Определение потерь тепла в тепловых сетях. Простой расчет теплопотерь зданий

Расчет системы отполения, горячего водоснабжения и вентиляции

Пояснительная записка к курсовой работе по дисциплине

«Отопление, вентиляция и кондиционирование»

Выполнил:

студент группы 31 Е

Захарец А. В.

Руководитель

ст. преподаватель кафедры Т

Кокшаров М.В.

В соответствии вариантом необходимо:

1)Произвести расчёт тепловых потерь здания.

3)Произвести расчёт системы горячего водоснабжения.

4)Начертить изометрическую схему системы горячего водоснабжения, указать диаметры трубопроводов

5)Произвести расчёт системы вентиляции, определить количество тепла на нагрев вентилируемого воздуха.


УДК 621.313.333

Курсовая работа содержит 28 страниц, 7 рисунков, 4 таблиц, 5 источников, 2 приложения.

Тепловые потери, ограждающие конструкции, система отопления, радиатор, теплоноситель, инфильтрация, ГВС, стояк, лежак, трубопровод, вентиляция.

Объектом исследования является двухэтажное жилое здание.

Цель работы – освоение и закрепление методов расчета тепловых потерь здания, систем отопления, ГВС, вентиляции.

Методы исследования – расчётные и графические.

Курсовая работа выполнена в текстовом редакторе Microsoft Word 2007


Введение. 5

1 Исходные данные. 6

2 Расчёт тепловых потерь здания. 7

2.1 Заполнение таблицы.. 7

2.2 Расчет диаметров трубопроводов системы отопления. 20

3 Расчет системы ГВС.. 23

3.1 Определение расчетных расходов воды в системах ГВС.. 23

3.2 Определение диаметров трубопровода системы ГВС.. 23

4 Расчет системы вентиляции. 26

4.1 Расход приточного воздуха. 26

4.2 Определение расхода тепла на нагрев вентилируемого воздуха. 26

Заключение. 28

Библиографический список. 29

Приложение А

Приложение Б


Введение

Расчет теплопотерь является важнейшим этапом проектирования систем отопления, ГВС и вентиляции.



Для определения тепловой мощности, покрывающей максимальную нагрузку на систему отопления, необходимо знать теплопотери здания в самую суровую расчетную часть холодного периода года. Для решения вопроса о соответствии уровня теплопотребления системой отопления здания современным требованиям, особенно учитывая проблему энергосбережения, необходимо определить теплопотери здания за весь отопительный период.

Существуют различные подходы к выбору расчетных значений коэффициентов теплопроводности строительных материалов. При этом тщательность в выборе значения данного коэффициента крайне важна. Необходимо также правильно оценивать значения коэффициентов теплообмена на поверхностях ограждений, особенно коэффициента теплоотдачи на внутренней поверхности, т.к. при завышенном его значении будет завышена и расчетная температура на внутренней поверхности, например, окна. При определении теплопотерь здания важна правильная оценка коэффициентов теплопередачи ограждающих конструкций.

В работе представлены расчеты теплопотерь здания и потребности в теплоте на нагревание инфильтрационного воздуха, рассчитаны и спроектированы системы отопления, ГВС и вентиляции.

Целью данной работы является получение знаний, навыков расчета и проектирования систем отопления, ГВС и вентиляции.

Исходные данные

Рисунок 1.1 – План первого(второго) этажа здания

Таблица 1.1 – Исходные данные


Расчёт тепловых потерь здания

При тщательном подходе к устройству системы отопления дома необходимо начать с расчета теплопотерь здания. Потери тепла в доме происходят через стены, окна, входные двери, крышу и пол первого этажа. Тепло также уходит вместе с воздухом при инфильтрации через щели в конструкциях, окна и двери.

Для удобства расчёта и представления информации итогом второго раздела данной курсовой работы будет заполненная таблица. Для каждого помещения будет определено или посчитано 25 параметров. Расчёт производится в соответствии со СНиП 23-02-2003 «Тепловая защита зданий».

Заполнение таблицы

2.1.1 Наименование помещения

В данном столбце указывается номер помещения по плану здания. Обычно нумерация помещений начинается от входа и идёт по часовой стрелке. Первая цифра – номер этажа, остальные – номер помещения.

Рисунок 2.1 – План первого этажа задания

Рисунок 2.2 – План второго этажа задания.

2.1.2 Температура наружного воздуха.

В данном столбце в соответствии со СНиП 23-01-99 "Строительная климатология" указывается температура воздуха наиболее холодной пяти- дневки обеспеченностью 0,92 t н, °С для нужного города или региона.

Для Санкт-Петербурга t н = -26 °С

2.1.3 Расчётная температура воздуха внутри помещения

В данном столбце в соответствии с ГОСТ30494-2011 "Здания жилые и общественные" указывается оптимальная температура воздуха внутри помещения t в, °С в зависимости от его типа. Так, для жилых комнат

t в = 18 – 20 °С, для ванных комнат t в = 24 – 26 °С, для кухонь t в = 19 – 21 °С.

В расчётах для ванных комнат примем t в = 25 °С, для всех остальных помещений t в = 20 °С

2.1.4 Наименование поверхности.

Для обозначения ограждающих конструкций вводятся следующие сокращения:

НС – наружная стена

ДО – окно

ДН – дверь наружная

2.1.5 Ориентация поверхности

Указывается ориентация вертикальных ограждающих конструкций по сторонам света:

В - восток

2.1.6 Длина поверхности

Указывается длина или в случае вертикальной поверхности высота ограждающей конструкции в метрах.

2.1.7 Ширина поверхности

Указывается ширина поверхности в метрах.

2.1.8 Площадь поверхности

Площадь поверхности определяется как произведение длины(высоты) и ширины поверхности по формуле:

, (2.1)

a – длина(высота), м

b – ширина, м

При подсчете теплопотерь площадь отдельных ограждений A, м2, определяется с соблюдением следующих правил обмера:

1. Площадь окон, дверей и фонарей измеряют по наименьшему строительному проему.

2. Площадь потолка и пола измеряют между осями внутренних стен и внутренней поверхностью наружной стены. Площадь стен и пола, расположенных на грунте, в том числе на лагах, определяют с условной разбивкой их по зонам.

3. Площадь наружных стен измеряют

В плане - по наружному периметру между осями внутренних стен и наружным углом стены;

По высоте - на всех этажах, кроме нижнего: от уровня чистого пола до пола следующего этажа. На последнем этаже верх наружной стены совпадает с верхом покрытия или чердачного перекрытия. На нижнем этаже в зависимости от конструкции пола: а) от внутренней поверхности пола по грунту; б) от поверхности подготовки под конструкцию пола на лагах; в) от нижней грани перекрытия над неотапливаемым подпольем или подвалом.

4. При определении теплопотерь через внутренние стены их площади обмеряют по внутреннему периметру. Потери теплоты через внутренние ограждения помещений можно не учитывать, если разность температур воздуха в этих помещениях составляет 3°С и менее.

Передача теплоты из помещения через конструкцию пола или стены и толщу грунта, с которыми они соприкасаются, подчиняется сложным закономерностям. Для расчета сопротивления теплопередаче конструкций, расположенных на грунте, применяют упрощенную методику. Поверхность пола по грунту делится на полосы шириной 2 м, параллельные стыку наружной стены и поверхности земли. Отсчет зон начинается по стене от уровня земли, а если стен по грунту нет, то зоной I является полоса пола, ближайшая к наружной стене. Следующие две полосы будут иметь номера II и III, а остальная часть пола составит зону IV. (см рисунок 2.3)

Таким образом, общая площадь пола разбивается на зоны и площадь заносится в столбец для каждой зоны пола, причём для первой зоны площадь в углах здания считается дважды.

Рисунок 2.3 – Принцип разбиение пола здания на зоны

Рисунок 2.4 – Разбиение пола 1 этажа на зоны

2.1.9 Расчётная разность температур

,ºС определяется как разность температур внутреннего воздуха в помещении и температуры наружного воздуха наиболее холодной пятидневки по формуле:

(2.2)

2.1.10 Коэффициент n

Выбираем коэффициент n, учитывающий положение ограждающей конструкции по отношению к наружному воздуху:

n = 1. Наружные стены и покрытия (в том числе вентилируемые наружным воздухом), перекрытия чердачные (с кровлей из штучных материалов) и над проездами; перекрытия над холодными (без ограждающих стенок) подпольями в Северной строительно-климатической зоне.

n = 0,9. Перекрытия над холодными подвалами, сообщающимися с наружным воздухом; перекрытия чердачные (с кровлей из рулонных материалов); перекрытия над холодными (с ограждающими стенками) подпольями и холодными этажами в Северной строительно-климатической зоне.

n = 0,75. Перекрытия над неотапливаемыми подвалами со световыми проемами в стенах.

n = 0,6. Перекрытия над неотапливаемыми подвалами без световых проемов в стенах, расположенные выше уровня земли.

n = 0,4. Перекрытия над неотапливаемыми техническими подпольями, расположенными ниже уровня земли

2.1.11 Коэффициент теплопередачи ограждающей конструкции

Коэффициент теплопередачи ограждающей конструкции k, Вт/(м 2 ∙ °С) - величина, численно равная поверхностной плотности теплового потока, проходящего через ограждающую конструкцию при разности внутренней и наружной температур воздуха рассчитывается по формуле:

где R i - нормативное значение сопротивления теплопередаче i-ой зоны пола.

Для каждой зоны неутепленного пола предусмотрены нормативные значения сопротивления теплопередаче:

зона I - R I = 2,1 м 2 ·°С/Вт;

зона II - R II = 4,3 м 2 ·°С/Вт;

зона III - R III = 8,6 м 2 ·°С/Вт;

зона IV - R IV = 14,2 м 2 ·°С/Вт.

2.1.12 Основные теплопотери

Формула расчёта основных теплопотерь Q осн, Вт помещения через ограждающие конструкции:

(2.5)

где k – коэффициент теплопередачи ограждающей конструкции, Вт/(м 2 ∙ °С);

А – площадь поверхности, м 2

2.1.13 Коэффициент дополнительных потерь β 1

Добавка на ориентацию ограждения по сторонам света принимается для всех наружных вертикальных ограждений или проекций на вертикаль наружных наклонных ограждений:

· для северной, северо-восточной, северо-западной, восточной ориентации ß 1 = 0,1;

· юго-восточной и западной ß 1 = 0,05;

· южной и юго-западной ß 1 = 0.

Рисунок 2.5 – Значение коэффициента ß 1

2.1.14 Коэффициент дополнительных потерь β 2

Добавка на угловое помещение, имеющее две и более наружных стен, учитывает, что в таком помещении радиационная температура ниже, чем в рядовом. Поэтому в угловом помещении жилого дома температуру внутреннего воздуха принимают на 2°С выше, чем в рядовом помещении, а в зданиях другого назначения увеличенные теплопотери учитывают добавкой ß 2 = 0,05 к основным теплопотерям вертикальных наружных ограждений.

2.1.15 Коэффициент дополнительных потерь β 3

Добавка на врывание холодного воздуха через наружные двери в здание, не оборудованное воздушно-тепловой завесой, при их кратковременном открывании принимается к основным теплопотерям дверей. Так, в здании высотой Н для тройных дверей с двумя тамбурами , для двойных дверей с тамбуром , для двойных дверей без тамбура , для одинарных дверей . Для наружных ворот при отсутствии тамбура и воздушно-тепловой завесы теплопотери рассчитываются с добавкой , а при наличии тамбура у ворот - с добавкой . Указанные добавки не относятся к летним и запасным наружным дверям и воротам.

2.1.16 Суммарный коэффициент дополнительных потерь

Суммарный коэффициент дополнительных потерь определяется по формуле:

(2.6)

2.1.17 Теплопотери с учетом дополнительных потерь Q β

Для нахождения теплопотерь с учетом дополнительных потерь необходимо перемножить значения двенадцатого и шестнадцатого столбцов, т.е. учитывается влияние добавочных коэффициентов на основные теплопотери.

2.1.18 Нормируемая воздухопроницаемость

Нормируемая воздухопроницаемость G н - это максимальная разрешенная воздухопроницаемость конструкции при любых погодных условиях, принимаемая в соответствии со СНиП 23-02-2003, значения которой приведены в табл. 2.1

Таблица 2.1 – Занчения G н

Ограждение Воздухопроницаемость G н, кг/(м 2 ·ч)
1. Наружная стена, перекрытие и покрытие жилого, общественного, административного и бытового здания или помещения 0,5
2. Наружная стена, перекрытие и покрытие производственного здания или помещения 1,0
3. Стык между панелями наружных стен здания: жилого производственного 0,5* 1,0*
4. Входная дверь в квартиру 1,5
5. Входная дверь в жилое, общественное, бытовое здание 7,0
6. Окно и балконная дверь жилого, общественного, бытового здания или помещения в деревянном переплете; окно, фонарь производственного здания с кондиционированием воздуха 6,0
7. Окно и балконная дверь жилого, общественного, бытового здания или помещения в пластмассовом или алюминиевом переплете 5,0
8. Окно, дверь, ворота производственного здания 8,0
9. Фонарь производственного здания 10,0

2.1.19 Разность давлений воздуха

Расход наружного воздуха, поступающего в помещения в результате инфильтрации в расчетных условиях, зависит от объемно-планировочного решения здания, а также плотности окон, балконных дверей, витражей. Задача инженерного расчета сводится к определению расхода инфильтрационного воздуха G инф, кг/ч, через отдельные ограждения каждого помещения. Инфильтрация через стены и покрытия невелика, поэтому ею обычно пренебрегают и рассчитывают только через заполнение световых проемов, а также через закрытые двери и ворота, в том числе и те, которые при обычном эксплуатационном режиме не открываются. Затраты теплоты на врывание воздуха через открывающиеся двери и ворота в расчетном режиме учитываются добавками к основным теплопотерям через входные двери и ворота.

Расчет выявляет максимально возможную инфильтрацию, поэтому считается, что каждое окно или дверь находится на наветренной стороне здания.

Расчетная разность давлений Δр, Па для окна или двери каждого этажа определяется по формуле:

Для дверей:

(2.9)

R инф.ок R инф.дв - требуемое сопротивления воздухопроницанию окна и двери соответственно, м 2 ∙ ч/кг;

Δр – расчётная разность давлений, Па;

Δр 0 – 10 Па.

2.1.21 Коэффициент теплопередачи инфильтрации

Коэффициент учитывающий влияние трансмиссионного теплового потока:

к =0,7. Для стыковых панелей стен и для окон с тройным остеклением;

к = 0,8. Для окон и балконных дверей с раздельными переплётами;

к = 1. Для окон и балконных дверей со спаренными или смежными переплётами.

2.1.22 Расход тепла на инфильтрацию

Расход тепла на инфильтрацию Q инф, Вт рассчитывается по формуле:

2.1.24 Мощность единицы нагревательного прибора

В качестве отопительного прибора выбран чугунный радиатор М-140, который широко известен на территории СНГ. Чугунные секционные радиаторы являются традиционными для нашей страны приборами.

Основное их преимущество возможность использования в открытых системах. В отличие от других радиаторов, чугунные практически нечувствительны к опорожнениям системы, то есть позволяют сколь угодно часто сливать из нее воду. При разливке чугуна на его поверхности образуется особенно прочный слой с повышенным содержанием кремния, поэтому в необработанном виде чугун довольно стоек к коррозии, в том числе от воздействия твердых частиц, присутствующих в теплоносителе. Говоря об эксплуатационных свойствах чугунных радиаторов, следует отметить их высокую теплопроводность и большую тепловую инерционность.

Секции радиатора отливают из серого чугуна, их можно компоновать в приборы различной площади. Секции соединяют на ниппелях с прокладками из картона, резины или паронита.

Примем мощность одной секции радиатора M-140 равную 140 Вт.

В ванной комнате наличие стояка отопления не предполагается. Отопление комнаты осуществляется установкой полотенцесушителя на трубопровод ГВС. Примем мощность полотенцесушителя равную 260 Вт.

2.1.25 Количество приборов отопления

Для того, чтобы найти количество секций радиатора М-140 на одно помещение нужно полные теплопотери этого помещения поделить на мощность одной секции радиатора М-140.

Общая тепловая нагрузка первого этажа здания равна 25,152 кВт, второго этажа 23,514 кВт.

Все расчёты предыдущих пунктов выполняются для каждого этажа здания и сводятся в таблицу в приложении А (для первого этажа) и приложении Б (для второго этажа)

На сегодняшний день теплосбережение является важным параметром, который учитывается при сооружении жилого или офисного помещения. В соответствии со СНиП 23-02-2003 «Тепловая защита зданий», сопротивление теплоотдаче рассчитывается по одному из двух альтернативных подходов:

  • Предписывающему;
  • Потребительскому.

Для расчета систем отопления дома, вы можете воспользоваться калькулятором расчета отопления, теплопотерь дома .

Предписывающий подход - это нормы, предъявляемые к отдельным элементам теплозащиты здания: наружным стенам, полам над не отапливаемым пространствами, покрытиям и чердачным перекрытиям, окнам, входным дверям и т.д.

Потребительский подход (сопротивление теплопередаче может быть снижено по отношению к предписывающему уровню при условии, что проектный удельный расход тепловой энергии на отопление помещения ниже нормативного).

Санитарно-гигиенические требования:

  • Перепад между температурами воздуха внутри помещения и снаружи не должен превышать определенных допустимых значений. Максимальные допустимые значения перепада температур для наружной стены 4°С. для покрытия и чердачного перекрытия 3°С и для перекрытия над подвалами и подпольями 2°С.
  • Температура на внутренней поверхности ограждения должна быть выше температуры точки росы.

К примеру : для Москвы и московской области необходимое теплотехническое сопротивление стены по потребительскому подходу составляет 1.97 °С· м 2 /Вт, а по предписывающему подходу:

По этой причине, выбирая котел либо другие нагревательные приборы исключительно по указанным в их технической документации параметрам. Вы должны спросить у себя, построен ли ваш дом со строгим учетом требований СНиП 23-02-2003.

Следовательно, для правильного выбора мощности котла отопления либо нагревательных приборов, необходимо рассчитать реальные теплопотери вашего дома . Как правило, жилой дом теряет тепло через стены, крышу, окна, землю, так же существенные потери тепла могут приходиться на вентиляцию.

Теплопотери в основном зависят от:

  • разницы температур в доме и на улице (чем выше разница, тем выше потери).
  • теплозащитных характеристик стен, окон, перекрытий, покрытий.

Стены, окна, перекрытия, имеют определенное сопротивление утечкам тепла, теплозащитные свойства материалов оценивают величиной, которая называется сопротивлением теплопередачи .

Сопротивление теплопередачи покажет, какое количество тепла просочится через квадратный метр конструкции при заданном перепаде температур. Можно сформулировать этот вопрос по другому: какой перепад температур будет возникать при прохождении определенного количества тепла через квадратный метр ограждений.

R = ΔT/q.

  • q - это количество тепла, которое уходит через квадратный метр поверхности стены или окна. Это количество тепла измеряют в ваттах на квадратный метр (Вт/ м 2);
  • ΔT - это разница между температурой на улице и в комнате (°С);
  • R - это сопротивление теплопередачи (°С/ Вт/ м 2 или °С· м 2 / Вт).

В случаях, когда речь идет о многослойной конструкции, то сопротивление слоев просто суммируется. К примеру, сопротивление стены из дерева, которая обложена кирпичом, является суммой трех сопротивлений: кирпичной и деревянной стенки и воздушной прослойки между ними:

R(сумм.)= R(дерев.) + R(воз.) + R(кирп.)

Распределение температуры и пограничные слои воздуха при передаче тепла через стену.

Расчет теплопотерь выполняется для самого холодного периода года периода, коим является самая морозная и ветреная неделя в году. В строительной литературе, зачастую, указывают тепловое сопротивление материалов исходя из данного условия и климатического района (либо наружной температуры), где находится ваш дом.

Таблица сопротивления теплопередачи различных материалов

при ΔT = 50 °С (Т нар. = -30 °С. Т внутр. = 20 °С.)

Материал и толщина стены

Сопротивление теплопередаче R m .

Кирпичная стена
толщ. в 3 кирп. (79 сантиметров)
толщ. в 2.5 кирп. (67 сантиметров)
толщ. в 2 кирп. (54 сантиметров)
толщ. в 1 кирп. (25 сантиметров)

0.592
0.502
0.405
0.187

Сруб из бревна Ø 25
Ø 20

0.550
0.440

Сруб из бруса

Толщ. 20 сантиметров
Толщ. 10 сантиметров

0.806
0.353

Каркасная стена (доска +
минвата + доска) 20 сантиметров

Стена из пенобетона 20 сантиметров
30 см

0.476
0.709

Штукатурка по кирпичу, бетону.
пенобетону (2-3 см)

Потолочное (чердачное) перекрытие

Деревянные полы

Двойные деревянные двери

Таблица тепловых потерь окон различных конструкций при ΔT = 50 °С (Т нар. = -30 °С. Т внутр. = 20 °С.)

Тип окна

R T

q . Вт/м2

Q . Вт

Обычное окно с двойными рамами

Стеклопакет (толщина стекла 4 мм)

4-16-4
4-Ar16-4
4-16-4К
4-Ar16-4К

0.32
0.34
0.53
0.59

156
147
94
85

250
235
151
136

Двухкамерный стеклопакет

4-6-4-6-4
4-Ar6-4-Ar6-4
4-6-4-6-4К
4-Ar6-4-Ar6-4К
4-8-4-8-4
4-Ar8-4-Ar8-4
4-8-4-8-4К
4-Ar8-4-Ar8-4К
4-10-4-10-4
4-Ar10-4-Ar10-4
4-10-4-10-4К
4-Ar10-4-Ar10-4К
4-12-4-12-4
4-Ar12-4-Ar12-4
4-12-4-12-4К
4-Ar12-4-Ar12-4К
4-16-4-16-4
4-Ar16-4-Ar16-4
4-16-4-16-4К
4-Ar16-4-Ar16-4К

0.42
0.44
0.53
0.60
0.45
0.47
0.55
0.67
0.47
0.49
0.58
0.65
0.49
0.52
0.61
0.68
0.52
0.55
0.65
0.72

119
114
94
83
111
106
91
81
106
102
86
77
102
96
82
73
96
91
77
69

190
182
151
133
178
170
146
131
170
163
138
123
163
154
131
117
154
146
123
111

Примечание
. Четные цифры в условном обозначении стеклопакета указывают на воздушный
зазор в миллиметрах;
. Буквы Ar означают, что зазор заполнен не воздухом, а аргоном;
. Буква К означает, что наружное стекло имеет специальное прозрачное
теплозащитное покрытие.

Как видно из вышеуказанной таблицы, современные стеклопакеты дают возможность сократить теплопотери окна почти в 2 раза. К примеру, для 10 окон размером 1.0 м х 1.6 м экономия может достигать в месяц до 720 киловатт-часов.

Для правильного выбора материалов и толщины стен применим эти сведения к конкретному примеру.

В расчете тепловых потерь на один м 2 участвуют две величины:

  • перепад температур ΔT.
  • сопротивления теплопередаче R.

Допустим температура в помещении будет составлять 20 °С. а наружная температура будет равной -30 °С. В таком случае перепад температур ΔT будет равен 50 °С. Стены изготовлены из бруса толщиной 20 сантиметров, тогда R= 0.806 °С· м 2 / Вт.

Тепловые потери будут составлять 50 / 0.806 = 62 (Вт/ м 2).

Для упрощения расчетов теплопотерь в строительных справочниках указывают теплопотери различного вида стен, перекрытий и т.д. для некоторых значений зимней температуры воздуха. Как правило, приводятся различные цифры для угловых помещений (там влияет завихрение воздуха, отекающего дом) и неугловых , а также учитывается разница в температур для помещений первого и верхнего этажа.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру стен) в зависимости от средней температуры самой холодной недели в году.

Характеристика
ограждения

Наружная
температура.
°С

Теплопотери. Вт

1 этаж

2 этаж

Угловая
комната

Неугл.
комната

Угловая
комната

Неугл.
комната

Стена в 2.5 кирпича (67 см)
с внутр. штукатуркой

24
-26
-28
-30

76
83
87
89

75
81
83
85

70
75
78
80

66
71
75
76

Стена в 2 кирпича (54 см)
с внутр. штукатуркой

24
-26
-28
-30

91
97
102
104

90
96
101
102

82
87
91
94

79
87
89
91

Рубленая стена (25 см)
с внутр. обшивкой

24
-26
-28
-30

61
65
67
70

60
63
66
67

55
58
61
62

52
56
58
60

Рубленая стена (20 см)
с внутр. обшивкой

24
-26
-28
-30

76
83
87
89

76
81
84
87

69
75
78
80

66
72
75
77

Стена из бруса (18 см)
с внутр. обшивкой

24
-26
-28
-30

76
83
87
89

76
81
84
87

69
75
78
80

66
72
75
77

Стена из бруса (10 см)
с внутр. обшивкой

24
-26
-28
-30

87
94
98
101

85
91
96
98

78
83
87
89

76
82
85
87

Каркасная стена (20 см)
с керамзитовымзаполнением

24
-26
-28
-30

62
65
68
71

60
63
66
69

55
58
61
63

54
56
59
62

Стена из пенобетона (20 см)
с внутр. штукатуркой

24
-26
-28
-30

92
97
101
105

89
94
98
102

87
87
90
94

80
84
88
91

Примечание. В случае когда за стеной находится наружное неотапливаемое помещение (сени, остекленная веранда и т.п.), то потери тепла через нее будут составлять 70% от расчетных, а если за этим неотапливаемым помещением находится еще одно наружное помещение то потери тепла будут составлять 40% от расчетного значения.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру) в зависимости от средней температуры самой холодной недели в году.

Пример 1.

Угловая комната (1 этаж)


Характеристики комнаты:

  • 1 этаж.
  • площадь комнаты - 16 м 2 (5х3.2).
  • высота потолка - 2.75 м.
  • наружных стен - две.
  • материал и толщина наружных стен - брус толщиной 18 сантиметров обшит гипсокартонном и оклеен обоями.
  • окна - два (высота 1.6 м. ширина 1.0 м) с двойным остеклением.
  • полы - деревянные утепленные. снизу подвал.
  • выше чердачное перекрытие.
  • расчетная наружная температура -30 °С.
  • требуемая температура в комнате +20 °С.
  • Площадь наружных стен за вычетом окон: S стен (5+3.2)х2.7-2х1.0х1.6 = 18.94 м 2 .
  • Площадь окон: S окон = 2х1.0х1.6 = 3.2 м 2
  • Площадь пола: S пола = 5х3.2 = 16 м 2
  • Площадь потолка: S потолка = 5х3.2 = 16 м 2

Площадь внутренних перегородок в расчете не участвует, так как по обе стороны перегородки температура одинакова, следовательно через перегородки тепло не уходит.

Теперь Выполним расчет теплопотери каждой из поверхностей:

  • Q стен = 18.94х89 = 1686 Вт.
  • Q окон = 3.2х135 = 432 Вт.
  • Q пола = 16х26 = 416 Вт.
  • Q потолка = 16х35 = 560 Вт.

Суммарные теплопотери комнаты будут составлять: Q суммарные = 3094 Вт.

Следует учитывать, что через стены улетучивается тепла куда больше чем через окна, полы и потолок.

Пример 2

Комната под крышей (мансарда)


Характеристики комнаты:

  • этаж верхний.
  • площадь 16 м 2 (3.8х4.2).
  • высота потолка 2.4 м.
  • наружные стены; два ската крыши (шифер, сплошная обрешетка. 10 саниметров минваты, вагонка). фронтоны (брус толщиной 10 саниметров обшитый вагонкой) и боковые перегородки (каркасная стена с керамзитовым заполнением 10 саниметров).
  • окна - 4 (по два на каждом фронтоне), высотой 1.6 м и шириной 1.0 м с двойным остеклением.
  • расчетная наружная температура -30°С.
  • требуемая температура в комнате +20°С.
  • Площадь торцевых наружных стен за вычетом окон: S торц.стен = 2х(2.4х3.8-0.9х0.6-2х1.6х0.8) = 12 м 2
  • Площадь скатов крыши, ограничивающих комнату: S скатов.стен = 2х1.0х4.2 = 8.4 м 2
  • Площадь боковых перегородок: S бок.перегор = 2х1.5х4.2 = 12.6 м 2
  • Площадь окон: S окон = 4х1.6х1.0 = 6.4 м 2
  • Площадь потолка: S потолка = 2.6х4.2 = 10.92 м 2

Далее рассчитаем тепловые потери этих поверхностей, при этом необходимо учесть, что через пол в данном случае тепло не будет уходить, так как внизу расположено теплое помещение. Теплопотери для стен рассчитываем как для угловых помещений, а для потолка и боковых перегородок вводим 70-процентный коэффициент, так как за ними располагаются неотапливаемые помещения.

  • Q торц.стен = 12х89 = 1068 Вт.
  • Q скатов.стен = 8.4х142 = 1193 Вт.
  • Q бок.перегор = 12.6х126х0.7 = 1111 Вт.
  • Q окон = 6.4х135 = 864 Вт.
  • Q потолка = 10.92х35х0.7 = 268 Вт.

Суммарные теплопотери комнаты составят: Q суммарные = 4504 Вт.

Как мы видим, теплая комната 1 этажа теряет (либо потребляет) значительно меньше тепла, чем мансардная комната с тонкими стенками и большой площадью остекления.

Чтобы данное помещение сделать пригодным для зимнего проживания, необходимо в первую очередь утеплять стены, боковые перегородки и окна.

Любая ограждающая поверхность может быть представлена в виде многослойной стены, каждый слой которой имеет собственное тепловое сопротивление и собственное сопротивление прохождению воздуха. Суммировав тепловое сопротивление всех слоев, мы получим тепловое сопротивление всей стены. Также ели просуммировать сопротивление прохождению воздуха всех слоев, можно понять, как дышит стена. Самая лучшая стена из бруса должна быть эквивалентна стене из бруса толщиной 15 - 20 антиметров. Приведенная далее таблица поможет в этом.

Таблица сопротивления теплопередаче и прохождению воздуха различных материалов ΔT=40 °С (Т нар. =-20 °С. Т внутр. =20 °С.)


Слой стены

Толщина
слоя
стены

Сопротивление
теплопередаче слоя стены

Сопротивл.
Воздухопро-
ницаемости
эквивалентно
брусовой стене
толщиной
(см)

Эквивалент
кирпичной
кладке
толщиной
(см)

Кирпичная кладка из обычного
глиняного кирпича толщиной:

12 сантиметров
25 сантиметров
50 сантиметров
75 сантиметров

12
25
50
75

0.15
0.3
0.65
1.0

12
25
50
75

6
12
24
36

Кладка из керамзитобетонных блоков
толщиной 39 см с плотностью:

1000 кг / м 3
1400 кг / м 3
1800 кг / м 3

1.0
0.65
0.45

75
50
34

17
23
26

Пено- газобетон толщиной 30 см
плотностью:

300 кг / м 3
500 кг / м 3
800 кг / м 3

2.5
1.5
0.9

190
110
70

7
10
13

Брусовал стена толщиной (сосна)

10 сантиметров
15 сантиметров
20 сантиметров

10
15
20

0.6
0.9
1.2

45
68
90

10
15
20

Для полной картины теплопотерь всего помещения нужно учитывать

  1. Потери тепла через контакт фундамента с мерзлым грунтом, как правило принимают 15% от потерь тепла через стены первого этажа (с учетом сложности расчета).
  2. Потери тепла, которые связаны с вентиляцией. Данные потери рассчитываются с учетом строительных норм (СНиП). Для жилого дома требуется около одного воздухообмена в час, то есть за это время необходимо подать тот же объём свежего воздуха. Таким образом, потери которые связаны с вентиляцией будут составлять немного меньше чем сумма теплопотерь приходящиеся на ограждающие конструкции. Выходит, что теплопотери через стены и остекление составляет только 40%, а теплопотери на вентиляцию 50%. В европейских нормах вентиляции и утепления стен, соотношение теплопотерь составляют 30% и 60%.
  3. Если стена «дышит», как стена из бруса или бревна толщиной 15 - 20 сантиметров то происходит возврат тепла. Это позволяет снизить тепловые потери на 30%. поэтому полученную при расчете величину теплового сопротивления стены необходимо умножить на 1.3 (или соответственно уменьшить теплопотери ).

Суммировав все теплопотери дома, Вы сможете понять какой мощности котел и отопительные приборы необходимы для комфортного обогрева дома в самые холодные и ветряные дни. Также, подобные расчеты покажут, где «слабое звено» и как его исключить с помощью дополнительной изоляции.

Выполнить расчет расхода тепла можно и по укрупненным показателям. Так, в 1-2 этажных не очень утепленных домах при наружной температуре -25 °С необходимо 213 Вт на 1 м 2 общей площади, а при -30 °С - 230 Вт. Для хорошо утепленных домов - этот показатель будет составлять: при -25 °С - 173 Вт на м 2 общей площади, а при -30 °С - 177 Вт.

Первый шаг в организации отопления частного дома — расчет теплопотерь. Цель этого расчета — выяснить, сколько тепла уходит наружу сквозь стены, полы, кровлю и окна (общее название — ограждающие конструкции) при самых суровых морозах в данной местности. Зная, как рассчитать теплопотери по правилам, можно получить довольно точный результат и приступить к подбору источника тепла по мощности.

Базовые формулы

Чтобы получить более-менее точный результат, необходимо выполнять вычисления по всем правилам, упрощенная методика (100 Вт теплоты на 1 м² площади) здесь не подойдет. Общие потери теплоты зданием в холодное время года складываются из 2 частей:

  • теплопотерь через ограждающие конструкции;
  • потерь энергии, идущей на нагрев вентиляционного воздуха.

Базовая формула для подсчета расхода тепловой энергии через наружные ограждения выглядит следующим образом:

Q = 1/R х (t в — t н) х S х (1+ ∑β). Здесь:

  • Q — количество тепла, теряемого конструкцией одного типа, Вт;
  • R — термическое сопротивление материала конструкции, м²°С / Вт;
  • S — площадь наружного ограждения, м²;
  • t в — температура внутреннего воздуха, °С;
  • t н — наиболее низкая температура окружающей среды, °С;
  • β — добавочные теплопотери, зависящие от ориентации здания.

Термическое сопротивление стен либо кровли здания определяется исходя из свойств материала, из которого они сделаны, и толщины конструкции. Для этого используется формула R = δ / λ, где:

  • λ — справочное значение теплопроводности материала стены, Вт/(м°С);
  • δ — толщина слоя из этого материала, м.

Если стена возведена из 2 материалов (например, кирпич с утеплителем из минваты), то термическое сопротивление рассчитывается для каждого из них, а результаты суммируются. Уличная температура выбирается как по нормативным документам, так и по личным наблюдениям, внутренняя — по необходимости. Добавочные теплопотери — это коэффициенты, определенные нормами:

  1. Когда стена либо часть кровли повернута на север, северо-восток или северо-запад, то β = 0,1.
  2. Если конструкция обращена на юго-восток или запад, β = 0,05.
  3. β = 0, когда наружное ограждение выходит на южную или юго-западную сторону.

Порядок выполнения вычислений

Чтобы учесть все тепло, уходящее из дома, необходимо сделать расчет теплопотерь помещения, причем каждого по отдельности. Для этого производятся замеры всех ограждений, соседствующих с окружающей средой: стен, окон, крыши, пола и дверей.

Важный момент: обмеры следует выполнять по внешней стороне, захватывая углы строения, иначе расчет теплопотерь дома даст заниженный расход тепла.

Окна и двери измеряются по проему, который они заполняют.

По результатам замеров рассчитывается площадь каждой конструкции и подставляется в первую формулу (S, м²). Туда же вставляется значение R, полученное делением толщины ограждения на коэффициент теплопроводности строительного материала. В случае с новыми окнами из металлопластика величину R вам подскажет представитель фирмы-установщика.

В качестве примера стоит провести расчет теплопотерь через ограждающие стены из кирпича толщиной 25 см, площадью 5 м² при температуре окружающей среды -25°С. Предполагается, что внутри температура составит +20°С, а плоскость конструкции обращена к северу (β = 0,1). Сначала нужно взять из справочной литературы коэффициент теплопроводности кирпича (λ), он равен 0,44 Вт/(м°С). Затем по второй формуле вычисляется сопротивление передаче тепла кирпичной стены 0,25 м:

R = 0,25 / 0.44 = 0,57 м²°С / Вт

Чтобы определить теплопотери помещения с этой стенкой, все исходные данные надо подставить в первую формулу:

Q = 1 / 0,57 х (20 — (-25)) х 5 х (1 + 0,1) = 434 Вт = 4.3 кВт

Если в комнате имеется окно, то после вычисления его площади следует таким же образом определить теплопотери сквозь светопрозрачный проем. Такие же действия повторяются относительно полов, кровли и входной двери. В конце все результаты суммируются, после чего можно переходить к следующему помещению.

Учет тепла на подогрев воздуха

Выполняя расчет теплопотерь здания, важно учесть количество тепловой энергии, расходуемой системой отопления на подогрев вентиляционного воздуха. Доля этой энергии достигает 30% от общих потерь, поэтому игнорировать ее недопустимо. Рассчитать вентиляционные теплопотери дома можно через теплоемкость воздуха с помощью популярной формулы из курса физики:

Q возд = cm (t в — t н). В ней:

  • Q возд — тепло, расходуемое системой отопления на прогрев приточного воздуха, Вт;
  • t в и t н — то же, что в первой формуле, °С;
  • m — массовый расход воздуха, попадающего в дом снаружи, кг;
  • с — теплоемкость воздушной смеси, равна 0.28 Вт / (кг °С).

Здесь все величины известны, кроме массового расхода воздуха при вентиляции помещений. Чтобы не усложнять себе задачу, стоит согласиться с условием, что воздушная среда обновляется во всем доме 1 раз в час. Тогда объемный расход воздуха нетрудно посчитать путем сложения объемов всех помещений, а затем нужно перевести его в массовый через плотность. Поскольку плотность воздушной смеси меняется в зависимости от его температуры, нужно взять подходящее значение из таблицы:

m = 500 х 1,422 = 711 кг/ч

Подогрев такой массы воздуха на 45°С потребует такого количества теплоты:

Q возд = 0.28 х 711 х 45 = 8957 Вт, что примерно равно 9 кВт.

По окончании расчетов результаты тепловых потерь сквозь наружные ограждения суммируются с вентиляционными теплопотерями, что дает общую тепловую нагрузку на систему отопления здания.

Представленные методики вычислений можно упростить, если формулы ввести в программу Excel в виде таблиц с данными, это существенно ускорит проведение расчета.

Можно заказать в специализированной фирме. Правда, стоит это недешево, да и проверить результаты будет невозможно. Совсем другое дело, если вы научитесь анализировать потери тепла в доме самостоятельно. Тогда и платить никому не придется, и вы будете на сто процентов уверены в своих расчетах.

Количество тепла, теряемое зданием за определенную единицу времени, и называется теплопотерями. Величина эта непостоянная. Зависит она от температуры, а также теплозащитных свойств ограждающих конструкций (к ним относятся стены, окна, перекрытия и т.п.). Существенные теплопотери происходят и из-за сквозняков - попадающий внутрь помещения воздух называют по-научному инфильтрацией. А прекрасный способ бороться с ними - установка современных стеклопакетов. Расчет теплопотерь обязательно должен учитывать все эти факторы.

Все строительные и отделочные материалы различаются по своим характеристикам и, следовательно, теплотехническим качествам. Их структура часто неоднородна, состоит из нескольких слоев, а иногда имеет замкнутые воздушные прослойки. Вычислить теплопотери всей этой конструкции можно, сложив показатели для каждого из слоев.

Основной характеристикой материалов в наших расчетах будет показатель Именно он покажет, сколько тепла потеряет конструкции (к примеру, 1 м 2) при определенном температурном перепаде.

Имеем следующую формулу: R=DT/Q

· DT - показатель разности температур;

· Q - количество Вт/м 2 тепла, которое теряет конструкция;

· R - коэффициент сопротивления теплопередачи.

Все эти показатели легко вычислить, пользуясь СНиП. В них прописана информация касательно большинства традиционных строительных материалов. Что же касается современных конструкций (стеклопакетов, гипсокартона и прочих), требуемые данные можно узнать у производителя.

Таким образом можно сделать расчет теплопотерь для каждой Особое внимание следует уделить наружным стенам, чердачным перекрытиям, участкам над холодными подвалами и неотапливаемыми этажами. Добавочные потери тепла происходят через двери и окна (в особенности выходящие на север и восток), а также наружные ворота при отсутствии тамбура.

Расчет теплопотерь здания производят в отношении самого неблагоприятного периода в году. Другими словами, берется самая морозная и ветреная неделя. Суммировав таким образом теплопотери, можно определить требуемую мощность всех отопительных приборов в помещении, необходимых для его комфортного обогрева. Эти расчеты помогут также определить «слабое звено» в системе теплоизоляции и принять дополнительные меры.

Сделать расчет можно и по общим, усредненным показателям. К примеру, для одно- и двухэтажных зданий при минимальной температуре воздуха -25°С тепла на один квадратный метр потребуется 213 Вт. Для зданий с качественным этот показатель снижается до 173 Вт, а то и меньше.

Исходя из всего вышесказанного, можно сказать, что экономить на качественной теплоизоляции не следует. В условиях постоянного повышения цен на энергоносители грамотное утепление и вентиляция конструкций приводят к значительной выгоде.

Многие, строя загородный дом, забывают о приближении зимних холодов, из-за чего расчет теплопотерь здания делают в спешке, и в итоге отопление не создает комфортный микроклимат в помещениях. А ведь сделать дом теплым не сложно, нужно лишь учесть ряд нюансов.

На чем основывается расчет теплопотерь здания

Таким свойством, как теплопроводность, обладает любой материал, различается лишь уровень термического сопротивления, то есть пропускная способность. Из любого дома, даже с устроенной по всем правилам термоизоляцией, тепло уходит через окна, двери, стены, пол, потолок (крышу), а также через вентиляцию . При разнице внешней и внутренней температур обязательно возникает так называемая «точка росы», со средним значением. И только от микроклимата в помещениях, материала и толщины стен, а также характеристик термоизоляции зависит, где окажется эта точка: внутри, снаружи или непосредственно в стене, а также какая в ней будет температура.

Если ответственно подходить к задаче и выполнять расчет теплопотерь здания по всем правилам, это займет у вас немало часов и придется составить множество формул, вычисления займут целую тетрадь. Поэтому определим интересующие нас показатели упрощенным методом, либо обратившись за помощью к СНиП и ГОСТам. И, поскольку решено делать подсчеты не слишком углубленно, оставим в стороне определение среднегодовых температуры и влажности по самой холодной пятидневке за несколько лет, как того требуется по СНиП 23-01-99. Просто отметим наиболее морозный день за последний зимний сезон, допустим, это будет -30 о С. Также не будем принимать во внимание среднесезонную скорость ветра, влажность в регионе и длительность отопительного периода.

Калькулятор теплопотерь здания

Укажите размеры и типы стен.
На улице
средняя температура за день
Выберите значение -40°C -30°C -20°C -15°C -10°C -5°C 0°C +5C +10C
Внутри
средняя температура за день
Стены
Только выходящие
на улицу стены!

Добавьте выходящие на улицу стены и укажите, из каких слоёв состоит стена

Комнаты

Добавьте все используемые помещения, даже коридоры, и укажите, из каких слоёв состоят перекрытия

Тепловые потери:
Через стены: - кВт Через окна: - кВт Через верх: - кВт Через низ: - кВт Через вентиляцию: - кВт Итого: -кВт Нажмите на кнопку для расчёта

Распечатать

Однако из чего же складывается микроклимат в жилой комнате? Комфортные условия для жильцов зависят от температуры воздуха t в, его влажности φ в и движения v в, возникающего при наличии вентиляции. И еще один фактор влияет на уровень тепла – радиационное излучение тепла или холода t р, свойственное нагреваемым (охлаждаемым) естественным путем предметам и поверхностям в обстановке. По нему определяется результирующая температура t п, с помощью формулы [t п = (t р + t в)/2]. Все эти показатели для разных помещений можно рассмотреть в приведенной ниже таблице.

Оптимальные параметры микроклимата жилых зданий по ГОСТ 30494-96

Период года Помещение

Температура внутреннего воздуха t в, °С

Результирующая температура t п, °С

Относит. влажность внутреннего воздуха φ в, %

Скорость движения воздуха v в, м/с

Холодный Жилая комната
То же, в районах с t 5 от -31 °С
Кухня
Туалет
Ванная, совмещенный санузел
Помещение для отдыха и учебных занятий
Межквартирный коридор
Вестибюль, лестничная клетка
Кладовая
Теплый Жилая комната

Буквами НН обозначаются ненормируемые параметры.

Делаем теплотехнический расчет стены с учетом всех слоев

Как уже было сказано, каждому материалу свойственно сопротивление теплопередаче, и чем толще стены или перекрытия, тем выше это значение . Однако не стоит забывать и про термоизоляцию, при наличии которой ограждающие помещение поверхности становятся многослойными и намного лучше препятствуют утечке тепла. У каждого слоя свое сопротивление прохождению тепла, и сумма всех этих величин обозначается в формулах как Σ R i (здесь буква i определяет номер слоя).

Поскольку составляющие ограждения помещений материалы с разными свойствами имеют некоторое возмущение температурного режима в своей структуре, высчитывается общее сопротивление теплопередаче. Формула у него следующая: , где R в и R н соответствуют сопротивлению на внутренней и наружной поверхностях ограждения, будь то стена или перекрытие . Однако утеплители вносят в теплотехнический расчет стены коррективы, которые базируются на коэффициенте теплотехнической однородности r , определяемом формулой .

Показатели с цифровыми индексами являются, соответственно, коэффициентами внутренних крепежей и соединения расчетного ограждения с любым другим. Первый, то есть r 1 , отвечает как раз за фиксацию утеплителей. Если коэффициент теплопроводности последних λ = 0,08 Вт/(м·°С), значение r 1 будет большим, если же теплопроводность термоизоляции оценивается как λ = 0,03 Вт/(м·°С), то меньшим.

Значение коэффициента внутренних крепежей уменьшается по мере возрастания толщины слоя утеплителя.

В целом, картина складывается следующая. Допустим, термоизоляция монтируется прямым анкерным креплением на трехслойной ячеистобетонной стене, снаружи облицованной кирпичом. Тогда при слое утеплителя в 100 миллиметров r 1 соответствует 0,78-0,91, толщина в 150 миллиметров дает коэффициент внутреннего крепежа 0,77-0,90, тот же показатель, но в 200 мм, определяет r 1 как 0,75-0,88. Если внутренний слой также из кирпича, то r 1 = 0,78-0,92, а если стены помещения железобетонные, то коэффициент смещается до 0,79-0,93. А вот оконные откосы и вентиляция дают значение r 2 = 0,90-0,95. Все эти данные следует учитывать в дальнейшем.

Некоторые сведения о том, как рассчитать толщину утеплителя

Для того чтобы приступить к расчету термоизоляции, нам необходимо, прежде всего, высчитать R o , затем узнать требуемое термическое сопротивление R req по следующей таблице (сокращенный вариант).

Требуемые значения сопротивления теплопередаче ограждающих конструкций

Здание / помещение

Градусо-сутки отопительного периода D d , °С·сут

Приведенное сопротивление теплопередаче ограждений R req , м 2 ·°С/Вт

стены

покрытия

чердачного перекрытия и перекрытия над холодными подвалами

окна и балконной двери, витрины и витража

1. Жилое, лечебно-профилактическое и детское учреждение, школа, интернат
а
b
2. Общественное, административное, бытовое и другие помещения с влажным или мокрым режимами
а
b

Коэффициенты a и b необходимы для тех случаев, когда значение D d , °С·сут отличается от приведенного в таблице, тогда R req , м 2 ·°С/Вт рассчитывается по формуле R req = a D d + b . Для колонки 6 первой группы зданий существуют поправки: если значение градусо-суток менее 6000 °С·сут, a = 0,000075, а b = 0,15, если тот же показатель в диапазоне 6000-8000 °С·сут, то a = 0,00005, b = 0,3, если же более 8000 °С·сут, то a = 0,000025, а b = 0,5. Когда все данные будут собраны, приступаем к расчету термоизоляции.

Теперь выясним, как рассчитать толщину утеплителя. Здесь придется обратиться к математике, поэтому будьте готовы поработать с формулами. Вот первая из них, по ней определяем требуемое условное сопротивление теплопередаче R o усл. тр = R req /r. Данный параметр нам нужен для определения требуемого сопротивления теплопередачи утеплителя R ут тр = R o усл. тр – (R в + Σ R т. изв + R н), здесь Σ R т. изв является суммой термического сопротивления слоев ограждения без учета теплоизоляции. Находим толщину утеплителя δ ут = R ут тр λ ут (м), причем λ ут берется из таблицы Д.1 СП 23-101-2004 , и округляем полученный результат в большую сторону до конструктивного значения с учетом номенклатуры производителя.