитель.

Описание технологической схемы ТЭС:

Обобщая все вышеописанное, получаем состав тепловой электростанции:

  • топливное хозяйство и система подготовки топлива;
  • котельная установка: совокупность самого котла и вспомогательного оборудования;
  • турбинная установка: паровая турбина и ее вспомогательное оборудование;
  • установка водоподготовки и конденсатоочистки;
  • система технического водоснабжения;
  • система золошлокоудаления (для ТЭС, работающих, на твердом топливе);
  • электротехническое оборудование и система управления электрооборудованием.

Топливное хозяйство в зависимости от вида используемого на станции топлива включает приемно-разгрузочное устройство, транспортные механизмы, топливные склады твердого и жидкого топлива, устройства для предвари-тельной подготовки топлива (дробильные установки для угля). В состав ма-зутного хозяйства входят также насосы для перекачки мазута, подогреватели мазута, фильтры.

Подготовка твердого топлива к сжиганию состоит из размола и сушки его в пылеприготовительной установке, а подготовка мазута заключается в его подогреве, очистке от механических примесей, иногда в обработке спецприсадками. С газовым топливом все проще. Подготовка газового топлива сводится в основном к регулированию давления газа перед горелками котла.

Необходимый для горения топлива воздух подается в топочное пространство котла дутьевыми вентиляторами (ДВ). Продукты сгорания топлива — дымовые газы — отсасываются дымососами (ДС) и отводятся через дымовые трубы в атмосферу. Совокупность каналов (воздуховодов и газоходов) и различных элементов оборудования, по которым проходит воздух и дымовые газы, образует газовоздушный тракт тепловой электростанции (теплоцентрали). Входящие в его состав дымососы, дымовая труба и дутьевые вентиляторы составляют тягодутьевую установку. В зоне горения топлива входящие в его состав негорючие (минеральные) примеси претерпевают химико-физические превращения и удаляются из котла частично в виде шлака, а значительная их часть выносится дымовыми газами в виде мелких частиц золы. Для защиты атмосферного воздуха от выбросов золы перед дымососами (для предотвращения их золового износа) устанавливают золоуловители.

Шлак и уловленная зола удаляются обычно гидравлическим способом на золоотвалы.

При сжигании мазута и газа золоуловители не устанавливаются.

При сжигании топлива химически связанная энергия превращается в тепловую. В результате образуются продукты сгорания, которые в поверхностях нагрева котла отдают теплоту воде и образующемуся из нее пару.

Совокупность оборудования, отдельных его элементов, трубопроводов, по которым движутся вода и пар, образуют пароводяной тракт станции.

В котле вода нагревается до температуры насыщения, испаряется, а образующийся из кипящей котловой воды насыщенный пар перегревается. Из котла перегретый пар направляется по трубопроводам в турбину, где его тепловая энергия превращается в механическую, передаваемую на вал турбины. Отработавший в турбине пар поступает в конденсатор, отдает теплоту охлаждающей воде и конденсируется.

На современных ТЭС и ТЭЦ с агрегатами единичной мощностью 200 МВт и выше применяют промежуточный перегрев пара. В этом случае турбина имеет две части: часть высокого и часть низкого давления. Отработавший в части высокого давления турбины пар направляется в промежуточный перегреватель, где к нему дополнительно подводится теплота. Далее пар возвращается в турбину (в часть низкого давления) и из нее поступает в конденсатор. Промежуточный перегрев пара увеличивает КПД турбинной установки и повышает надежность ее работы.

Из конденсатора конденсат откачивается конденсационным насосом и, пройдя через подогреватели низкого давления (ПНД), поступает в деаэратор. Здесь он нагревается паром до температуры насыщения, при этом из него выделяются и удаляются в атмосферу кислород и углекислота для предотвращения коррозии оборудования. Деаэрированная вода, называемая питательной, насосом подается через подогреватели высокого давления (ПВД) в котел.

Конденсат в ПНД и деаэраторе, а также питательная вода в ПВД подогреваются паром, отбираемым из турбины. Такой способ подогрева означает возврат (регенерацию) теплоты в цикл и называется регенеративным подогревом. Благодаря ему уменьшается поступление пара в конденсатор, а следовательно, и количество теплоты, передаваемой охлаждающей воде, что приводит к повышению КПД паротурбинной установки.

Совокупность элементов, обеспечивающих конденсаторы охлаждающей водой, называется системой технического водоснабжения. К ней относятся: источник водоснабжения (река, водохранилище, башенный охладитель — градирня), циркуляционный насос, подводящие и отводящие водоводы. В конденсаторе охлаждаемой воде передается примерно 55% теплоты пара, поступающего в турбину; эта часть теплоты не используется для выработки электроэнергии и бесполезно пропадает.

Эти потери значительно уменьшаются, если отбирать из турбины частично отработавший пар и его теплоту использовать для технологических нужд промышленных предприятий или подогрева воды на отопление и горячее водоснабжение. Таким образом, станция становится теплоэлектроцентралью (ТЭЦ), обеспечивающей комбинированную выработку электрической и тепловой энергии. На ТЭЦ устанавливаются специальные турбины с отбором пара — так называемые теплофикационные. Конденсат пара, отданного тепловому потребителю, возвращается на ТЭЦ насосом обратного конденсата.

На ТЭС существуют внутренние потери пара и конденсата, обусловленные неполной герметичностью пароводяного тракта, а также невозвратным расходом пара и конденсата на технические нужды станции. Они составляют приблизительно 1 — 1,5% от общего расхода пара на турбины.

На ТЭЦ могут быть и внешние потери пара и конденсата, связанные с отпуском теплоты промышленным потребителям. В среднем они составляют 35 — 50%. Внутренние и внешние потери пара и конденсата восполняются предварительно обработанной в водоподготавливающей установке добавочной водой.

Таким образом, питательная вода котлов представляет собой смесь турбинного конденсата и добавочной воды.

Электротехническое хозяйство станции включает электрический генератор, трансформатор связи, главное распределительное устройство, систему электроснабжения собственных механизмов электростанции через трансформатор собственных нужд.

Система управления осуществляет сбор и обработку информации о ходе технологического процесса и состоянии оборудования, автоматическое и дистанционное управление механизмами и регулирование основных процессов, автоматическую защиту оборудования.