Охранное устройство входной двери схем нет. Универсальное охранное устройство. Шлейфы охранной сигнализации и подключение датчиков

Охранные системы – бурно развивающаяся область современной электроники. Опубликовано огромное количество всевозможных схем и конструкций, которые может сделать каждый, кто пару раз держал в руках паяльник. Например, «электронные охранники» могут предупредить о проникновении злоумышленника в помещение или сигнализировать о наличии рядом диктофона для несанкционированной звуковой записи.

Зачастую одно только мигание светодиодов и тревожные сигналы зуммеров, сопровождающие работу электроники, могут отпугнуть нарушителя.

Сделать такие устройства проще простого. Используя малогабаритные герконы, даже начинающий радиолюбитель в состоянии спаять целый набор приборов «электронной стражи». На нескольких примерах мы расскажем, какой должна быть схема каждого прибора, какова технология изготовления таких устройств и даже о том, как контролировать работу охранной электроники, используя технологии Интернет.

Герконами принято сокращенно называть герметизированные контакты. По сути, это те же самые реле, но без якоря и механической связи с контактами. Контакты герко-на заключены в герметичный корпус и замыкаются при воздействии на них магнитного поля (например, от постоянного магнита). В продаже имеются герконы с различными размерами и рабочими характеристиками, которые подразделяются на три основных типа: герконы замыкания, переключения и размыкания. В приведённых ниже схемах используются только герконы замыкания, имеющие нормально отомкнутые контакты.

Рассмотрим простейшую схему индикатора магнитного поля, который можно использовать для обнаружения диктофонов, имеющих малогабаритный динамик (рис. 1). Принцип работы устройства предельно прост – в случае приближения индикатора к диктофону, магнит динамика замыкает контакты геркона SF1 и начинает светиться сигнальный светодиод. Для изготовления такого индикатора можно взять светодиод VD1 с напряжением питания 3 В и батарейку GB1 типа CR2025 или CR2032 также на 3 В. При этом резистор R1 можно исключить из схемы. В случае более высокого напряжения питания резистор будет необходим, и его номинал легко рассчитывается исходя из закона Ома для участка цепи. В индикаторе можно использовать любые малогабаритные герконы.

Можно придать этому устройству больше «солидности» если добавить всего один элемент – зуммер НА1 на 3 В. Действительно, включив параллельно светодиоду зуммер (рис. 2), получим индикатор магнитного поля, при срабатывании которого не только зажигается светодиод, но и раздается звуковой сигнал.

Перед использованием индикатора полезно убедиться в работоспособности батарейки. Изменим схему ещё раз, подсоединив светодиод VD0 и однополюсный выключатель SА1 так, как это показано на рис. 3. В этом случае, при замыкании контактов выключателя, будет всегда гореть светодиод VD0, сигнализируя об исправности источника питания.

Надёжен ли в работе такой прибор? Да, если геркон поднести достаточно близко к динамику (диктофону с динамиком). К сожалению, контакты геркона могут не замкнуться в том случае, если он установлен под углом. Более надёжным в работе будет устройство, схема которого приведена на рис. 4. Здесь параллельно включены четыре геркона SF1-SF4, которые изначально можно установить под разными углами к источнику магнитного поля. Таким образом, вероятность срабатывания хотя бы одного геркона будет больше, и индикатор станет более чувствительным.

Основываясь на тех же принципах, можно создать простейшую охранную систему для защиты помещений от непрошенных гостей. Ёе схема показана на рис. 5. В данном случае герконы устанавливаются на дверях и окнах так, чтобы изначально каждый из них вплотную примыкал к небольшому магниту. Например, можно установить геркон на входной двери, а примыкающий к нему магнит – рядом, на дверной коробке. Когда дверь закрыта, контакты геркона будут замкнуты, и светодиод соответствующий охранной линии будет гореть. Как только злоумышленник откроет дверь, светодиод сразу потухнет, сигнализируя о разрыве электрической цепи.

Интересно, что даже такая простая охранная система может оказаться весьма эффективной, если её использовать в комплексе с технологиями Интернет. Персональный компьютер и веб-камера помогут вам ежесекундно отслеживать неприкосновенность помещения из любой географической точки, фиксируя одновременно неприкосновенность дверей и окон. Достаточно направить веб-камеру на пульт с сигнальными светодиодами. Еще большие возможности даёт при этом использование таких компьютерных программ, как, например, свободно распространяемая Easy Free Web Cam. Утверждается, что с помощью этой программы камеру можно использовать и как охранную систему с датчиком движения. Как только программа зафиксирует изменение изображения в кадре, камера начнет съёмку, автоматически загрузит изображение на указанный сервер, а в довершение повергнет злоумышленника в ужас, выдав через звуковые колонки собачий лай. В программе можно настраивать точность определения движущихся объектов в кадре.

Вообще, если проявить гибкость ума, можно придумать много интересных охранных схем с использованием герконов. В частности, можно сделать кодовый замок, срабатывающий при строго определённом расположении герконов и замыкающих контакты магнитов, и многое другое. Вкратце остановимся на том, как делать простые печатные платы для таких конструкций. Как правило, использование печатных плат позволяет уменьшить габаритные размеры электронных устройств и повысить надёжность их работы. При печатном монтаже соединение между деталями осуществляется с помощью тонких плоских проводников, нанесённых (как бы «напечатанных») на плату.

Заготовкой для печатной платы обычно служит гетинакс или стеклотекстолит с наклеенной на него тонкой медной фольгой. На поверхность фольги наносят лаком (можно – лаком для ногтей) рисунок печатной платы. После высыхания лака плату опускают для травления в раствор хлорного железа. Периодически покачивая емкость с платой, обеспечивают ее равномерное омывание раствором. В процессе травления участки фольги под слоем лака будут нетронуты, тогда как в остальных местах медная фольга будет удалена (вытравлена). Далее надо промыть плату проточной водой, высушить и удалить лак с помощью тампона и растворителя. На поверхности платы останется рисунок из тонких медных проводников. В местах будущей установки деталей сверлят отверстия диаметром 0,8 – 1,5 мм. Вид печатной платы для индикатора магнитного поля на четырёх герконах показан в натуральную величину на рис. 6. Желательно после пайки деталей все места соединений покрыть цветным прозрачным лаком или цапон-лаком. С одной стороны, это защищает пайку от воздействий внешней среды (неблагоприятные атмосферные, климатические условия), а с другой стороны придаёт печатной плате законченный вид со всей атрибутикой промышленного дизайна.

Это не охранное устройство, а скорее сигнализатор, сообщающий звуковым эффектом об открывании двери в помещение, в которое доступ ограничен. Хотя, вполне возможно использование данной схемы и в основе охранного устройства. Работает сигнализатор так: питается он от электросети, после включения питания он выдерживает время на выход из помещения и закрывание двери.

Во время этого он не реагирует на датчик. После окончания данного времени схема переходит на дежурный режим. Об этом сигнализирует зажиганием светодиода.

Если в дежурном режиме (светодиод горит) открыть дверь, раздается прерывистый звуковой сигнал. Он будет звучать все время пока дверь открыта, и еще некоторое время после закрывания двери. Затем схема вернется в дежурный режим.

Источник питания - безтрансформаторный C5-VD3-VD4-VD5. Реактивное сопротивление С5 гасит излишек напряжения сети, диоды VD3 и VD4 оставшееся напряжение выпрямляют, а стабилитрон VD5 поддерживает его на уровне 12V. Конденсатор С6 фильтрует пульсации выпрямленного напряжения.

Выключатель - S2. При включении S2 появляется напряжение питания. Начинается зарядка конденсатора С1 через резистор R1. С момента включения питания и пока этот конденсатор заряжается на выходе элемента D1.5 присутствует логический ноль. Поэтому транзистор VT1 закрыт. Напряжения на его эмиттере отсутствует. Светодиод HL1 по сути является индикатором наличия напряжения на эмиттере VT1.

Пока напряжения на эмиттере VT1 нет, открывания и закрывания двери ни к чему не приводят. Дверной датчик S1, это контактный датчик от автомобиля, - датчик открывания капота машин типа ВАЗ-2108-2109. Он установлен в дверном проеме. Пока дверь закрыта его шток прижат дверью, и контакты разомкнуты. При открывании двери шток освобождается и под действием имеющейся в датчике пружины выдвигается наружу. При этом происходит замыкание контактов датчика (у машины при этом включается лампа освещения моторного отсека). Пока напряжения на эмиттере VT1 нет, замыкание S1 не приводит к зарядке С2 и изменению напряжения на входе D1.1. Поэтому на входе D1.1 - ноль, на выходе единица. Диод VD1 блокирует систему звукового сигнала, состоящую из двух мультивибраторов на D1.2 и D1.3, а также, D1.4.

После того как С1 заряжается напряжение на выходе D1.5 увеличивается до высокого логического уровня. Транзистор VT1 открывается. Загорается светодиод HL1, показывающий готовность системы.

Если теперь открыть дверь, то через замкнутые контакты S1 напряжение с эмиттера VT1 поступает на конденсатор С2 и быстро заряжает его до уровня напряжения питания. Резистор R2 здесь нужен для ограничения зарядного тока чтобы не вывести из строя транзистор.

Напряжение на С2 поступает на вход D1.1 и на его выходе возникает ноль. Диод VD1 закрывается и больше не мешает работе мультивибраторов на D1.2 и D1.3. Они генерируют пачки импульсов, которые поступают на пьезоэлектрический динамик BF1. Он включен между входом и выходом D1.4. Это аналогично мостовому включению, поэтому реальный размах напряжения на BF1 составляется 24V. Громкость получается выше, чем при обычном включении, - между выходом элемента и шиной питания.

Датчик проникновения описанный в статье предназначен для звуковой сигнализации о несанкционированном проникновении в квартиру через входную дверь.

Сигнал тревоги начинает звучать через несколько секунд после открывания двери, и если её за это время не закрыть, то он будет звучать как угодно долго. Попытка закрыть дверь в надежде выключить тревожный сигнал не увенчается успехом — он всё равно будет звучать ещё несколько минут и после того, как дверь закроют.
Схема датчика проникновения

Схема предлагаемого тревожного сигнализатора показана на рисунке выше. Он содержит два электронных ключа (на транзисторах VT2 и VT3) и узел задержки включения сигнала тревоги на транзисторе VT1, в коллекторную цепь которого включён магнитоэлектрический звукоизлучатель с встроенным генератором ЗЧ BF1.

Датчик открывания двери — геркон SF1 (или микровыключатель) — включён в цепь затвора транзистора VT2. Пока входная дверь квартиры закрыта, установленный на её притолоке геркон разомкнут под действием закреплённого на двери и находящегося в непосредственной близости постоянного магнита. Напряжение на затворе транзистора VT2 (относительно истока) равно нулю, поэтому он закрыт. Закрыты и транзисторы VT1, VT3.

При открывании входной двери магнит удаляется от геркона, он замыкается и конденсатор С2 быстро заряжается через резистор R1. В результате открывается транзистор VT2, цепь R7VD3 подключается к источнику питания и открывается транзистор VT3, который замыкает цепь питания узла на транзисторе VT1. Начинается зарядка (через резистор R2) конденсатора С1. Когда напряжение на нём достигнет значения примерно 0,7 В (это произойдёт через 5… 10 с), транзистор VT1 откроется и раздастся тревожный сигнал. Он будет звучать неограниченно долго, если дверь не закрыта. Однако и после её закрывания тревожный сигнал прекратится не сразу — пройдёт ещё около четырёх минут, прежде чем он выключится. Эта задержка зависит от ёмкости конденсатора С2.

Конденсатор СЗ шунтирует звукоизлучатель BF1, что повышает стабильность работы узла на транзисторе VT1. Цепь R5C4 способствует быстрой разрядке конденсатора С1 через диод VD1 после закрывания транзистора VT2.
Конструкция и детали датчика проникновения

Устройство смонтировано на печатной плате из фольгированного стеклотекстолита, чертёж которой представлен на рисунке выше. Резисторы — любые малогабаритные, все конденсаторы — оксидные импортные. Для подключения датчика и источника питания установлены винтовые клеммники DG306-5.0-02P с расстоянием между контактами 6,3 мм.

Разумеется, можно применить и любые другие соединители или вообще обойтись без них, припаяв провода от датчика и источника питания непосредственно к соответствующим контактным площадкам на плате. Питать датчик проникновения можно от любого источника напряжением 9 В — гальванической батареи типоразмера 6F22 («Крона»), батареи, составленной из шести элементов типоразмера АА, или сетевого блока. Поскольку в дежурном режиме устройство тока не потребляет, его можно эксплуатировать с постоянно включённым питанием.

Источник: Радио №8 2013

C этой схемой также часто просматривают:

Авторы: Балимов Эдуард, Гольцов Андрей.
Этот адрес e-mail защищен от спам-ботов. Чтобы увидеть его, у Вас должен быть включен Java-Script

Эта ОС была задумана с коммерческой целью ещё в далёком 2007 году, несколько раз модернизировалась и успешно прошла множество проверок и несколько модификаций за прошедшее время. Основные её задачи заключаются в нескольких пунктах:
1) Должна оповещать владельца о проникновении в охраняемое помещение и возгорании и при таких случаях давать прослушать, что там происходит.
2) Должна работать в широком температурном диапазоне при эксплуатации в условиях любого не отапливаемого помещения (у нас в Западной Сибири зимой минус сорок не редкость, а летом под железобетонной крышей гаража доходит до плюс пятидесяти).
3) Должна работать в тяжёлых условиях электропитания (в тех же гаражах сетевое напряжение может не только просаживаться до 150 вольт, но и пропадать по нескольку раз в течении короткого времени).
4) Должна быть простой в установке, вводе в эксплуатацию и использовании (последнее требование не шутка - если человек полгода не пользуется чем-то сложным, то легко забывает некоторые “навороты”).
5) В случае проникновения в помещение или возгорания в нём, должна иметь максимально возможную “длительность жизни”, т.е. успеть позвонить владельцу и включить звуковое оповещение до того, как взломщики или огонь доберутся до неё.
6) Должна быть по возможности дешёвой при покупке и в эксплуатации.

Сами мы понимали, что “стопроцентно” выполнить ВСЕ мыслимые требования не возможно, и постарались ограничиться минимальной функциональностью, а так же свести к минимуму всевозможные ошибки при проектировании, установке и эксплуатации системы. Поэтому решили использовать как можно меньше “самодельщины”, тем более что конторы, торгующие пожарно-охранными системами предлагают извещатели (датчики) и оповещатели (сирены) оптом и в розницу на любой вкус и цвет, а в качестве GSM-модуля решили использовать сотовый телефон - на то время стоимость нового Philips180 в магазине была в два с половиной раза меньше модуля SIM300 в компании Symmetron. Оставалось только написать программу для микроконтроллера, соединить в одно целое процессорную часть, “периферию”, телефон и подать туда питание.

Базовая система ориентирована на охрану гаража площадью не более 30 кв.м. от взлома и имеет такие свойства и параметры:
1. ставится и снимается с охраны при помощи ключа Touch Memory (далее ТМ):
А. уходя из помещения прикладываете ключ ТМ к считывателю и нажимаете кнопку “Выход” на считывателе ТМ (установлен внутри помещения), затем не торопясь выходите - система встанет на охрану спустя 15-20 секунд после закрывания входной двери.
Б. заходя же в охраняемое помещение, нужно просто приложить ключ ТМ к считывателю (первый звонок о взломе на Ваш телефон обычно успевает прийти);
2. имеет один инфракрасный датчик (Patrol или Рапид), реагирующий на движение людей и появление огня в охраняемом пространстве;
3. один магнитный датчик (ИО 102-20), устанавливаемый на входной двери (магнит на дверь, геркон на косяк);
4. звуковой оповещатель (Иволга или Флейта), включаемый в случае срабатывания охранки (обычно используется режим задержки включения на 30 секунд - пока система выполняет первый звонок);
5. встроенный сотовый телефон (Siemens или Philips), звонящий на заранее записанные в SIM-карту телефонные номера, не важно, сотовые или городские (если дверь гаража, например, взломали и ходят внутри помещения - будет звонить Вам беспрерывно по тридцать секунд на каждый номер, а если убежали, услышав сирену, отзвонится по два раза на оба номера и перестанет, но если кто-то ещё войдет в помещение - ИК датчик его увидит и она опять начнёт Вам звонить и включать звуковое оповещение);
6. можно позвонить на номер охранки и определить то состояние, в котором она находится в этот момент:
А. если она не стоит на охране - будут слышны длинные гудки;
Б. если стоит на охране и всё нормально - сбросит Ваш вызов - пойдут короткие гудки;
В. если поднимает трубку и даёт послушать - был взлом;
Г. если милый женский голос сообщает о недоступности абонента - отсутствует питание системы.
7. на встроенном же аккумуляторе вышеперечисленная комплектация находится ещё от двух до семи суток после пропадания сетевого напряжения - зависит от качества аккумулятора и используемой модели телефона (Philips-ы более экономичны);
8. подзарядка аккумуляторной батареи происходит постоянно при наличии сетевого напряжения, а при его долгом отсутствии и снижении напряжения на аккумуляторе до десяти вольт защита от глубокого разряда батареи отключает систему от питания.
9. при использовании в охранке SIM-карты с тарифом без абонентской платы деньги со счета не расходуются, но надо хотя бы раз в три месяца зайдя в охраняемое помещение ответить на пришедший вызов, чтоб сумма за звонок снялась со счёта и сотовая компания не заблокировала SIM-карту как не используемую.

Для увеличения охраняемой площади нужно просто увеличивать количество датчиков, учитывая потребляемый ими ток - используемый блок питания может обеспечить 0,4 А в непрерывном режиме и 1 А кратковременно. Например, в комплекте с одним инфракрасным датчиком Patrol-901 (12 мА) система от аккумулятора потребляет в режиме охраны 20-25 мА, а при наборе номера (100 мА) и включении сирены Иволга (55 мА, 105 dB) уже до 160 мА. Добавляя, к примеру, ещё датчик Арфа или Стекло (которые можно настроить на стук по металлической двери, 55 мА) и три датчика Шорох (поверхностный, вибрационный, реагирующий на стук по стене, полу или крыше, каждый 25 мА) ток потребления повысится до 160 мА в дежурном режиме и до 300 мА в режиме дозвона. Расчёт не точный, потому что некоторые датчики во время срабатывания потребляют меньший ток - реле обесточивается. Приведённая расчётная комплектация взята только для примера - устанавливать “такое” можно только в отдельных случаях, потому что система очень чувствительна к звуку и вибрации и при некорректной настройке будет звонить по любому неподходящему случаю - дети шли мимо и стукнули палкой (камнем) по двери, или тяжеловоз какой мимо проехал. Вам это надо?
Есть ещё множество всевозможных датчиков, для одних и тех же целей применяющих разные принципы, реагирующие на всевозможные изменения окружающего пространства, например, в домах с подведённым газом устанавливают датчики контроля состава газовой среды (ИГ-МПБ-02 "Атлант" - реакция на метан, пропан, бутан), правда, цена у него… Можно долго писать, придумывая разные способы контроля и методы противоборства взлому, но всё это уже есть как в Интернете, так и в специализированных журналах, глянцевых и не очень, поэтому переходим к описанию схемы.

Схему читать надо справа налево. Так уж получилось. :).
К разъёму XS4 подключаются все входящие в блок провода, кроме сетевого - он идёт на XS1. С контактов 3, 5, 7 и 9 сигналы через защитные цепи поступают в процессор. Туда же приходят сигналы с телефона, сообщающие о его включении и о приходящих звонках. Обрабатывая все эти сигналы, процессор управляет оптронами, подключенными к клавиатуре телефона, а так же включением звукового оповещения - сирены или другой нагрузки до 500 мА (контакт 11 разъёма XS4) и светодиодом на считывателе ТМ (контакт 10 разъёма XS4).
Цепочки из двустороннего стабилитрона (защитного TVS диода), резистора, двух диодов и конденсатора должны защищать от импульсов, наводимых на длинные провода датчиков во время грозы и работающих рядом всевозможных генераторов электромагнитных помех (например, сварочных аппаратов). За прошедшие четыре года жалоб на то, что сигналки срабатывают в таких случаях, не было, т.е. наводки на провод не достигают даже напряжения, соответствующего единичному состоянию микросхемы, но, здесь, как говорится, “лучше перебдеть, чем недобдеть”.

кликните по картинке чтобы увеличить


Схема защиты по цепи идущей со считывателя ТМ (контакт 9 XS4) отличается отсутствием конденсатора 100n и стабилитрона, так как эту линию процессор постоянно опрашивает, посылая короткие импульсы к считывателю. Присутствие конденсатора убивает этот процесс напрочь, а наличие стабилитрона - только при длине провода более 20 метров.
Стабилитроны VD11 и VD16 выполняют такие же защитные функции.
К разъёму XS2 подключается программатор при прошивке процессора. Мы использовали нижеприведенную схему и программу PonyProg2000. Микросхема распаивается навесным монтажом прямо в пластиковом корпусе разъёма, выходящий провод неэкранированный, длиной около метра, имеет на конце разъём “мама”. Микросхему SN74LS244 можно заменить на К555АП5 (восьмиканальный однонаправленный шинный формирователь).

{

Установка Fuse bits для работы микроконтроллера с внутренним тактированием частотой 4 МГц:

Прошивки для моделей телефонов Siemens и Philips в конце статьи в полном пакете документов.

Продолжим по схеме.
Разъём XS3 - штыревой PLS2, при установке не нём перемычки включение сирены происходит одновременно со всеми звонками хозяину, а если не устанавливать - то система первый звонок совершает молча, а последующие уже со включенной сиреной. Т.е. с установленной перемычкой, когда Вы сами открываете гараж, она будет верещать, пока не приложите ключ ТМ. Такой сервис сделан по желанию клиентов - некоторые хотят, чтоб окружающие знали, что в гараже установлена охранная сигнализация (один из способов “профилактики” правонарушений).
Кнопка S1 “Пр” служит для смены очерёдности дозвона (первый номер - второй номер). Более подробно, как это делается, описано в “Руководстве по вводу в эксплуатацию и пользованию” в конце статьи.
Управление телефоном через клавиатуру в наше время может быть и не “круто”, но мы посчитали его более приемлемым в наших условиях. На схеме нарисованы пять оптронов, но кнопку “Телеф. справочник” мы перестали использовать совсем, поэтому ОРТ3 можно не впаивать. Так же при использовании телефонов Philips не нужен ОРТ5. Описание подключения проводов к клавиатуре телефона будет описано ниже с картинками.
Входной сигнал “Состояние телефона” приходит с клавиатуры, по нему процессор узнаёт, включен телефон или нет (в рабочем состоянии там единичка), и если нет, то включает его, активировав ОРТ1 длинным импульсом, который в свою очередь замыкает кнопку “Сброс”.
Сигнал “Звонок” берётся у Siemens-ов с контакта, куда подключался звуковой излучатель, а у Philips-ов с двигателя виброзвонка, в этом случае транзистор VT1 не устанавливается, а базовая и коллекторная площадки закорачиваются перемычкой из припоя. Ниже будет описано подробнее.

Теперь по блоку питания. Все детали от сетевого клеммника XS1 до предохранителя FU3 - это стандартная схема (за исключением цепей индикации) из источника вторичного электропитания “Парус-3”, обеспечивающего 12 В и 0,4 А. Производитель иногда заменяет некоторые комплектующие на аналоги, поэтому маркировка некоторых деталей на принципиальной схеме не обозначена. Покупается это изделие там же, где и все датчики с сиренами, проводами и аккумуляторами - в любой конторе, торгующей пожарно-охранными системами. Родная плата вытаскивается и аккуратно разбирается на комплектующие, которые сразу же впаиваются в блок питания охранки (чтоб чего не попутать). Корпус с трансформатором используется по назначению - под него и была разведена плата сигнализации. Фото справа.



Родной выключатель, установленный на корпусе слева не используется, хотя можно его поставить сразу после FU3 для разрыва цепи питания.

Далее по схеме.
Транзистор VT4 и обвязка - это защита аккумулятора от глубокого разряда. Порог, при котором транзистор отключает нагрузку - 10 вольт, устанавливается резистором R11.
Стабилизатор на VR2 обеспечивает 4,2 вольта для питания процессорной части и телефона. Напряжение выставляется резистором R20. Можно собрать и на пятивольтовом стабилизаторе, включив последовательно с нагрузкой диод типа 1N4007 - на плате место под такой вариант разведено.

По деталям.
Все SMD резисторы и конденсаторы (кроме применяемых в БП) типоразмера 0805.
Разъёмы XS4 для подключения периферии - клеммники винтовые двухконтактные прямые однорядные серии 300-02-1-1 (ТВ-2) тип 1. Шесть штук соединяются пазами и впаиваются.
Разъём XS1 (ввод сетевого напряжения 220 вольт) - той же модели, что и XS4, но тип 2 (по каталогу ПЛАТАН), переставляется с платы источника вторичного электропитания “Парус-3”, так же как и колодка с предохранителем и разъём, от которого идёт четыре провода к трансформатору питания (марка не известна).
Разъёмы XS2 и XS3 - гребёнки PLS, шесть и два штырька соответственно, джампер на XS3 стандартный. Гребёнки и джампер можно взять с компьютерных плат.
Стабилитроны защиты (защитные TVS диоды по официальной классификации) P6KE6.8CA можно заменить на P4KE6.8, 1.5KE6.8, 1N6267. Буквы СА обозначают, что прибор двунаправленный, но можно использовать и однонаправленные. Можно обойтись и без них, но тогда диоды VD6, VD7, VD8, VD9, VD10 лучше заменить на BAV99 - они выдерживают больший ток.
Микроконтроллер ATtiny2313 на любую предельную частоту (работает на внутреннем тактировании 4 МГц) и в любом корпусе - дорожки разведены под оба варианта (DIP, SMD).
Оптроны TLP521-1 четырёхвыводные, заменяемы на TLP621, TLP626 и TLP721.
Транзисторы VT1-VT3 - BC817-40 или подобные. VT3 должен выдерживать ток не менее 0,5А.
Транзистор VT4 - IRFR9120 или IRFR5305, паяется со стороны печати.
Микросхема под обозначением VD5 - в SMD исполнении TL431CDBVR-TI, заменяема на TL431 в обыкновенном исполнении, но паять всё равно со стороны дорожек.
Резисторы R11 и R20 - 3329Н, 3321H, PV32H. Можно так же и SMD - PVZ3A. Номинал R11 можно увеличивать до 100 кОм, а R20 уменьшать до 500 Ом.
Стабилизатор питания VR2 - LM317 или 7805, паяется со стороны печати и, отдавая тепло на большую поверхность фольги, помогает улучшить температурный режим в зимний период.
Кнопка S1- TS-A3PV-130 (по каталогу ПЛАТАН), угловая с длиной штока 7 или 9,5 мм. Кнопка S2 - “Выход”, встраиваемая в считыватель ТМ - TS-A3PS-130, прямая с длиной штока 7 мм. Можно и с 9,5 мм штоком, но он будет выступать слишком далеко, и его лучше укоротить.

Теперь перейдём к конструктивному исполнению.
Все детали блока, кроме трансформатора и аккумулятора, расположены на одной печатной плате размерами 180х75 мм, выполненной из фольгированного с одной стороны текстолита толщиной 1,5 мм. Двусторонний тоже подойдёт, тогда лучше просверлить отверстия по периметру земляных шин и пропаять перемычки оголённым проводом, соединив обе стороны.
Плата устанавливается в корпус от блока питания “Парус-3” и крепится на старые установочные места. Приводим рисунок одного из вариантов платы.

Все варианты отличались в основном мелочами, кроме одного, где разъём XS4 был выполнен не на клеммниках, а состоял из четырёх розеток TJ-8P8C, установленных на плату в верхней части - где чёрное поле на рисунке. Соответственно, обжав концы проводов от датчиков в вилки ТР-8Р8С, можно было подключать всю периферию снаружи, т.е. крышку нужно было снимать только для установки SIM-карты и подключения 220 вольт. Так сказать, “безотвёрточная сборка” - хороша тем, что провода попутать невозможно.

Детали в процессорной части блока, кроме разъёмов XS2, XS3, XS4 паяются со стороны печати. Ножки оптронов, стабилитронов и микроконтроллера, если он в DIP корпусе, откусываются по самое брюхо. Выводы стабилитронов перед обрезкой надо согнуть под прямым углом к корпусу. К сожалению, фото со стороны печати только такое - плата закрашена перманентным маркером чёрного цвета:

И она же со стороны телефона:

Наиболее ответственная часть конструирования - доработка телефона и подпайка к нему проводов.
Модели используемых телефонов определялись в основном конструктивом держателя Sim-карты. Так как плата телефона использовалась без корпуса, то держатель должен иметь упоры, чтоб карта встала строго по месту и не болталась. Конечно, можно доработать любой держатель, но мы просто покупали определённые модели: Siemens серий А35, С35i, S35, А40 и Philips серий 180 и 192.
Держатель карты у Siemens-ов вынимается из задней крышки и просто впаивается по месту. Чтоб пластмаска не болталась в воздухе - приклеивается клеем “Момент” (или подобным эластичным) к экранирующей крышке на плате:

У Philips-ов держатель уже впаян в плату, поэтому остаётся только согнуть по размерам Sim-карты П-образную полоску ограждения из тонкой жести размерами 35х3 мм (банка из под кофе или сгущенки) и припаять её так, чтоб карта при установке становилась по месту (на фото так же виден добавленный конденсатор по питанию, к плюсовой ножке которого подпаивается провод +4,2 вольта):

На плате телефона удаляются все светодиоды подсветки клавиатуры и индикатора, у Philips-а жалом паяльника или кусачками отдирается (в буквальном смысле) одна нога от двигателя виброзвонка (чтоб не вибрировал попусту) и к ней припаивается провод МГТФ - по нему будет уходить сигнал в процессорную часть, где, повторяем, транзистор VT1 убирается, а базовая и коллекторная площадки соединяются перемычкой припоя, ну или при пайке платы резистор R6 сразу паяется на нужные площадки. Для Siemens-ов транзистор VT1 нужен!
Ниже на рисунках резистор звонковой цепи для Philips-а и места подпайки управляющих проводов от оптронов к разным моделям телефонов:



Стоит, наверное, рассказать, как мы искали места подключения. Так как наличие npn-транзистора в оптроне подразумевает “напряжение на коллекторе более положительное, чем на эмиттере” :), то на этапе разборки телефона, когда корпус снят и припаяны провода питания, осциллографом были померены потенциалы на контактах клавиатуры. Оказалось, что на обоих контактах каждой кнопки присутствует очень близкое по потенциалу напряжение, но всё же с некоторой различимой разницей. Вот к тем проводникам, где потенциал выше, и паяется проводник от коллектора транзистора.
Вообще-то, сложилось впечатление, что не важно, как припаяны оптроны - однажды поменяли местами провода “коллектор-эмиттер” подключая телефон Philips, и ничего, система работала без проблем - и только случайно обнаружилась ошибка.
Кнопка “Сброс” на телефонах одним контактом сидит сразу на земляной шине, поэтому на печатной плате эмиттер ОРТ1 (контакт 10) разведен перемычкой на “землю” - в случае необходимости можно перерезать.
Фото клавиатуры есть только для Siemens-ов:

Микрофон или просто впаивается в плату, или по желанию клиента выносится экранированным проводом (5-20 см - слева на фото чёрный провод с синей изолентой) на корпус для более “чувствительной” работы - это если блок устанавливается в какой-нибудь шкаф или прячется в другом укромном месте.
Плюсовой провод питания припаивается к контакту, куда подключался аккумулятор. В это же место впаивается конденсатор на 100 микрофарад. Фото запитки Siemens-а:

Минусовым проводом являются четыре проволочные стойки диаметром 0,3-0,5 мм и длиной 20-30 мм (ножки от резисторов или диодов, смотрите на фотографиях выше по тексту), припаянные к земляным проводам телефона со стороны клавиатуры. На рисунке ниже красным обведены места впайки, расположенные в верхней части платы блока. Такие же “пятачки” есть и в нижней части платы.

Считыватель ключей ТМ носит название “Считыватель-2 исполнение 01” в той конторе, где мы брали комплектующие. В него встраивается тактовая кнопка S2 “Выход”, одна ножка которой паяется на массу, а от другой идет провод длиной 150-200 мм (зелёный по цвету в “Руководстве…”), к которому во время установки сигнализации будет подключен один из сигнальных проводов. Конечно, можно использовать любой другой вариант исполнения, главное, чтоб было удобно пользоваться. Обычно считыватель крепится вертикально - так удобней нажимать. На фото кнопка находится справа от светодиода.

Порядок пайки и сборки.
После изготовления печатной платы и проверки крепления в корпусе, на неё переносятся детали с платы стабилизатора “Парус-3”. Аккумулятор пока НЕ подключаем.
Проверяем выходное напряжение +12 вольт.
Затем распаиваем защиту от глубокого разряда аккумуляторной батареи.
Проверяем, что защита пропускает +12 вольт.
Распаиваем стабилизатор +4,2 вольта. Нагружаем его, например, на двенадцативольтовую лампочку с током потребления примерно 300 мА.
Проверяем работоспособность стабилизатора и выставляем +4,2 вольта.
Подключаем вместо аккумулятора блок питания с регулируемым напряжением, и настраиваем защиту от глубокого разряда.
Допаиваем все остальные детали на плату. Не забываем “воздушные” перемычки от площадки к площадке, выполненные оголённым проводом 0,2-0,5 мм - обозначены серым цветом в lay-файле.
Программируем микроконтроллер.
Дорабатываем телефон и припаиваем к нему проводники из МГТФ максимально тонкого диаметра и с запасом по длине не более 1-2 см.
Впаиваем проводники и телефон в плату охранки.
Включаем и проверяем, что на экране телефона появляется надпись об отсутствии SIM-карты.
Читаем инструкцию о вводе системы в работу.
Программируем SIM-карту и вставляем её в телефон нашей охранки.
Подключаем к разъёмам все датчики. Вместо звукового оповещателя (сирены) подключите двенадцативольтовую лампочку.
Включаем. Убеждаемся, что телефон находит сеть.
Программируем ключи ТМ.
Теперь можно проверять всю систему в действии. Хорошо бы, чтоб было видно, что происходит на экране телефона.
Скорее всего, при правильной распайке система заработает сразу. Мест в схеме, где нужно что-то подбирать, нет.
Если что не так, то, опираясь на логику работы системы, проверяем прохождение сигналов в цепях и соответствие их нужным уровням.

Некоторые дополнения и уточнения.
При установке системы на месте пользования в качестве проводов датчиков использовали КСПВ 4х0,5 и КСПВ 2х0,5. Цветовое описание подключения в “Руководстве…” соответствует этим проводам.
Все датчики (извещатели) стандартные, никаким доработкам не подвергаются.
Инфракрасные датчики лучше брать с функцией защиты от животных. Были случаи, когда при беспорядке в гараже, охранка реагировала на мышей, бегающих по коробкам перед ИК датчиком. Т. е. перед датчиком не должно быть никаких поверхностей, по которым могут передвигаться мыши и птицы.
На задней крышке корпуса есть отверстия большого диаметра, через которые можно видеть экран телефона. После окончательной проверки их желательно заклеить пластиной из пластмассы, чтоб через них не забирались внутрь всякие насекомые. Был случай, когда паук закоротил фазу и ноль на печатной плате. Остались одни ножки, но предохранитель сгорел, и пришлось выезжать к клиенту. После этого случая по окончании настройки печатную плату со стороны дорожек иногда покрывали краской из баллончика, а обычно закрашивали перманентным маркером (вместе с деталями). Можно было, конечно использовать и лаки, но маркером как-то быстрее и удобней - покрытие получается достаточно плотным и никуда не затекает. Места ввода проводов через маленькие отверстия в задней крышке корпуса после установки охранки по месту тщательно заклеивали скотчем или изолентой. Может быть и не красиво, но действенно. Да и температурный режим зимой облегчается.
Что куда устанавливать и как крепить - решайте сами. Но основные правила есть, и они описаны в сопроводительных листах-инструкциях на извещатели и оповещатели. Хорошо бы предварительно посмотреть на уже работающие системы. Как вариант, представьте себя на месте грамотного и уверенного в себе взломщика и представьте его действия. Вся система должна успеть отработать, т.е. оповестить о взломе и включить сирену до того, как он её найдёт и отключит.

На последок приведём пример расположения сигнализации в гараже:
1. блок ОС закрепляется на стеллаже (в шкафу) или вешается на стену справа от входа на уровне груди;
2. инфракрасный датчик крепится выше роста человека в дальнем правом углу и направляется на ближний левый угол и дверь;
3. считыватель ТМ - справа от входа на уровне живота;
4. магнитный датчик крепится на верхней части калитки двери или самой двери при отсутствии калитки.
5. сирена - в ближнем левом углу выше роста человека;
6. при желании ставится второй ИК-датчик около сирены и направляется в сторону первого.

Вроде бы всё.

Хочется поблагодарить Исакова Александра - RA9OBD за профессионально выполненную фотосъёмку мелких деталей.

В архиве находятся: схемы охранной сигнализации в формате spl7 и jpg, разводка печатной платы в формате lay, руководство по вводу в эксплуатацию и пользованию GSM сигнализации и прошивки ОС для ATtiny 2313.
Со всеми вопросами можно обращаться по адресу Этот адрес e-mail защищен от спам-ботов. Чтобы увидеть его, у Вас должен быть включен Java-Script .

Особенность применения таймера на популярной микросхеме КР1006ВИ1 в прикладных схемах - использование его чувствительного входа. Представленная на рис. 3.45 схема является по своему назначению схемой охранной сигнализации. Смысл ее работы прост.

Рис. 3.43. Вариант оконечного управляющего элемента

Рис. 3.44. Источник питания для устройства

Повторение конструкции не должно вызвать осложнений. Сенсором является металлическая проводящая ручка квартирной двери, она соединяется возможно коротким проводом со входом 2 микросхемы. Длина одножильного неэкранированного провода МГТФ-0,8 в авторском варианте - 20 см. При прикосновении к ручке двери человеком (в том числе и в перчатках) чувствительная схема на КР1006ВИ1 включает через транзисторный ключ тиристор и реле. Конечно, данное устройство совершенно бесполезно в лесу, где отсутствует источник переменного тока и, соответственно, нет наводок электричества на тело человека. Таков принцип работы всех контактных сенсоров, надо учитывать, что все они рассчитаны на применение в городских и промышленных условиях, где электрические сети вездесущи и в наводках нет недостатка. Благодаря использованию

Рис. 3.45. Чувствительный сенсорный сигнализатор

данной микросхемы и ключа в таком включении, реле при включении не имеет дребезга контактов. Переменный резистор служит для регулировки чувствительности схемы. При его отсутствии схема работает ненадежно. На выводе 3 микросхемы примерно через две секунды после контакта с сенсором устанавливается исходный низкий уровень, однако реле не отпускает, потому что используется тиристор. Реле будет находиться во включенном состоянии до тех пор, пока не будет (хотя бы и кратковременно) обесточено питание. Данная схема является схемой с самоблокировкой.

На рис. 3.46 представлена еще одна схема для охраны объекта с самоблокировкой. Принцип работы ее аналогичен схеме на рис. 3.45. Однако есть одна конструктивная особенность.

Регулировкой резистора R2 можно добиться того, что схема на КР1006ВИ1 будет блокировать реле во включенном состоянии до обесточивания питания (после прикосновения к сенсору), или схема будет работать как нормальный сенсор с задержкой. То есть при увеличении сопротивления R2 и вообще цепочки R2R1 при контакте с сенсором Е1 микросхема выдает на выходе (вывод 3) высокий уровень напряжения. И держит его 2…3 секунды, затем на выводе 3 снова появляется «О». Соответственно, происходит включение и отключение реле. Выход таймера достаточно мощный и легко коммутирует нагрузку в виде маломощного реле стоком потребления 15…30 мА.

Эта конструктивная особенность КР1006ВИ1 может дать повод для использования ее в различных радиолюбительских конструкциях.