Кабель волоконно-оптический. Многомодовый и одномодовый оптоволоконный кабель. Одномодовые и многомодовые оптические волокна

Оптоволоконные кабели имеют схожую структуру, но могут отличаться по различным характеристикам. По количеству модулей, волокон, толщине, материалу внешней оболочки и т.д. Оптические кабели бывают одномодовыми и многомодовыми. Кабель оптический одномодовый предназначен для передачи одного луча света, а многомодовый – нескольких лучей. Как правило, кабель оптический одномодовый предназначен для использования в телекоммуникационных сетях, для создания магистралей по передачи данных на большие расстояния.

В тоже время, многомодовые используются в сетях средней и малой дальности. имеет отличающуюся от многомодового структуру. В последнее время говорится о том, что многомодовые оптоволоконные кабели имеют преимущество перед одномодовыми, это по сути дела так, потому что они более чем в стократ превосходят одномодовые по производительности. Но, не смотря на все это, на дальние расстояния все же предпочтительней использовать одномодовые оптические кабели, потому что они давно и хорошо зарекомендовали себя в этой области.

Назначение кабеля оптического одномодового

Современный кабель оптический одномодовый является разновидностью оптоволоконного кабеля и предназначается для передачи одного пучка света (посредством многомодового передаются несколько пучков одновременно) при использовании в составе телекоммуникационных сетей и при организации магистралей, передающих данные на значительные расстояния.

Существующие ныне оптоволоконные кабели при схожести структуры различаются своими характеристиками, зависящими от количества модулей, толщины, числа волокон, материала внешней оболочки и проч. Кабель оптический одномодовый, в отличие от многомодового, при передаче сигнала по определению лишен межмодовой дисперсии, возникающей в результате разновременности достижения противоположного конца кабеля вводимыми в волокно одновременно разными модами. Одной из важных характеристик кабеля является также СКС-диаметр его сердцевины, для одномодового это, как правило, 8-10 мкм.

Путем практических исследований различных оптических кабелей специалисты определили, что при расстояниях, превышающих между объектами 500 метров, стоит отдать предпочтение одномодовым, обеспечивающим высокую и надежную скорость передачи на большой дальности при строительстве крупномасштабных сетей. Многомодовый кабель показывал результаты пониже.

Особенности кабеля оптического одномодового

Свое наименование кабель оптический одномодовый получил из-за того, что в процессе работы в оптоволокне образуется небольшое число мод, поэтому принято условно считать, что свет при этом распространяется по единственной траектории, следовательно, такое волокно и назвали одномодовым. А так, современное оптоволокно может нести в себе более двух сотен параллельных волокон, при этом, как правило, имеется возможность комбинировать сочетания в одном кабеле волокон, относящихся к разным типам.

Конструктивно оптоволоконный кабель состоит из единственной или же нескольких оптических волокон, являющихся, по сути, стеклянными нитями. Соответственно, передача информации производится переносом света внутри оптоволокна. Используется при этом процесс, называемый полным внутренним отражением. Принцип работы базируется на том, что световые волны отражаются от границы, разделяющей две прозрачные среды с различными показателями преломления.

Чаще всего кабель оптический одномодовый применяется для организации волоконно-оптических систем связи, прокладываемым по тоннелям, коллекторам и внутри зданий и помещений. Наружная оболочка его выполняется, как правило, из материалов, не поддерживающих и не распространяющих горение.

Преимущества кабеля оптического одномодового

Современный кабель оптический одномодовый характеризуется существенными преимуществами перед используемыми ранее медными проводниками. К ним безусловно относятся:
  • значительно большая полоса пропускания,
  • повышенная степень помехозащищенности (в частности, в области невосприимчивости к электромагнитным помехам и наводкам),
  • относительно малые объем и вес,
  • световой сигнал с малым затуханием,
  • гальваническая развязка вновь подключаемого оборудования,
  • надежная защита от несанкционированных подключений, что дополнительно защищает передаваемую информацию и проч.
Среди основных параметров оптоволоконных кабелей выделяют длину волны, размер волокон, диапазон минимальной полосы пропускания, максимальное затухание и ряд других. Кабель оптический одномодовый позволяет транслировать данные на скоростях до сотен Гбит/с при снижении стоимости материалов и технологий.

Типы оптических волокон

Существует два типа оптических волокон: многомодовые (ММ ) и одномодовые (SM ), отличающиеся диаметрами световедущей сердцевины. Многомодовое волокно , в свою очередь, бывает двух типов: со ступенчатым и градиентным профилями показателя преломления по его сечению.

Многомодовое оптическое волокно со ступенчатым показателем преломления

В ступенчатом оптоволокне могут возбуждаться и распространяться до тысячи мод с различным распределением по сечению и длине оптоволокна. Моды имеют различные оптические пути и, следовательно, различные времена распространения по оптоволокну, что приводит к уширению импульса света по мере его прохождения по оптоволокну. Это явление называется межмодовой дисперсией и оно непосредственно влияет на скорость передачи информации по оптоволокну. Область применения ступенчатых оптоволокон короткие (до 1 км) линии связи со скоростями передачи информации до 100 Мбайт/с, рабочая длина волны излучения, как правило, 0,85 мкм.

Многомодовое оптическое волокно с градиентным показателем преломления

Отличается от ступенчатого тем, что показатель преломления изменяется в нём плавно от середины к краю. В результате моды идут плавно, межмодовая дисперсия меньше.

Градиентное оптоволокно в соответствии со стандартами имеет диаметр сердцевины 50 мкм и 62,5 мкм, диаметр оболочки 125 мкм. Оно применяется во внутриобъектовых линиях длиной до 5 км, со скоростями передачи до 100 Мбайт/c на длинах волн 0,85 мкм и 1,35 мкм.

Одномодовое оптическое волокно

Стандартное одномодовое оптическое волокно имеет диаметр сердцевины 9 мкм и диаметр оболочки 125 мкм

В этом оптоволокне существует и распространяется только одна мода (точнее две вырожденные моды с ортогональными поляризациями), поэтому в нем отсутствует межмодовая дисперсия, что позволяет передавать сигналы на расстояние до 50 км со скоростью до 2,5 Гбит/с и выше без регенерации. Рабочие длины волн λ1 = 1,31 мкм и λ2 = 1,55 мкм.

Окна прозрачности оптоволокна.

Говоря об окнах прозрачности оптического волокна, обычно рисуют такую картинку.

Окна прозрачности оптоволокна

В настоящее время оптоволокно с такой характеристикой уже считается устаревшим. Достаточно давно освоен выпуск оптоволокна типа AllWave ZWP (zero water peak, с нулевым пиком воды), в котором устранены гидроксильные ионы в составе кварцевого стекла. Такое стекло имеет уже не окно, а прямо таки проём в диапазоне от 1300 до 1600 нм.

Все окна прозрачности лежат в инфракрасном диапазоне, то есть свет, передающийся по ВОЛС, не виден глазу. Стоит заметить, что в стандартное оптоволокно можно ввести и видимое глазом излучение. Для этого применяют либо небольшие блоки, присутствующие в некоторых рефлектометрах, либо даже слегка переделанную китайскую лазерную указку. С помощью таких приспособлений можно находить переломы в шнурах. Там, где оптоволокно сломано, будет видно яркое свечение. Такой свет быстро затухает в волокне, так что использовать его можно только на коротких расстояниях (не более 1 км).

Гибкость оптического волокна

Фотография, надеюсь, успокоит тех, кто привык видеть стекло бьющимся и хрупким.

Оптоволокно. Гибкость оптоволокна

Здесь изображено стандартное одномодовое волокно. То самое, 125 мкм кварцевого стекла, использующееся повсеместно. Из-за лакового покрытия оптоволокно способно выдерживать изгибы радиусом в 5 мм (хорошо видно на рисунке). Свет, а значит и сигнал через такой изгиб, увы, уже не проходит.

Информация о расшифровке маркировки оптоволоконных кабелей размещавшееся в этом месте размещена на страницах:

Оптоволокно

Оптоволокно (оптическое волокно) - это тонкая стеклянная (иногда пластиковая) нить предназначенная для передачи светового потока на большие расстояния.

В настоящее время оптоволокно широко используется как в промышленном так и в бытовом масштабе. В XXI-м веке оптоволокно и технологии работы с ним сильно упали в цене благодаря новым достижениям в техническом прогрессе и что ранее считалось слишком дорогим и инновационным, сегодня уже считается повседневным.

Каким же бывает оптоволокно:

  1. Одномодовым;
  2. Многомодовым;

В чем же отличие между этими двумя типами оптоволокна?

Итак, в любом оптоволокне есть центральная жила и оболочка:

Одномодовое оптоволокно

В одномодовом оптоволокне центральная жила составляет 9 мкм, а оболочка волокна составляет 125 мкм (отсюда маркировка одномодового волокна 9/125). Все световые потоки (моды) благодаря малому диаметру центральной жилы проходят параллельно или по центральной оси жилы. Диапазон длин волн использующихся в одномодовом оптоволокне составляет от 1310 до 1550 нм и используют сфокусированный узконаправленный лазерный луч.

Многомодовое оптоволокно

В многомодовом оптоволокне центральная жила составляет 50 мкм или 62,5 мкм, а оболочка так же 125 мкм. В связи с этим по многомодовому оптоволокну передается множество световых потоков, которые имеют различные траектории и постоянно отражаются от «краёв» центральной жилы. Длины волн использующихся в многомодовом оптоволокне составляет от 850 до 1310 нм и используют рассеянные лучи.

Отличия характеристик одномодового и многомодового оптоволокна

Немаловажную роль имеют затухания сигналов в одномодовом и многомодовом оптоволокне. Затухания в одномодовом волокне за счет узконаправленного луча в несколько раз ниже чем в многомодовом, что еще раз подчеркивает преимущество одномодового оптоволокна.

Наконец одним из главных критериев - это пропускная способность оптоволокна. И снова здесь преимущество имеет одномодовое оптоволокно перед многомодовым. Пропускная способность одномода в разы (если не сказать «на порядок») выше чем многомода.

Всегда было принято считать ВОЛС построенные на многомодовом оптоволокне намного дешевле чем на одномодовом. Это было обусловлено тем, что в многомоде в качестве источника света использовались светодиоды, а не лазеры. Однако в последние годы как в одномоде так и в многомоде стали применяться лазеры, что сказалось на уравнивании цен на оборудование для различного типа оптоволокна.

Оптоволоконный кабель (он же волоконно-оптический кабель ) – это принципиально другой тип кабеля по сравнению с двумя типами электрического или медного кабеля. Информация из него передается не электрическим сигналом, а световым. Главный его элемент - это прозрачное стекловолокно, по которому светло проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.

Рис. 1. Оптическое волокно. Структура

Структура оптоволоконного кабеля очень простая и похожая на структуру коаксиального электрического кабеля (рис. 1). Только вместо центрального медного проведения здесь используется тонкое (диаметром около 1 - 10 полутемных) стекловолокно (3), а вместо внутренней изоляции - стеклянная или пластиковая оболочка (2), что не позволяет свету выходить за пределы стекловолокна. В этом случае речь идет о режиме так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами переламывания (у стеклянной оболочки коэффициент переламывания значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, потому что экранирование от внешних электромагнитных препятствий здесь не нужно. Однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может совмещать под одною оболочкой несколько оптоволоконных кабелей).

Оптоволоконный кабель имеет исключительные характеристики по защищенности и секретности переданной информации. Никакие внешние электромагнитные препятствия в принципе не способны обезобразить световой сигнал, а сам сигнал не порождает внешних электромагнитных излучений. Подключиться к этому типа кабеля для несанкционированного прослушивания сети практически невозможно, потому что при этом нарушается целостность кабеля. Теоретически возможна полоса пропускания такого кабеля достигает величины 10 12 Гц, то есть 1000 ГГц, что несравненно выше, чем у электрических кабелей. Стоимость оптоволоконного кабеля постоянно снижается и в настоящий момент приблизительно равняется стоимости тонкого коаксиального кабеля.

Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, которые используются в локальных сетях, составляет от 5 до 20 дБ/км, что приблизительно отвечает показателям электрических кабелей на низких частотах. Но в случае оптоволоконного кабеля при росте частоты переданного сигнала затухания увеличивается очень незначительно, и на больших частотах (особенно свыше 200 МГц) его преимущество перед электрическим кабелем неопровержимые, у него просто нет конкурентов.

Недостатки оптоволоконного кабеля

Самый главный из них - высокая сложность монтажа (при установке оптоволоконного кабеля в разнимании необходима микронная точность, от точности стекловолокна и степени его полирования сильно зависит затухание в разнимании). Для установки разниманий применяют сварку или склеивание с помощью специального геля, который имеет такой же коэффициент переламывания света, что и стекловолокно. Во всяком случае для этого нужна высокая квалификация персонала и специальные инструменты. Поэтому чаще всего оптоволоконный кабель продается в виде предварительно нарезанных кусков разной длины, на обоих концах которых уже установлены разнимания нужного типа. Стоит помнить, что некачественная установка разнимания резко снижает допустимую длину кабеля, обусловленной затуханием.

Также нужно помнить, что использование оптоволоконного кабеля требует специальных оптических приемников и передатчиков, которые превратят световые сигналы в электрических и назад, что временами существенно увеличивает стоимость сети в целом.

Оптоволоконные кабели допускают разветвление сигналов (для этого производятся специальные пассивные распределители (couplers ) на 2-8 каналов), но, как правило, их используют для передачи данных только в одном направлении между одним передатчиком и одним приемником. Ведь любое разветвление неминуемо сильно ослабляет световой сигнал, и если разветвлений будет много, тот свет может просто не дойти до конца сети. Кроме того, в распределителях есть и внутренние потери, так что суммарная мощность сигнала на выходе меньше входной мощности.

Оптоволоконный кабель менее крепок и гибок, чем электрический. Типичная величина допустимого радиуса изгиба составляет около 10 - 20 см, при меньших радиусах изгиба центральное волокно может сломаться. Плохо переносит кабель и механическое растягивание, а также раздавливая влияния.

Чувствительный оптоволоконный кабель и к ионизирующим излучениям, через которые снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала. Резкие перепады температуры также негативно отражаются на нем, стекловолокно может треснуть.

Применяют оптоволоконный кабель только в сетях с топологией звезда и кольцо. Никаких проблем согласования и заземления в этом случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети. В будущем этот тип кабеля, вероятно, вытиснит электрические кабели или, во всяком случае, сильно потеснит их. Запасы меди на планете истощаются, а сырья для производства стекла вполне достаточно.

Типы оптоволоконных кабелей

  1. многомодовый или мультимодовый кабель, более дешевый, но менее качественный;
  2. одномодовый кабель, более дорогой, но имеет лучшие характеристики по сравнению с первым.

Суть расхождения между двумя типами сводится к разным режимам прохождения световых лучей в кабеле.



Рис. 2. Распространение света в одномодовом кабеле

В одномодовом кабеле практически все лучи проходят тот же путь, в результате чего они достигают приемника одновременно, и форма сигнала почти не искажается (рис. 2). Одномодовый кабель имеет диаметр центрального волокна около 1,3 мкм и передает светло только с такой же длиной волны (1,3 мкм). Дисперсия и потери сигнала при этом очень незначительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Для одномодового кабеля применяются лазерные прийомопередавачи, что используют светло исключительно с необходимой длиной волны. Такие прийомопередавачи пока еще сравнительно дороги и не долговечные. Однако в перспективе одномодовый кабель должен стать основным типом благодаря своим прекрасным характеристикам. К тому же лазеры имеют большее быстродействие, чем обычные светодиоды. Затухание сигнала в одномодовом кабеле составляет около 5 дБ/км и может быть даже снижено до 1 дБ/км.


Рис. 3. Распространение света в многомодовом кабеле

В многомодовому кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается (рис. 3). Центральное волокно имеет диаметр 62,5 мкм, а диаметр внешней оболочки 125 мкм (это иногда отражается как 62,5/125). Для передачи используется обычный (не лазерный) светодиод, что снижает стоимость и увеличивает срок службы приемопередатчиков в сравнении с одномодовым кабелем. Длина волны света во многомодовому кабеле равняется 0,85 мкм, при этом наблюдается разброс длин волн около 30 - 50 нм. Допустимая длина кабеля составляет 2 - 5 км.

Многомодовый кабель - это основной тип оптоволоконного кабеля в это время, потому что он более дешево и более доступно. Затухание во многомодовому кабеле больше, чем в одномодовом и составляет 5 - 20 дБ/км.

Типичная величина задержки для самых распространенных кабелей составляет около 4-5 нс/м, что близко к величине задержки в электрических кабелях.
Оптоволоконные кабели, как и электрические, выпускаются в исполнении plenum и non-plenum .

Оптические волокно стандарт де-факто при построении магистральных сетей связи. Протяженность волоконно-оптических линий связи в России у крупных операторов связи достигает > 50 тыс.км.
Благодаря волокну мы имеем все те преимущества в связи, которых не было раньше.
Вот и попробуем рассмотреть виновника торжества - оптическое волокно.

В статье попробую написать просто о оптических волокнах, без математических выкладок и с простыми человеческими объяснениями.

Статья чисто ознакомительная, т.е. не содержит уникальных знаний, всё что будет описано может быть найдено в куче книг, однако, это не копипаст, а выжимка из «кучи» информации только лишь сути.

Классификация

Чаще всего волокна подразделяют на 2 общих типа волокон
1. Многомодовые волокна
2. Одномодовые

Дадим пояснение на «бытовом» уровне что есть одномод и многомод.
Представим гипотетическую систему передачи с волокном воткнутым в нее.
Нам надо передать двоичную информацию. Импульсы электричества в волокне не распространяются, ибо диэлектрик, поэтому мы будим передавать энергию света.
Для этого нам нужен источник световой энергии. Это могут быть светодиоды и лазеры.
Теперь мы знаем что мы используем в качестве передатчика - это свет.

Подумаем как свет вводится в волокно:
1) Световое излучение имеет свой спектр, поэтому если сердцевина волокна широкая (это в многомодовом волокне), то больше спектральных составляющих света попадет в сердцевину.
Например мы передаем свет на длине волны 1300нм (к примеру), сердцевина многомода широкая, то и путей распространения у волн больше. Каждый такой путь и есть моды

2) Если же сердцевина маленькая (одномодовое волокно), то путей распространения волн соотвественно уменьшается. И так как дополнительных мод гораздо меньше, то и не будет и модовой дисперсии (о ней ниже).

Это основное отличие многомодового и одномодового волокон.
Спасибо enjoint, tegger, hazanko за замечания.

Многомодовые в свою очередь делятся на волокна со ступенчатым показателем преломления (step index multi mode fiber) и с градиентным (graded index m/mode fiber).

Одномодовые делятся на ступенчатые, стандартные (standard fiber), со смещенной дисперсией (dispersion-shifted) и ненулевой смещенной дисперсией (non-zero dispersion-shifted)

Конструкция оптического волокна

Каждое волокно состоит из сердцевины и оболочки с разными показателями преломления.
Сердцевина (которая и является основной средой передачи энергии светового сигнала) изготавливается из оптически более плотного материала, оболочка - из менее.

Так, например, запись 50/125 говорит о том, что диаметр сердцевины равен 50 мкм, оболочки - 125мкм.

Диаметры сердцевины равные 50мкм и 62,5мкм являются признаками многомодовых оптических волокон, а 8-10мкм, соответственно, одномодовым.
Оболочка же, как правило, всегда имеет диаметр размером 125мкм.

Как видно диаметр сердцевины одномодового волокна имеет намного меньший размер, нежели диаметр многомодового. Меньший диаметр сердцевины позволяет уменьшить модовую дисперсию (о которой, возможно, будет написано в отдельной статье, а также вопросы распространения света в волокне), а соответственно увеличить дальность передачи. Однако, тогда бы одномодовые волокна вытеснили многомоды, благодаря более лучшим «транспортным» характеристикам, если бы не необходимость использовать дорогие лазеры с узким спектром излучения. В многомодовых волокнах используются светодиоды с более размазанным спектром.

Поэтому для недорогих оптических решений, таких как локальные сети интернет-провайдеров применения многомода случается.

Профиль показателя преломления

Вся пляска с бубном у волокна с целью увеличения скорости передачи была вокруг профиля показателя преломления. Так как основным сдерживающим фактором увеличения скорости является модовая дисперсия.
Кратко суть в следующем:
когда излучение лазера поступает в сердцевину волокна, то сигнал передается по ней в виде отдельных мод (грубо: лучей света. А на самом деле разные спектральные составляющие вводимого сигнала)
Причем входят «лучи» под разными углами, поэтому время распространения энергии отдельно взятых мод различается. Это проиллюстрировано на рисунке ниже.

Здесь отображены 3 профиля преломления:
ступенчатый и градиентный для многомодового волокна и ступенчатый для одномодового.
Видно, что в многомодовых волокнах моды света распространяются по различным путям, но, из-за постоянного коэффициента преломления сердцевины с ОДИНАКОВОЙ скоростью. Те моды, которые вынуждены идти по ломанной линии приходят позже, чем моды, идущие по прямой. Поэтому исходный сигнал растягивается во времени.
Другое дело с градиентным профилем, те моды которые раньше шли по центру - замедляются, а моды, которые шли по ломанному пути, наоборот, ускоряются. Это произошло оттого, что коэффициент преломления сердечника теперь непостоянен. Он увеличивается параболически от краев к центру.
Это позволяет увеличить скорость передачи и получить распознаваемый сигнал на приеме.

Области применения оптических волокон

К этому можно добавить, что магистральные кабели теперь все почти идут с ненулевой смещенной дисперсий, что позволяет использовать на этих кабелях спектральное волновое уплотнение (