Напряжение электрической дуги. Электрическая дуга (вольтова дуга, дуговой разряд)

При коммутации электрических приборов или перенапряжений в цепи между токоведущими частями может появится электрическая дуга. Она может использоваться в полезных технологических целях и в то же время нести вред оборудованию. В настоящее время инженеры разработали ряд методов борьбы и использования в полезных целях электрической дуги. В этой статье мы рассмотрим, как она возникает, ее последствия и область применения.

Образование дуги, её строение и свойства

Представим, что мы в лаборатории проводим эксперимент. У нас есть два проводника, например, металлических гвоздя. Расположим их острием друг к другу на небольшом расстоянии и подключим к гвоздям выводы регулируемого источника напряжения. Если постепенно увеличивать напряжение источника питания, то при определенном его значении мы увидим искры, после чего образуется устойчивое свечение подобное молнии.

Таким образом можно наблюдать процесс её образования. Свечение, которое образуется между электродами — это плазма. Фактически это и есть электрическая дуга или протекание электрического тока через газовую среду между электродами. На рисунке ниже вы видите её строение и вольт-амперную характеристику:

А здесь – приблизительные величины температур:

Почему возникает электрическая дуга

Всё очень просто, мы рассматривали в статье об , а также в статье о , что если любое проводящее тело (стальной гвоздь, например) внести в электрическое поле — на его поверхности начнут скапливаться заряды. При том, чем меньше радиус изгиба поверхности, тем их больше скапливается. Говоря простым языком — заряды скапливаются на острие гвоздя.

Между нашими электродами воздух — это газ. Под действием электрического поля происходит его ионизация. В результате всего этого возникают условия для образования электрической дуги.

Напряжение, при котором возникает дуга, зависит от конкретной среды и её состояния: давления, температуры и прочих факторов.

Интересно: по одной из версий это явление так называется из-за её формы. Дело в том, что в процессе горения разряда воздух или другой окружающий её газ разогревается и поднимается вверх, в результате чего происходит искажение прямолинейной формы и мы видим дугу или арку.

Для зажигания дуги нужно либо преодолеть напряжение пробоя среды между электродами, либо разорвать электрическую цепь. Если в цепи есть большая индуктивность, то, согласно законам коммутации, ток в ней не может прерваться мгновенно, он будет протекать и далее. В связи с этим будет возрастать напряжение между разъединенными контактами, а дуга будет гореть пока не исчезнет напряжение и не рассеется энергия, накопленная в магнитном поле катушки индуктивности.

Рассмотрим условия зажигания и горения:

Между электродами должен быть воздух или другой газ. Для преодоления напряжения пробоя среды потребуется высокое напряжение в десятки тысяч вольт – это зависит от расстояния между электродами и других факторов. Для поддержания горения дуги достаточно 50-60 Вольт и тока в 10 и больше Ампер. Конкретные величины зависят от окружающей среды, формы электродов и расстояния между ними.

Вред и борьба с ней

Мы рассмотрели причины возникновения электрической дуги, теперь давайте разберемся какой вред она наносит и способы её гашения. Электрическая дуга наносит вред коммутационной аппаратуре. Вы замечали, что, если включить мощный электроприбор в сеть и через какое-то время выдернуть вилку из розетки — происходит небольшая вспышка. Это дуга образуется между контактами вилки и розетки в результате разрыва электрической цепи.

Важно! Во время горения электрической дуги выделяется много тепла, температура её горения достигает значений более 3000 градусов Цельсия. В высоковольтных цепях длина дуги достигает метра и более. Возникает опасность как нанесения вреда здоровью людей, так и состоянию оборудования.

Тоже самое происходит и в выключателях освещения, другой коммутационной аппаратуре среди которых:

В аппаратах, которые используются в сетях 0,4 кВ, в том числе и привычные 220 В, используют специальные средства защиты – дугогасительные камеры. Они нужны чтобы уменьшить вред, наносимый контактам.

В общем виде дугогасительная камера представляет собой набор проводящих перегородок особой конфигурации и формы, скрепленных стенками из диэлектрического материала.

При размыкании контактов образовавшаяся плазма изгибается в сторону камеры дугогашения, где разъединяется на небольшие участки. В результате она охлаждается и гасится.

В высоковольтных сетях используют масляные, вакуумные, газовые выключатели. В масляном выключателе гашение происходит коммутацией контактов в масляной ванне. При горении электрической дуги в масле оно разлагается на водород и газы. Вокруг контактов образуется газовый пузырь, который стремиться вырваться из камеры с большой скоростью и дуга охлаждается, так как водород обладает хорошей теплопроводностью.

В вакуумных выключателях не ионизируются газы и нет условий для горения дуги. Также есть выключатели, заполненные газом под высоким давлением. При образовании электрической дуги температура в них не повышается, повышается давление, а из-за этого уменьшается ионизация газов или происходит деионизация. Перспективным направлением считаются .

Также возможна коммутация при нулевом значении переменного тока.

Полезное применение

Рассмотренное явление нашло и целый ряд полезных применений, например:


Теперь вы знаете, что такое электрическая дуга, какие причины возникновения данного явления и возможные сферы применения. Надеемся, предоставленная информация была для вас понятной и полезной!

Материалы

При размыкании электрической цепи возникает электрический разряд в виде электрической дуги. Для появления электрической дуги достаточно, чтобы напряжение на контактах было выше 10 В при токе в цепи порядка 0,1А и более. При значительных напряжениях и токах температура внутри дуги может достигать 3 - 15 тыс. °С, в результате чего плавятся контакты и токоведущие части.

При напряжениях 110 кВ и выше длина дуги может достигать нескольких метров. Поэтому электрическая дуга, особенно в мощных силовых цепях, на напряжение выше 1 кВ представляет собой большую опасность, хотя серьезные последствия могут быть и в установках на напряжение ниже 1 кВ. Вследствие этого электрическую дугу необходимо максимально ограничить и быстро погасить в цепях на напряжение как выше, так и ниже 1 кВ.

Процесс образования электрической дуги может быть упрощенно представлен следующим образом. При расхождении контактов вначале уменьшается контактное давление и соответственно контактная поверхность, увеличиваются (плотность тока и температура - начинаются местные (на отдельных участках площади контактов) перегревы, которые в дальнейшем способствуют термоэлектронной эмиссии, когда под воздействием высокой температуры увеличивается скорость движения электронов и они вырываются с поверхности электрода.

В момент расхождения контактов, то есть разрыва цепи, на контактном промежутке быстро восстанавливается напряжение. Поскольку при этом расстояние между контактами мало, возникает высокой напряженности, под воздействием которого с поверхности электрода вырываются электроны. Они разгоняются в электрическом поле и при ударе в нейтральный атом отдают ему свою кинетическую энергию. Если этой энергии достаточно, чтобы оторвать хотя бы один электрон с оболочки нейтрального атома, то происходит процесс ионизации.

Образовавшиеся свободные электроны и ионы составляют плазму ствола дуги, то есть ионизированного канала, в котором горит дуга и обеспечивается непрерывное движение частиц. При этом отрицательно заряженные частицы, в первую очередь электроны, движутся в одном направлении (к аноду), а атомы и молекулы газов, лишенные одного или нескольких электронов, - положительно заряженные частицы - в противоположном направлении (к катоду). Проводимость плазмы близка к проводимости металлов.

В стволе дуги проходит большой ток и создается высокая температура. Такая температура ствола дуги приводит к термоионизации - процессу образования ионов вследствие соударения молекул и атомов, обладающих большой кинетической энергией при высоких скоростях их движения (молекулы и атомы среды, где горит дуга, распадаются на электроны и положительно заряженные ионы). Интенсивная термоионизация поддерживает высокую проводимость плазмы. Поэтому падение напряжения по длине дуги невелико.

В электрической дуге непрерывно протекают два процесса: кроме ионизации, также деионизация атомов и молекул. Последняя происходит в основном путем диффузии, то есть переноса заряженных частиц в окружающую среду, и рекомбинации электронов и положительно заряженных ионов, которые воссоединяются в нейтральные частицы с отдачей энергии, затраченной на их распад. При этом происходит теплоотвод в окружающую среду.

Таким образом, можно различить три стадии рассматриваемого процесса: зажигание дуги, когда вследствие ударной ионизации и эмиссии электронов с катода начинается дуговой разряд и интенсивность ионизации выше, чем деионизации, устойчивое горение дуги, поддерживаемое термоионизацией в стволе дуги, когда интенсивность ионизации и деионизации одинакова, погасание дуги, когда интенсивность деионизации выше, чем ионизации.

Способы гашения дуги в коммутационных электрических аппаратах

Для того чтобы отключить элементы электрической цепи и исключить при этом повреждение коммутационного аппарата, необходимо не только разомкнуть его контакты, но и погасить появляющуюся между ними дугу. Процессы гашения дуги, так же как и горения, при переменном и постоянном токе различны. Это определяется тем, что в первом случае ток в дуге каждый полупериод проходит через нуль. В эти моменты выделение энергии в дуге прекращается и дуга каждый раз самопроизвольно гаснет, а затем снова загорается.

Практически ток в дуге становится близким нулю несколько раньше перехода через нуль, так как при снижении тока энергия, подводимая к дуге, уменьшается, соответственно снижается температура дуги и прекращается термоионизация. При этом в дуговом промежутке интенсивно идет процесс деионизации. Если в данный момент разомкнуть и быстро развести контакты, то последующий электрический пробой может не произойти и цепь будет отключена без возникновения дуги. Однако практически это сделать крайне сложно, и поэтому принимают специальные меры ускоренного гашения дуги, обеспечивающие охлаждение дугового пространства и уменьшение числа заряженных частиц.

В результате деионизации постепенно увеличивается электрическая прочность промежутка и одновременно растет восстанавливающееся напряжение на нем. От соотношения этих величин и зависит, загорится ли на очередную половину периода дуга или нет. Если электрическая прочность промежутка возрастает быстрее и оказывается больше восстанавливающего напряжения, дуга больше не загорится, в противном же случае будет обеспечено устойчивое горение дуги. Первое условие и определяет задачу гашения дуги.

В коммутационных аппаратах используют различные способы гашения дуги.

Удлинение дуги

При расхождении контактов в процессе отключения электрической цепи возникшая дуга растягивается. При этом улучшаются условия охлаждения дуги, так как увеличивается ее поверхность и для горения требуется большее напряжение.

Деление длинной дуги на ряд коротких дуг

Если дугу, образовавшуюся при размыкании контактов, разделить на К коротких дуг, например затянув ее в металлическую решетку, то она погаснет. Дуга обычно затягивается в металлическую решетку под воздействием электромагнитного поля, наводимого в пластинах решетки вихревыми токами. Этот способ гашения дуги широко используется в коммутационных аппаратах на напряжение ниже 1 кВ, в частности в автоматических воздушных выключателях.

Охлаждение дуги в узких щелях

Гашение дуги в малом объеме облегчается. Поэтому в широко используют дугогасительные камеры с продольными щелями (ось такой щели совпадает по направлению с осью ствола дуги). Такая щель обычно образуется в камерах из изоляционных дугостойких материалов. Благодаря соприкосновению дуги с холодными поверхностями происходят ее интенсивное охлаждение, диффузия заряженных частиц в окружающую среду и соответственно быстрая деионизация.

Кроме щелей с плоскопараллельными стенками, применяют также щели с ребрами, выступами, расширениями (карманами). Все это приводит к деформации ствола дуги и способствует увеличению площади соприкосновения ее с холодными стенками камеры.

Втягивание дуги в узкие щели обычно происходит под действием магнитного поля, взаимодействующего с дугой, которая может рассматриваться как проводник с током.

Внешнее для перемещения дуги наиболее часто обеспечивают за счет катушки, включаемой последовательно с контактами, между которыми возникает дуга. Гашение дуги в узких щелях используют в аппаратах на все напряжения.

Гашение дуги высоким давлением

При неизменной температуре степень ионизации газа падает с ростом давления, при этом возрастает теплопроводность газа. При прочих равных условиях это приводит к усиленному охлаждению дуги. Гашение дуги при помощи высокого давления, создаваемого самой же дугой в плотно закрытых камерах, широко используется в плавких предохранителях и ряде других аппаратов.

Гашение дуги в масле

Если помещены в масло, то возникающая при их размыкании дуга приводит к интенсивному испарению масла. В результате вокруг дуги образуется газовый пузырь (оболочка), состоящий в основном из водорода (70...80 %), а также паров масла. Выделяемые газы с большой скоростью проникают непосредственно в зону ствола дуги, вызывают перемешивание холодного и горячего газа в пузыре, обеспечивают интенсивное охлаждение и соответственно деионизацию дугового промежутка. Кроме того, деионизирующую способность газов повышает создаваемое при быстром разложении масла давление внутри пузыря.

Интенсивность процесса гашения дуги в масле тем выше, чем ближе соприкасается дуга с маслом и быстрее движется масло по отношению к дуге. Учитывая это, дуговой разрыв ограничивают замкнутым изоляционным устройством - дугогасительной камерой . В этих камерах создается более тесное соприкосновение масла с дугой, а при помощи изоляционных пластин и выхлопных отверстий образуются рабочие каналы, по которым происходит движение масла и газов, обеспечивая интенсивное обдувание (дутье) дуги.

Дугогасительные камеры по принципу действия разделяют на три основные группы: с автодутьем, когда высокие давление и скорость движения газа в зоне дуги создаются за счет выделяющейся в дуге энергии, с принудительным масляным дутьем при помощи специальных нагнетающих гидравлических механизмов, с магнитным гашением в масле, когда дуга под действием магнитного поля перемещается в узкие щели.

Наиболее эффективны и просты дугогасительные камеры с автодутьем . В зависимости от расположения каналов и выхлопных отверстий различают камеры, в которых обеспечивается интенсивное обдувание потоками газопаровой смеси и масла вдоль дуги (продольное дутье) или поперек дуги (поперечное дутье). Рассмотренные способы гашения дуги широко используются в выключателях на напряжение выше 1 кВ.

Другие способы гашения дуги в аппаратах на напряжение выше 1 кВ

Кроме указанных выше способов гашения дуги, используют также: сжатый воздух, потоком которого вдоль или поперек обдувается дуга, обеспечивая ее интенсивное охлаждение (вместо воздуха применяются и другие газы, часто получаемые из твердых газогенерирующих материалов - фибры, винипласта и т. п. - за счет их разложения самой горящей дугой), обладающий более высокой электрической прочностью, чем воздух и водород, в результате чего дуга, горящая в этом газе, даже при атмосферном давлении достаточно быстро гасится, высокоразреженный газ (вакуум), при размыкании контактов в котором дуга не загорается вновь (гаснет) после первого прохождения тока через нуль.

Введение

Способы гашения электрической дуги… Тема актуальна и интересна. Итак начнем. Задаемся вопросами: Что такое электрическая дуга? Как её контролировать? Какие процессы происходят при её образовании? Из чего она состоит? И как выглядит.

Что такое электрическая дуга?

Электрическая дуга (Вольтова дуга, Дуговой разряд ) -- физическое явление, один из видов электрического разряда в газе. Впервые была описана в 1802 году русским учёным В.В.Петровым.

Электрическая дуга является частным случаем четвёртой формы состояния вещества -- плазмы -- и состоит из ионизированного, электрически квазинейтрального газа. Присутствие свободных электрических зарядов обеспечивает проводимость электрической дуги.

Образование и свойства дуги

При увеличении напряжения между двумя электродами до определённого уровня в воздухе между электродами возникает электрический пробой. Напряжение электрического пробоя зависит от расстояния между электродами и пр. Зачастую, для инициирования пробоя при имеющемся напряжении электроды приближают друг к другу. Во время пробоя между электродами обычно возникает искровой разряд, импульсно замыкая электрическую цепь.

Электроны в искровых разрядах ионизируют молекулы в воздушном промежутке между электродами. При достаточной мощности источника напряжения, в воздушном промежутке образуется достаточное количество плазмы для того, чтобы напряжение пробоя (или сопротивление воздушного промежутка) в этом месте значительно упало. При этом искровые разряды превращаются в дуговой разряд -- плазменный шнур между электродами, являющийся плазменным тоннелем. Эта дуга является по сути проводником, и замыкает электрическую цепь между электродами, средний ток увеличивается ещё больше нагревая дугу до 5000-50000 K. При этом считается, что поджиг дуги завершён.

Взаимодействие электродов с плазмой дуги приводит к их нагреву, частичному расплавлению, испарению, окислению и другим видам коррозии. Электрическая сварочная дуга представляет собой мощный электрический разряд, протекающий в газовой среде. Дуговой разряд характеризуется двумя основными особенностями: выделением значительного количества тепла и сильным световым эффектом. Температура обычной сварочной дуги около 6000°С.

Свет дуги ослепительно яркий и используется в различных осветительных устройствах. Дуга излучает большое количество видимых и невидимых тепловых (инфракрасных) и химических (ультрафиолетовых) лучей. Невидимые лучи вызывают воспаление глаз и обжигают кожу человека, поэтому для защиты от них сварщики применяют специальные щитки и спецодежду.

Использование дуги

В зависимости от среды, в которой происходит дуговой разряд, различают следующие сварочные дуги:

1. Открытая дуга. Горит в воздухе. Состав газовой среды зоны дуги-- воздух с примесью паров свариваемого металла, материала электродов и электродных покрытий.

2. Закрытая дуга. Горит под слоем флюса. Состав газовой среды зоны дуги -- пары основного металла, материала электрода и защитного флюса.

3. Дуга с подачей защитных газов. В дугу подаются.под давлением различные газы -- гелий, аргон, углекислый газ, водород, светильный газ и различные смеси газов. Состав газовой среды в зоне дуги -- атмосфера защитного газа, пары материала электрода и основного металла.

Питание дуги может осуществляться от источников постоянного или переменного тока. В случае питания постоянным током различают дугу прямой полярности (минус источника питания на электроде, плюс -- на основном металле) и обратной полярности (минус на основном металле, плюс на электроде). В зависимости от материала электродов дуги различают с плавким (металлическим) и неплавким (угольным, вольфрамовым, керамическим и др.) электродами.

При сварке дуга может быть прямого действия (основной металл участвует в электрической цепи дуги) и косвенного действия (основной металл не участвует в электрической цепи дуги). Дуга косвенного действия применяется сравнительно мало.

Плотность тока в сварочной дуге может быть различна. Применяются дуги с нормальной плотностью тока -- 10--20 а/мм2 (обычная ручная сварка, сварка в некоторых защитных газах) и с большой плотностью тока -- 80--120 а/мм2 и больше (автоматическая, полуавтоматическая сварка под флюсом, в среде защитных газов).

Возникновение дугового разряда возможно только в случае, когда газовый столб между электродом и основным металлом будет ионизирован, т. е. будет содержать ионы и электроны. Это достигается тем, что газовой молекуле или атому сообщается соответствующая энергия, называемая энергией ионизации, в результате чего из атомов и молекул выделяются электроны. Среду дугового разряда можно представить газовым проводником электрического тока,имеющим круглоцилиндрическую форму. Состоит дуга из трех областей -- катодная область, столб дуги, анодная область.

Во время горения дуги на электроде и основном металле наблюдаются активные пятна, которые представляют собой нагретые участки на поверхности электрода и основного металла; через эти пятна проходит весь ток дуги. На катоде пятно именуется катодным, на аноде -- анодным. Сечение средней части столба дуги несколько больше размеров катодного и анодного пятен. Его размер соответственно зависит от размеров активных пятен.

Напряжение дуги изменяется в зависимости от плотности тока. Эта зависимость, изображенная графически, называется статической характеристикой дуги. При малых значениях плотности тока статическая характеристика имеет падающий характер, т. е. напряжение дуги уменьшается по мере увеличения тока. Это обусловлено тем, что с увеличением тока площадь сечения столба дуги и электропроводность увеличиваются, а плотность тока и градиент потенциала в столбе дуги уменьшаются. Величина катодного и анодного падений напряжений дуги не изменяется от величины тока и зависит только от материала электрода, основного металла, газовой среды и давления газа в зоне дуги.

При плотностях тока сварочной дуги обычных режимов, применяемых при ручной сварке, напряжение дуги не зависит от величины тока, так как площадь сечения столба дуги увеличивается пропорционально току, а электропроводность изменяется весьма мало, и плотность тока в столбе дуги практически остается постоянной. При этом величина катодного и анодного падений напряжений остается неизменной. В дуге большой плотности тока при увеличении силы тока катодное пятно и сечение столба дуги не могут увеличиваться, хотя плотность тока возрастает пропорционально силе тока. При этом температура и электропроводность столба дуги несколько повышаются.

Напряжение электрического поля и градиент потенциала столба дуги будут возрастать с увеличением силы тока. Катодное падение напряжения увеличивается, вследствие чего статическая характеристика будет носить возрастающий характер, т. е. напряжение дуги с увеличением тока дуги будет возрастать. Возрастающая статическая характеристика является особенностью дуги высокой плотности тока в различных газовых средах. Статические характеристики относятся к установившемуся стационарному состоянию дуги при неизменной ее длине.

Устойчивый процесс горения дуги при сварке может происходить при соблюдении определенных условий. На устойчивость процесса горения дуги влияет ряд факторов; напряжение холостого хода источника питания дуги, род тока, величина тока, полярность, наличие индуктивности в цепи дуги, наличие емкости, частота тока и др.

Способствуют улучшению устойчивости дуги увеличение тока, напряжения холостого хода источника питания дуги, включение индуктивности в цепь дуги, увеличение частоты тока (при питании переменным током) и ряд других условий. Устойчивость может быть также существенно улучшена за счет применения специальных электродных обмазок, флюсов, защитных газов и ряда других технологических факторов.

гашение электрическая дуга сварочный

В современной промышленности сварка имеет большое значение, она имеет очень широкую область применения во всех отраслях промышленности. Для осуществления сварочного процесса необходима сварочная дуга.

Что такое сварочная дуга, ее определение

Сварочной дугой считается очень большой по величине мощности и длительности электрический разряд, который существует между электродами, на которые подано напряжение, в смеси газов. Ее свойства отличаются высокой температурой и плотностью тока, благодаря которым она способна расплавлять металлы, имеющие температуру плавления выше 3000 градусов. Вообще можно сказать, что электрическая дуга – это проводник из газа, который преобразует электрическую энергию в тепловую. Электрическим зарядом называется прохождение электрического тока через газовую среду.

Существует несколько видов электрического разряда:

  • Тлеющий разряд. Возникает в низком давлении, применяется в люминесцентных лампах и плазменных экранах;
  • Искровой разряд. Возникает, когда давление равно атмосферному, отличается прерывистой формой. Искровому разряду соответствует молния, также применяется для зажигания двигателей внутреннего сгорания;
  • Дуговой разряд. Применяет при сварке и для освещения. Отличается непрерывистой формой, возникает при атмосферном давлении;
  • Коронный. Возникает, когда тело электрода шероховато и неоднородно, второй электрод может отсутствовать, то есть возникает струя. Применяется для очистки газов от пыли;

Природа и строение

Природа сварочной дуги не так уж и сложна, как может показаться на первый взгляд. Электрический ток, проходя через катод, затем проникает в ионизированный газ, происходит разряд с ярким свечением и очень высокой температурой, поэтому температура электрической дуги может достигать 7000 – 10000 градусов. После этого ток перетекает на обрабатываемый свариваемый материал. Так как температура настолько высока дуга выделяет вредное для человеческого организма ультрафиолетовое и инфракрасное излучения, оно может навредить глазам или оставить световые ожоги на коже, поэтому при проведении сварочного процесса необходима надлежащая защита.

Строение сварочной дуги представляет собой три главные области: анодная, катодная и столб дуги. Во время горения дуги на катоде и аноде образуются активные пятна – области, в которых температура достигает самых высоких значений, именно через данные области проходит весь электрический ток, анодные и катодные области представляют собой более большие падения напряжения. А сам столб располагается между этими областями падение напряжения в столбе очень незначительно. Таким образом, длина сварочной дуги представляет собой сумму вышеперечисленных областей, обычно длина равна нескольким миллиметрам, когда анодные и катодные области, соответственно, равны 10-4 и 10-5 см. Самая благоприятная длина примерно равна 4-6мм, при такой длине обеспечивается постоянная и благоприятная температура.

Разновидности

Виды сварочной дуги отличаются схемой подвода сварочного тока и средой, в которой они возникают, наиболее распространенными вариантами являются:

  • Прямое действие. При таком способе сварочный располагается параллельно свариваемой металлической конструкции и дуга возникает под углом девяносто градусов по отношению к электроду и металлу;
  • Сварочная дуга косвенного действия. Возникает, когда используется два электрода, которые располагаются под углом 40-60 градусов к поверхности свариваемой детали, дуга возникает между электродами и сваривает металл;

Также существует классификация в зависимости от атмосферы, в которой они возникают:

  • Открытый тип. Дуга данного типа горит на воздухе и вокруг нее образовывается газовая фаза, содержащая пары свариваемого материала, электродов и их покрытий;
  • Закрытый тип. Горение такой дуги происходит под слоем флюса, в газовую фазу, образовавшуюся вокруг дуги входят пары металла, электрода и флюса;
  • Дуга с подачей газов. В горящую дугу подаются сжатые газы – гелий, аргон, углекислый газ, водород и другие различные смеси газов, подаются они для того, чтобы не окислялся свариваемый металл, их подача способствует восстановительной или нейтральной среде. В газовую фазу вокруг дуги входят – подающийся газ, пары металла и электрода;

Также различают по длительности действия – стационарная (для долгого применения) и импульсная (для однократного), по материалу используемого электрода – угольные, вольфрамовые – неплавящиеся электроды и металлические – плавящиеся. Самый распространенный плавящийся электрод – стальной. На сегодняшний день наиболее часто применяется сварка с неплавящимся электродом. Таким образом, виды сварочных дуг разнообразны.

Условия горения

При стандартных условиях, то есть температуре в 25 градусов и давлении в 1 атмосферу газы не способны проводить электрический ток. Для того, чтобы образовалась дуга необходимо, чтобы газы между электродами были ионизированы, то есть имели в своем составе различные заряженные частицы – электроны или ионы (катионы или анионы). Процесс образования ионизированного газа будет называться ионизацией, а работа, которую необходимо затратить на отрыв электрона у атомной частицы для образования электрона и иона – работой ионизации, которая измеряется в электрон-вольтах и называется потенциалом ионизации. Какую именно энергию необходимо затратить для отрыва электрона от атома зависит от природы газовой фазы, значения могут быть от 3,5 до 25 эВ. Самый маленький потенциал ионизации имеют металлы щелочной и щелочно-земельной группы – калий, кальций и, соответственно, их химический соединения. Такими соединениями покрывают электроды, для того, чтобы они способствовали устойчивому существованию и горению сварочной дуги.

Также для возникновения и горения дуги необходима постоянная температура на катод, которая зависит от природы катода, его диаметра, размера и температуры окружающей среды. Температура электрической дуги поэтому должна быть постоянной и не колебаться, благодаря огромным значениям силы тока температура может достигать 7 тысяч градусов, таким образом, сваркой можно присоединять абсолютно все материалы. Постоянная температура обеспечивается с помощью исправного источника питания, поэтому его выбор при конструировании сварочного аппарата очень важен, он оказывает влияние на свойства дуги.

Возникновение

Она возникает при быстром замыкании, то есть когда электрод соприкасается с поверхность свариваемого материала, из-за колоссальной температуры поверхность материала расплавляется, а между электродом и поверхность образуется небольшая полоса из расплавившегося материала. К моменту расхождения электрода и свариваемого материала образуется шейка из материала, которая моментально разрывается и испаряется из-за высокого значений плотности тока. Газ ионизируется и возникает электрическая дуга. Возбудить ее можно с помощью касания или чирканья.

Особенности

Она имеет следующие особенности по сравнению с другими электрическими зарядами:

  • Высокая плотность тока, которая достигает нескольких тысяч ампер на квадратный сантиметр, благодаря чему достигается очень высокая температура;
  • Неравномерность распределения электрического поля в пространстве между электродами. Вблизи электродов падение напряжения очень велико, когда в столбе – наоборот;
  • Огромная температура, которая достигает самых больших значений в столбе из-за высокой плотности тока. При увеличении длины столба температура уменьшается, а при сужении – наоборот увеличивается;
  • С помощью сварочных дуг можно получать самые различные вольт-амперные характеристики – зависимости падения напряжения от плотности тока при постоянной длине, то есть установившемся горении. На данный момент существует три вольтамперные характеристики.

Первая – падающая, когда при увеличении силы и,соответственно, плотности тока, напряжение падает. Вторая- жесткая, когда изменение силы тока никак не влияет на значение величины напряжения итретья – возрастающая, когда при увеличении силы тока напряжение также увеличивается.

Таким образом, сварочную дугу можно назвать самым лучшим и надежным способом скрепления металлических конструкций. Сварочный процесс оказывает большое влияние на сегодняшнюю промышленность, потому что только высокая температура сварочной дуги способна скреплять большинство металлов. Для получения качественных и надежных швов необходимо правильно и верно учитывать все характеристики дуги, следить за всеми значениями, благодаря этому процедура пройдет быстро и наиболее эффективно. Также необходимо учитывать свойства дуги: плотность тока, температуру и напряжение.

Электрическая дуга может быть крайне разрушительной для оборудования и, что более важно, представлять опасность для людей. Тревожное количество вызванных ею несчастных случаев происходит ежегодно, часто приводя к серьезным ожогам или смерти. К счастью, в электротехнической промышленности достигнут значительный прогресс в части создания средств и методов защиты от воздействия дуги.

Причины и места возникновения

Электрическая дуга является одной из самых смертоносных и наименее изученных опасностей электроэнергии и преобладает в большинстве отраслей промышленности. Широко признается, что чем выше напряжение электрической системы, тем больше риск для людей, работающих на территории или вблизи проводов и оборудования, находящихся под напряжением.

Тепловая энергия от вспышки дуги, однако, может на самом деле быть больше и возникать чаще при более низких напряжениях с теми же разрушительными последствиями.

Возникновение электрической дуги, как правило, происходит при случайном контакте между токоведущим проводником, таким как контактный провод троллейбусной или трамвайной линии с другим проводником, или заземленной поверхностью.

Когда это происходит, возникающий ток короткого замыкания плавит провода, ионизирует воздух и создает огненный канал проводящей плазмы характерной дугообразной формы (отсюда и название), причем температура электрической дуги в ее сердцевине может достигать свыше 20000 °С.

Что же такое электрическая дуга?

По сути, так в обиходе именуют хорошо известный в физике и электротехнике дуговой разряд - вид самостоятельного электроразряда в газе. Каковы же физические свойства электрической дуги? Она горит в широком диапазоне давления газа, при постоянном или переменном (до 1000 Гц) напряжении между электродами в диапазоне от нескольких вольт (сварочная дуга) до десятков киловольт. Максимальная плотность тока дуги наблюдается на катоде (10 2 -10 8 А/см 2), где она стягивается в катодное пятно, очень яркое и малое по размерам. Оно беспорядочно и непрерывно перемещается по всей площади электрода. Температура его такова, что материал катода в нем кипит. Поэтому возникают идеальные условия для термоэлектронной эмиссии электронов в прикатодное пространство. Над ним образуется небольшой слой, заряженный положительно и обеспечивающий ускорение эмитируемых электронов до скоростей, при которых они ударно ионизируют атомы и молекулы среды в межэлектродном промежутке.

Такое же пятно, но несколько большее и малоподвижное, формируется и на аноде. Температура в нем близкая к катодному пятну.

Если ток дуги порядка нескольких десятков ампер, то из обоих электродов вытекают с большой скоростью нормально к их поверхностям плазменные струи или факелы (см. на фото ниже).

При больших токах (100-300 А) возникают добавочные плазменные струи, и дуга становится похожей на пучок плазменных нитей (см. на фото ниже).

Как проявляет себя дуга в электрооборудовании

Как было сказано выше, катализатором ее возникновения является сильное тепловыделение в катодном пятне. Температура электрической дуги, как уже упоминалось, может достигать 20 000 °С, примерно в четыре раза выше, чем на поверхности солнца. Этот зной может быстро расплавить или даже испарить медь проводников, которая имеет температуру плавления около 1084 °С, намного ниже, чем в дуге. Поэтому в ней часто образуются пары меди и брызги расплавленного металла. Когда медь переходит из твердого состояния в пар, она расширяется в несколько десятков тысяч раз от своего первоначального объема. Это эквивалентно тому, что кусочек меди в один кубический сантиметр изменится до размера 0,1 кубометра в доли секунды. При этом возникнет давление высокой интенсивности и звуковые волны, распространяющиеся вокруг с большой скоростью (которая может быть свыше 1100 км в час).

Воздействие электрической дуги

Тяжелые травмы, и даже со смертельным исходом, при ее возникновении могут получить не только лица, работающие на электрооборудования, но и люди, находящиеся поблизости. Дуговые травмы могут включать в себя внешние ожоги кожи, внутренние ожоги от вдыхания горячих газов и испаренного металла, повреждения слуха, зрения, такие как слепота от ультрафиолетового света вспышки, а также многие другие разрушительные повреждения.

При особо мощной дуге может также произойти такое явление, как ее взрыв, создающий давление более 100 килопаскалей (кПа) с выбросом частиц мусора, подобных шрапнели, со скоростью до 300 метров в секунду.

Лица, перенесшие воздействия электрического тока электрической дуги, могут нуждаться в серьезном лечения и реабилитации, а цена их травм может быть экстремальной - физически, эмоционально и финансово. Хотя законодательство требует от предприятий проведения оценки рисков для всех видов трудовой деятельности, однако риск поражения электрической дугой часто упускается из виду, потому что большинство людей не знают, как оценивать и эффективно управлять этой опасностью. Защита от воздействия электрической дуги предполагает использование целого комплекса средств, включая применение при работе с электрооборудованием, находящимся под напряжением, специальных электрозащитных средств, спецодежды, а также самого оборудования, прежде всего высоко- низковольтных коммутационных электроаппаратов, сконструированных с применением средств гашения дуги.

Дуга в электрических аппаратах

В этом классе электротехнических устройств (автоматические выключатели, контакторы, магнитные пускатели) борьба с данным явлением имеет особое значение. Когда контакты выключателя, не оборудованного специальными устройствами для предотвращения дуги, размыкаются, то она обязательно зажигается между ними.

В момент, когда контакты начинают отделяться, площадь последних уменьшается быстро, что приводит к увеличению плотности тока и, следовательно, к повышению температуры. Выделяемого тепла в промежутке между контактами (обычная среда масло или воздух) достаточно для ионизации воздуха или испарения и ионизации масла. Ионизированный воздух или пар действует как проводник для тока дуги между контактами. Разность потенциалов между ними весьма мала, но ее достаточно для поддержания дуги. Следовательно, ток в цепи остается непрерывным тех пор, пока дуга не устранена. Она не только задерживает процесс прерывания тока, но также генерирует огромное количество теплоты, которое может привести к повреждению самого выключателя. Таким образом, главная проблема в выключателе (прежде всего высоковольтном) - это гашение электрической дуги в кратчайшие сроки для того, чтобы выделяемое в ней тепло не могло достичь опасного значения.

Факторы поддержания дуги между контактами выключателей

К ним относятся:

2. Ионизированные частицы между ними.

Принимая это, отметим дополнительно:

  • Когда между контактами имеется небольшой промежуток, даже небольшой разности потенциалов достаточно для поддержания дуги. Одним из способов ее гашения является разделение контактов на такое расстояние, что разность потенциалов становится недостаточной для поддержания дуги. Тем не менее этот метод является практически неосуществимым в высоковольтном оборудовании, где может потребоваться разделение на многие метры.
  • Ионизированные частицы между контактами, как правило, поддерживают дугу. Если ее путь деионизирован, то процесс гашения будет облегчен. Это может быть достигнуто путем охлаждения дуги или удаления ионизированного частиц из пространства между контактами.
  • Есть два способа, посредством которых осуществляется защита от электрической дуги в выключателях:

Метод высокого сопротивления;

Метод нулевого тока.

Гашение дуги увеличением ее сопротивления

В этом методе сопротивление на пути дуги растет с течением времени так, что ток уменьшается до значения, недостаточного для ее поддержания. Следовательно, он прерывается, и электрическая дуга гаснет. Основной недостаток этого метода состоит в том, что время гашения достаточно велико, и в дуге успевает рассеиваться огромная энергия.

Сопротивление дуги может быть увеличена путем:

  • Удлинения дуги - сопротивление дуги прямо пропорциональна ее длине. Длина дуги может быть увеличена за счет изменения зазора между контактами.
  • Охлаждением дуги, точнее среды между контактами. Эффективное охлаждение обдувом должно быть направлено вдоль дуги.
  • Помещением контактов в трудноионизируемую газовую среду (газовые выключатели) или в вакуумную камеру (вакуумные выключатели).
  • Снижением поперечного сечения дуги путем ее пропускания через узкое отверстие, или снижением площади контактов.
  • Разделением дуги - ее сопротивление может быть увеличено путем разделения на ряд небольших дуг, соединенных последовательно. Каждая из них испытывает действие удлинения и охлаждения. Дуга может быть разделена путем введения некоторых проводящих пластин между контактами.

Гашение дуги методом нулевого тока

Этот метод используется только в цепях переменного тока. В нем сопротивление дуги сохраняется низким, пока ток не снижается до нуля, где она гаснет естественным путем. Ее повторное зажигание предотвращается несмотря на увеличение напряжения на контактах. Все современные выключатели больших переменных токов используют этот метод гашения дуги.

В системе переменного тока последний падает до нуля после каждого полупериода. В каждое такое обнуление дуга гаснет на короткое время. При этом среда между контактами содержит ионы и электроны, так что ее диэлектрическая прочность небольшая и может быть легко разрушена растущим напряжением на контактах.

Если это происходит, электрическая дуга будет гореть в течение следующего полупериода тока. Если сразу же после его обнуления диэлектрическая прочность среды между контактами растет быстрее, чем напряжение на них, то дуга не зажжется и ток будет прерван. Быстрое увеличение диэлектрической прочности среды вблизи нуля тока может быть достигнуто путем:

  • рекомбинации ионизированных частиц в пространстве между контактами в нейтральные молекулы;
  • удалением ионизированных частиц прочь и заменой их нейтральными частицами.

Таким образом, реальной проблемой в прерывании переменного тока дуги является быстрая деионизация среды между контактами, как только ток становится равным нулю.

Способы деионизация среды между контактами

1. Удлинение зазора: диэлектрическая прочность среды пропорциональна длине зазора между контактами. Таким образом, при быстром размыкании контактов может быть достигнута и более высокая диэлектрическая прочность среды.

2. Высокое давление. Если оно в непосредственной близости от дуги, увеличивается, плотность частиц, составляющих канал дугового разряда, также растет. Повышенная плотность частиц приводит к высокому уровню их деионизации и, следовательно, диэлектрическая прочность среды между контактами увеличивается.

3. Охлаждения. Естественная рекомбинация ионизированных частиц происходит быстрее, если они остывают. Таким образом, диэлектрическая прочность среды между контактами может быть увеличена путем охлаждения дуги.

4. Эффект взрыва. Если ионизированные частицы между контактами сметены прочь и заменены неионизированными, то диэлектрическая прочность среды может быть увеличена. Это может быть достигнуто с помощью газового взрыва, направленного в зону разряда, или впрыскиванием масла в межконтактное пространство.

В таких выключателях в качестве среды гашения дуги используется газ гексафторид серы (SF6). Он имеет сильную тенденцию поглощать свободные электроны. Контакты выключателя открываются в потоке высокого давления SF6) между ними (см. рисунок ниже).

Газ захватывает свободные электроны в дуге и формирует избыток малоподвижных отрицательных ионов. Число электронов в дуге быстро сокращается, и она гаснет.