История возникновения чисел на руси. Десятичные дроби. Десятичные дроби представляют также вид систематических дробей. Важным шагом в развитии понятия натурального числа является осознание бесконечности натурального ряда чисел, т.е. потенциальной возможно

Я. Линский

Древние народы тех времен, когда изобретали цифры, не оставили нам книг, по которым мы могли бы установить, какова была наука в те далекие времена. Но даже из того, что было в те времена записано или изображено, не все дошло до нас и не все разгадано в тех надписях, которые сохранились до нашего времени.
Мы изучаем древние сказания и предания. Некоторые из этих преданий впоследствии были записаны первыми древними историками. Так, историк Плиний записал, будто римский царь Нума велел воздвигнуть статую двуликому Янусу так, чтобы пальцы Януса указывали 365 – число дней года. Двуликий Янус был римский бог. Его именем был назван первый месяц года январь. Изображали Януса с двумя лицами, которые смотрели в противоположные стороны – в прошлое и в будущее. Но все же римляне считали, что у Януса, как у любого бога или человека, только 20 пальцев на руках и ногах. И такая запись древнего историка говорит нам, что по пальцам умели считать не только до двадцати.
Отсчитывать большие числа пальцами умели не только римляне, но и другие народы.
О происхождении цифр мы узнаем и по языку разных народов. Так мы узнали, что понятие "два" в Китае обозначают словом "уши", а в Тибете – словом "крылья". В Квинслэнде, в Австралии, туземцы вместо "четыре" говорили "бурла-бурла", что означает "два-два". Вместо слова "считать" мы иногда употребляем иностранное слово "калькулировать". Происходит это слово от римского слова "калькуль", что означает камешек. Таким образом само слово подтверждает, что древние римляне вели счёт камушками.
Интересно наблюдать, как считают первобытные племена. По таким наблюдениям установлено, что некоторые племена умели считать только до трех, а после трех говорили "много".
Племя янкусов на Амазонке понятие 3 передавало словом "поеттаррарориккоароак", а чтобы сосчитать шесть, им нужно два раза произнести это "коротенькое" слово. Представляем себе, сколько раз им надо произнести "поеттаррарориккоароак", чтобы досчитать до ста.
Некоторые племена индейцев считали так: один человек отсчитывал по пальцам до десяти, потом звали другого человека, который загибал один палец для первого десятка, второй палец, когда первый человек второй раз загнул свои 10 пальцев. Так продолжался счет до сотни. Сотни уже считал по своим пальцам третий индеец, тысячи – четвертый и так далее. Зулусы устраивались проще: отсчитывали по пальцам десять и хлопали в ладоши один раз, отсчитывали второй десяток и хлопали два раза. Семь хлопков и восемь растопыренных пальцев обозначали 78. Проще-то это проще, но и сбиться со счета легче. Не всегда запомнишь, сколько раз отхлопал.

СЧЕТ ПО-КИТАЙСКИ

По этому рисунку видно, как китайцы досчитывали на пальцах до десятков миллионов.

Огромного искусства в счете на пальцах достигли китайцы. Китайцы ухитрялись на одном пальце отсчитывать девять, на следующем пальце они отсчитывали десятки, на третьем – сотни, и таким образом на восьми пальцах они ухитрялись считать до 99 999 999.
Большие пальцы служили китайцам для того, чтобы на остальных своих длинных, тонких и гибких пальцах производить этот сложный счет. Китайские купцы торговались молча на глазах у всех, но никто из окружающих не мог узнать, за какую цену товар куплен. Купцы брали друг друга за руку под полой своих длинных халатов и показывали цену прикосновением к пальцам. Многие исследователи утверждают, что обычай хлопать друг друга по рукам под полой кафтана при продаже товара перешел к русским купцам из Китая.
– Ну, по рукам?
– По рукам! – говорили русские – и дело считалось решенным. Так говорим мы теперь при случае. Хлопать по рукам русские купцы научились, но считать по пальцам до таких больших чисел не умели.
С китайцами больше всех сталкивались сибирские звероловы. Но короткие пальцы на широких руках сибирских охотников давали им возможность нащупать толстым пальцам только два сустава на остальных своих пальцах. Таким образом сибиряки отсчитывали на правой руке до восьми и загибали один палец левой руки, а когда загнут все пять пальцев левой руки, значит отсчитали до сорока. Этим и объясняют, почему сорок стало единицей счета у русских. В пуде считали 40 фунтов. В старых описаниях Москвы говорится, что церквей было выстроено "сорок сороков". В древних летописях сказано, что дань (ясак) уплачивалась "сороками соболей".
Так пальцы на руках, а у некоторых народов и пальцы ног, были одной из первых широко распространенных счетных машин. Приспособлением для счета у многих народов служили камешки, зерна кукурузы, раковины и т. п. Жители островов в Южном океане счет вели кокосовыми орехами. Отсчитывали десять орехов и откладывали маленький кусочек ореха. Этими кусочками обозначали десятки. Насчитают десять маленьких кусочков и отложат кусок побольше, он обозначал сотни и т. д.

Но уже давно были и специальные приспособления для счета. Самым распространенным приспособлением для счета у народов, которые уже достигли известной степени культуры, был абак.


Песочный абак. В первой строке греческими знаками написано число 2 014 103, во второй – римскими – 350 627, в третьей – арабскими – 7 013 094.

До сих пор не удалось точно установить, когда абак появился впервые. Некоторые ученые говорят, что слово "абак" произошло от слова, которое у семитических народов означает пыль, прах, песок. Другие ученые производят слово "абак" от греческого слова "доска, стол". И, действительно, судя по описаниям, существовали различные абаки. Некоторые абаки состояли ид доски, покрытой цветным песком и разделенной на столбцы вертикальными полосами. На таком абаке можно было записывать числа и стирать написанное, как на грифельной доске.
Другой вид абака состоял из простой доски, разделенной на столбцы. Первый столбец обозначал единицы, второй – десятки, третий – сотни и т. д. Древний историк Геродот писал, что египтяне считают камешками, ведя рукой справа налево, а эллины (греки) водили рукой слева направо.

Абак с камешками. У греков это расположение камешков обозначало 2 130 210, у египтян – 120 312.

Один и тот же камешек можно положить в первый столбец – тогда он обозначает единицу, и в шестой столбец – тогда он обозначает сотню тысяч. У греков было изречение, которое приписывают древнему мудрецу Солону.

Абак с колышками.

Оно говорит, что человек, который дружит с тиранами, подобен камешку при вычислении, значение его бывает иной раз большое, иной – малое.
Постепенно абак совершенствовался. В 1846 году при раскопках на острове Саламине был найден большой мраморный абак. Этот абак был длиной в 160 и шириной в 70 сантиметров. В абаке этом были отдельные столбцы для счета целых чисел и отдельные для дробей.

Абак с марками, дающими число 5 507 020.

Были абаки с колышками, на которые надевались кружочки. Такой абак не найден, но, по описанию древних историков, мы его можем себе представить.
Римляне делали абаки с прорезями, в которых двигались пуговки. Такой абак похож на китайский, который назывался "суанпан". Китайцы делали свой абак из рамки, на которой были натянуты нитки с пуговками. Наши счеты, вероятнее всего, заимствованы у китайцев.
Постепенно вместо камешков, пуговок и гладких жетонов на абак стали класть марки, на которых были написаны цифры.

КАК ИЗМЕНИЛИСЬ ЦИФРЫ


Изображение римских цифр связано со счетом по пальцам.

Какие же цифры существовали у древних народов?
Нам известно, что китайцы знали цифры еще за 4500 лет до наших дней. Эти цифры состояли из горизонтальных и вертикальных палочек, а десять китайцы изображали кружочком, вроде нашего нуля. Но китайцы жили обособленно и можно утверждать, что их цифры не были переняты другими народами.


Арабские цифры, составленные из отдельных палочек.

У халдеев, которые жили по рекам Тигру и Евфрату, цифры были похожи на клинья. Их выдавливали на глиняных плитках.
У греков, евреев, славян цифрами служили буквы, расположенные в алфавитном порядке.
У римлян были уже цифры. Цифр у них было всего семь. Нужные им числа римляне изображали путем комбинации этих семи цифр. При этом они пользовались и сложением и вычитанием. Например "XI" у римлян обозначало "11", а если палочка стояла слева – "IX", читали "9", т. е. цифра "10" уменьшалась на единицу.
Самое изображение римских цифр, бесспорно, связано со счетом по пальцам.
Родина наших цифр – Индия. Некоторые исследователи пытаются доказать, что изображение наших цифр произошло от расположения черточек. Одной чертой изображали единицу, в следующих цифрах было столько черточек, сколько в этих цифрах содержалось единиц.
По мнению этих исследователей, постепенно для ускорения письма из этих отдельных черточек вырисовывались наши современные цифры. Однако эти предположения не имеют никаких доказательств.


Так можно начертить все цифры по одной фигуре.

Интересно, что происхождение цифр занимало и Пушкина. В его дневнике мы находим такую запись:
"Форма цифр арабских составлена из следующей фигуры: АД = 1
ЕАВДС = 2
АВЕСД = 3
АВД + АЕ = 4
и проч. римские цифры составлены по тому же образцу".


Изменения арабских цифр за семнадцать веков до 14 века нашей эры.

До нас дошли изображения цифр, которые употреблялись в разное время индусами и арабами.
Как видите, наши цифры изменялись, и только в 14 веке нашей эры они стали такими, какими мы их знаем сегодня. Наши цифры носят название арабских. С этими цифрами, заимствованными у индусов, большинство европейских и азиатских народов познакомилось через арабов, которые вели торговлю с этими народами.

Мы не можем точно установить, как произошли наши цифры. Точно не знаем мы, почему ноль стали изображать кружком. Возможно, в древности на абак клали кружки и, когда стали считать на бумаге, пустой кружок обратился в кружок, нарисованный на бумаге – ноль (0). А некоторые ученые предполагают, что кружочек ноля разросся и округлился из точки, которую раньше индусы ставили вместо ноля. В любом случае, изобретение ноля было очень важно для развития счета.

Зарождение счета в глубокой древности

Наши первоначальные представления о числе и форме относятся к очень отдаленной эпохе древнего каменного века - палеолита. Пока не произошёл переход от простого собирания пищи к активному её производству, от охоты и рыболовства к земледелию, люди мало продвинулись в понимании числовых величин и пространственных отношений. Самым трудным этапом, который прошло человечество при выработке понятия о числе, считается выделение им понятия единицы из понятия "много". Оно произошло, по всей вероятности, ещё тогда, когда человечество находилось на низшей ступени развития. В.В. Бобынин объясняет такое выделение тем, что человек обычно захватывает рукой один предмет, а это, по его мнению, и выделило единицу из множества. Таким образом, начало счисления Бобынин мыслит как создание системы, состоящей из двух представлений: единица и неопределенное множество.

Так, например, племя ботокудов, жившее в Бразилии, выражало числа только словами "один" и "много". Появление элемента "два" объясняется выявлением возможности взять по одному предмету в каждую руку. На первоначальном этапе счёта человек связывал это понятие с понятием обеих рук, в которых находится по одному предмету в каждой, "три" характеризовалось поднятием обеих рук и указанием на ноги. Отсюда сравнительно характерно произошло выделение и понятие "четыре", так как с одной стороны, к этому побуждало сопоставление двух рук и двух ног, а с другой - возможность поместить по одному предмету у каждой ноги.

Дальнейшее развитие счета относится, вероятно, к той эпохе, когда сложилось первобытно-коммунистическое общество с соответствующим распределением пищи, одежды и орудия. Эти обстоятельства вынудили человека так или иначе вести счет общего имущества, сил врага, с которым приходилось вступать в борьбу за овладение новыми территориями. Процесс счета уже не мог остановиться на четырех и должен был развиваться далее и далее.

На этой ступени развития человек уже отказывается от необходимости брать пересчитываемые предметы в руку или класть к ногам. В математику входит первая абстракция, заключающаяся в том, что пересчитываемые предметы заменяются какими-либо другими однородными между собой предметами или знаками: камешками, узелками, ветками, зарубками. Операция производится по принципу взаимно-однозначного соответствия: каждому пересчитываемому предмету в соответствие один из предметов, выбранных в качестве орудия счета (то есть один камешек, один узелок на веревке и т.д.). Следы такого рода счета сохранились у многих народов и до настоящего времени. Иногда такие примитивные орудия счета (камешки, раковины, косточки) нанизывали на шнурок или палочку, чтобы не растерять. Это впоследствии привело к созданию более совершенных счётных приборов, сохранивших своё значение и до наших дней: русские счёты и сходный с ними китайский суан-пан.

Пальцевой счёт

Развитие счёта пошло значительно быстрее, когда человек догадался обратиться к самому близкому ему, самому естественному счётному аппарату - к своим пальцам. Быть может, первым актом счёта по пальцам было оказание предмета, указательным пальцем; тут палец сыграл роль единицы. Участие пальцев в счёте помогло человеку переступить за число четыре, так как когда все пальцы на одной руке стали считаться равноценными единицами, это сразу позволило довести счёт до пяти. Дальнейшее развитие счёта потребовало усложнения счётного аппарата, и человек нашёл выход, привлекая к счёту сначала пальцы второй руки, а затем, распространяя свой приём на пальцы ног: для племён, не носивших обуви, использование пальцев ног было вполне естественным. Так, для выражения числа "двадцать" индейцы из Южной Америки противопоставляют пальцы на руках пальцам на ногах.

Словесный счет начал развиваться, лишь когда ведущей формой производства стало сельское хозяйство. Обладатели полей, домашних животных, вынуждены были не только считать принадлежащие им объекты, но и запоминать их число, а это и толкнуло человека путь создания именованных чисел. Сначала запоминание проводилось весьма громоздким и неуклюжим способом: путем восстановления в памяти внешних признаков запоминаемых предметов. Например, обладатель стада волов запоминал количество принадлежащих ему животных по тем признакам, что один вол серый, другой - черный и т.д. Разумеется, такой способ запоминания не мог быть пригоден, когда число запоминаемых объектов было большим.

Следующей ступенью в развитии наименования чисел надо признать появление описательных выражений совокупности нескольких единиц. Например, вместо наименования числа, выражающего два предмета, употреблялась фраза "столько, сколько у меня рук", наименование четыре передавалось фразой: "столько, сколько ног у животного". Итак, словесными выражениями нескольких предметов явилось преимущественно части тела человека и животного.

В дальнейшем эти описания выражения у многих народов заменились наименованием соответствующих слов, и таким образом эти наименования закрепились за числами. Так, число два стало выражаться словами, обозначающими "уши", "руки", "крылья"; четыре - "нога страуса" (четырехпалая) и пр.

Пальцевой счет постепенно приводил к упорядочению счета, и человек стихийно приходил к упрощению словесного выражения чисел. Так, например, выражение, которое должно соответствовать числу 11 - "десять пальцев на обеих руках и один палец на одной ноге" - упрощалось в "палец на ноге". Подобного рода сокращения в то же время приводили как бы к выделению единиц из высшего разряда.

Появление систем счисления

Переход человека к пальцевому счету привел к созданию нескольких различных систем счисления. Самой древней из пальцевых систем счисления считается пятеричная. Эта система, как полагают, зародилась и наибольшее распространение получила в Америке. Её создание относится к этой эпохе, когда человек считал по пальцам одной руки. До последнего времени у некоторых племен пятеричная система сохранилась еще в чистом виде (например, у жителей Полинезии и Меланезии).

Дальнейшее развитие систем счисления пошло по двум путям. Племена, не остановившиеся на счете по пальцам на одной руке, перешли к счету по пальцам второй руки и далее - по пальцам ног. При этом часть племен остановилась на счете пальцев только на руках и этим положило основу для десятичной системы счисления, а другая часть племен, вероятно большая, распространила счет на пальцы ног и тем самым создало предпосылки на систему с основанием 20. Такая система получила распространение главным образом среди значительной части индейских племен Северной Америки и Туземных обитателей Центральной и Южной Америки, а так же в северной части Сибири и в Африке.

Десятичная система счисления является преобладающей у народов Европы. Однако это не означает, что в Европе эта система всегда была единственной: некоторые народы перешли к десятичной системе уже в более поздние времена, а ранние пользовались другой системой.

Естественной единицей высшего разряда при возникновении двадцатеричной системы явился "человек" как обладатель 20 пальцев. В этой системе 40 выражается как "два человека", 60 - "три человека" и т.д. Двадцатеричная система имеет большой недостаток: для её словесного выражения надо иметь 20 различных названий для основных чисел. Поэтому, когда у некоторых племен развилась десятичная система счисления, то и многие другие племена, употреблявшие двадцатеричную, постепенно отошли от нее, переняв десятичную. Некоторые племена в качестве счетного аппарата применяли не сами пальцы рук, а их суставы. В этом случае счет иногда развивался тоже достаточно продуктивно и оформлялся в стройные системы. Здесь процесс счета протекал таким образом: большой палец одной руки является счетчиком суставов остальных пальцев этой руки; т.к. на каждом из остальных четырех пальцев этой руки содержится по три сустава, то следующий за суставом выше единицей являлось число 12, что и послужило двенадцатеричной системой счисления. Этот процесс иногда не останавливался на двенадцати, а продолжался далее, причем каждый палец другой руки служил единицей высшего разряда, т.е. представлял собой 12, и после отсчета всех пальцев на второй руке создавалась новая единица высшего разряда 12х5, т.е.60.

Следы двенадцатеричной и шестнадцатеричной систем счисления сохранились и до нашего времени. Стоит вспомнить хотя бы счет часов в сутках, измерение углов градусами, минутами и секундами.

Так постепенно, под влиянием потребностей экономического характера, человечество создавало свои методы счета и достигло, наконец, стройного метода, который в дальнейшем сознательного совершенствовался и упрощался, пока не превратился в метод, которым и пользуется современная математика.

Письменная нумерация у древних народов

Если развитие трудовых процессов и появление собственности заставили человека изобрести числа и их названия, то дальнейший рост экономических потребностей у людей вел их по пути все большего и большего расширения и углубления понятия о числе. Особенно значительные сдвиги в этом смысле произошли, когда возникли государства с более или менее сложным государственным аппаратом, потребовавшим учета имущества и создание налоговой системы, и когда товарообмен перешел в стадию развития торговли с применением денежной системы. С одной стороны, это повлекло за собой зарождение письменной нумерации, а с другой - стали развиваться счетные операции, т.е. появились действия над числами.

Развитие числовой записи всегда сопутствовало общему подъёму культурного уровня народов, а потому, протекало наиболее интенсивно в тех странах, которые быстро шли по пути развития государственности.

Среди народов земного шара в наиболее благоприятных условиях для развития их экономической и политической жизни были такие, которые обитали на стыке трех материков: Европы, Африки и Азии, а также народы, занимавшие территории полуострова Индостан и современного Китая. Государства, расположенные на этих территориях, явились первыми в истории человечества государствами, где мы находим зародыш современных наук и математики в частности.

Нумерация государств Древнего Востока и Рима

Расцвет вавилонского государства относится ко второй половине XVIII в. до н.э. Продукты сельского хозяйства (зерно, фрукты, скот) являлись предметами вывоза в соседние страны. Расцвет торговли повлек за собой развитие денежной системы мер. В Вавилоне была создана система мер аналогичная нашей метрической, только в основе её лежало не число 10, а число 60. Полностью эта система выдерживалась у вавилонян для измерения времени и углов, и мы унаследовали от них деление часа и градуса на 60 минут, а минуты на 60 секунд.

Начальные понятия математики, зародившиеся в Древнем Китае, послужили развитию математической культуры соседних народов, которые занимали территорию современной Кореи Индокитая и с особенности Японии. В Китае рано начали накапливаться сведения математического характера и появилась запись чисел. При этом китайские иероглифические цифры были по записи еще сложнее египетских. Но, помимо этих иероглифических цифр, в Китае имели распространение и более простые цифровые знаки, употреблявшиеся при торговых операциях.

Запись чисел производилась столбцами сверху вниз. Большим преимуществом китайской записи чисел было введение в употребление нуля для выражения отсутствующих разрядов. На заре человеческой культуры в развитии математики Китай шёл далеко впереди Вавилона и Египта.

Метод записи чисел у римлян, заимствован у древних этрусков - одного из племен Древней Италии. В этой записи сохранились следы пятеричной системы счисления, и числа выражались при помощи букв. Для обозначения нуля знака не было. В записях они придерживались принципа сложения и вычитания: числа, написанные справа, прибавлялись, а числа, написанные слева, вычитались от числа, написанного рядом с ним. Вследствие затруднительности вычислений, римляне прибегали к помощи пальцевого счета или абака.

Особенно ценный вклад в арифметику внесен индийцами . В этом отношении математика обязана индийцам упорядочением числовой записи при помощи введения цифр для десятичной системы счисления и установления принципа поместного значения цифр.

В то время как у греков, евреев, сирийцев и т.д. для записи чисел употреблялось до 27 различных цифровых знаков, у индийцев число таких цифровых знаков снизилось до 10, включая и обозначение нуля. Что касается позиционной системы, её зачатки были еще у вавилонян, но там эта система применялась для шестидесятеричного счета, а индийцы ввели её для десятичного. Наконец, применение знака для нуля при позиционной системе дало большое преимущество перед записью чисел у вавилонян.

Числа народов Средней Азии

Начиная с VII в. в истории народов, входящих в состав государств Средней Азии и Ближнего Востока значительную роль начинает играть арабское государство. Из мелких арабских государств в VII-VIII вв., был создан арабский халифат - государство, занимающее огромную территорию. Первым, по времени, крупным математиком у народов, входивших в состав халифата, мы назовем великого узбекского (хорезмийского) математика и астролога IX в. Мухаммеда бен Мусса аль-Хорезми (2-я половина VIII в. - между 830-840). Сочинение аль-Хорезми по арифметике дошло до нашего времени только в переводе на латинский язык. Оно сыграло значительную роль в развитии европейской математики, так как именно в нем европейцы познакомились с индийскими методами записи чисел, то есть с системой индийских цифр, с употреблением нуля и с помесным значением цифр. Вследствие того, что сведения эти были получены европейцами из книги, автор которой жил в арабском государстве и писал на арабском языке, индийские цифры десятичной системы стали неправильно именоваться "арабскими цифрами".

Нумерация на Руси

Восточно-славянские племена, древние предки русской, украинской и белоруской народностей начали формироваться около 2-3 т. лет до н.э. В X в., в княжение Владимира Святославовича (? - 1015), древнерусское государство (Киевская Русь) достигло наибольшего расцвета и могущества. На Руси в эту эпоху параллельно с общим развитием культуры шло сравнительно быстрое распространение сведений из математики. Первым русским памятником математического содержания до настоящего времени считается рукописное сочинение новгородского монаха Кирика, написанное им в 1136 г. и носящее заголовок "Критика диакона и доместика Новгородского Антониева монастыря учение им же ведати человеку числа всех лет". Основные задачи, которые разрешаются Кириком, хронологического порядка: вычисление времени, протекшего между каким-либо событием. При вычислениях Кирик пользовался той системой нумерации, которая называлась малым перечнем и выражалась следующими наименованиями: 10000 - тьма, 100 000 - легион, или неведий, 1 000 000 - леодр.

Кроме малого перечня, в Древней Руси существовал еще больший перечень, который давал возможность оперировать с очень большими числами. В системе перечня основные разрядные единицы имели те же наименования, что и в малом, но соотношения между этими единицами были иные, а именно:

Тысяча тысяч - тьма; Тьма тем - легион, или певедий;

Легион легионов - леодр; Леодр леодров - ворон;

10 воронов - колода.

Единицы, десятки и сотни изображались славянскими буквами с поставленным над ними знаком, называемым титло, для отличия цифр от букв. Тьма, легион и леодр изображались теми же буквами, но для отличия от единиц, десятков, сотен и тысяч они обводились кружками.

Славянские нумерации употреблялись в России до XVI в., лишь в этом веке в нашу страну постепенно стала проникать десятичная позиционная система счисления. Она окончательно вытеснила славянскую нумерацию при Петре I.

натуральное число ноль счисление

У древних людей, кроме каменного топора и шкуры вместо одежды, ничего не было, поэтому считать им было нечего. Постепенно они стали приручать скот, возделывать поля и собирать урожай; появилась торговля, и тут уж без счета никак не обойтись.

В древние времена, когда человек хотел показать, сколькими животными он владел, он клал в большой мешок столько камешков, сколько у него было животных. Чем больше животных, тем больше камешков. Отсюда и произошло слово «калькулятор», «калькулюс» по латински означает «камень»!

Сначала считали на пальцах. Когда пальцы на одной руке кончались, переходили на другую, а если на двух руках не хватало, переходили на ноги. Поэтому, если в те времена кто-то хвалился, что у него «две руки и одна нога кур», это означало, что у него пятнадцать кур, а если это называлось «весь человек», то есть две руки и две ноги.

Но как запомнить, кто, кому, сколько должен, сколько народилось жеребят и сколько теперь в стаде лошадей, сколько мешков кукурузы собрано?

Первые написанные цифры, о которых мы имеем достоверные свидетельства, появились в Египте и Месопотамии около 5000 лет назад. Хотя эти две культуры находились очень далеко одна от другой, их числовые системы очень похожи, как будто представляют один метод: использование засечек на дереве ил камне для записи прошедших дней.

Египетские жрецы писали на папирусе, изготовленном из стеблей определенных сортов тростника, а в Месопотамии - на мягкой глине. Конечно, конкретные формы их цифр были различны, но и в той, и в другой культуре использовали простые черточки для единиц и другие метки для десятков. Кроме того, в обеих системах писали желаемую цифру, повторяя черточки и метки необходимое число раз.

Вот так выглядели дощечки с числами в Месопотамии (Рис. 1).

Древние египтяне на очень длинных и дорогих папирусах писали вместо цифр очень сложные, громоздкие знаки. Вот, например, как выглядело число 5656 (Рис. 2):

Древний народ майя вместо самих цифр рисовал страшные головы, как у пришельцев, и отличить одну голову – цифру от другой было очень сложно (Рис.3).

Спустя несколько столетий, в первом тысячелетии, древний народ майя придумал запись любых чисел, используя только три знака: точку, линию и овал. Точка имела значение единицы, линия – пять. Комбинация точек и линий служила для написания любого числа до девятнадцати. Овал под любым из этих чисел увеличивал его в двадцать раз (Рис. 4). .

https://pandia.ru/text/79/058/images/image005_125.jpg" width="624" height="256 src=">

Цивилизация ацтеков пользовалась системой исчисления, состоящей только из четырёх знаков:

Точка или кружок для обозначения единицы (1);

Буква «h» для двадцати (20);

Перо для цифры х20);

Мешок, наполненный зерном, для 8х20х20).

Из использования малого числа знаков для написания цифры приходилось повторять много раз

один и тот же знак, образуя длинный ряд символов. В документах ацтекских чиновников

встречаются счета, в которых указываются результаты описи и подсчетов податей, получаемых

ацтеками от покоренных городов. В этих документах можно увидеть длинные ряды знаков,

похожие на настоящие иероглифы (рис. 6).

https://pandia.ru/text/79/058/images/image007_107.jpg" width="295" height="223 src=">

Много лет спустя в другом регионе Китая появилась новая система исчисления. Потребности

торговли, управления и науки потребовали развития нового способа написания цифр. Палочками

они обозначали цифры от единицы до девяти. Цифры от единицы до пяти они обозначали

количеством палочек в зависимости от номера. Так, две палочки соответствовали номеру 2. Чтобы

указать цифры от шести до девяти, одна горизонтальная палочка помещалась в верхней части

цифры (рис. 8).

https://pandia.ru/text/79/058/images/image009_97.jpg" width="661" height="183">

Однако Индия была оторвана от других стран, – на пути лежали тысячи километров расстояния и высокие горы. Арабы были первыми «чужими», которые заимствовали цифры у индийцев и привезли их в Европу. Чуть позже арабы упростили эти значки, они стали выглядеть вот так (Рис. 10):

Они похожи на многие наши цифры. Слово «цифра» тоже досталось нам от арабов по наследству. Арабы нуль, или «пусто», называли «сифра». С тех пор и появилось слово «цифра». Правда, сейчас цифрами называются все десять значков для записи чисел, которыми мы пользуемся: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Постепенное превращение первоначальных цифр в наши современные цифры.

2. Система исчисления.

От пальцевого счета пошли пятеричная система счисления (одна рука), десятеричная (две руки), двадцатеричная (пальцы рук и ног). В древние времена не существовало единой для всех стран системы счета. Некоторые системы исчисления брали за основу 12, другие – 60, третьи – 20, 2, 5, 8.

Шестидесятеричная система исчисления, которую ввели римляне, была распространена по всей Европе вплоть до XVI века. До сих пор римские цифры используют в часах и для оглавления книг (рис 11).

Древние римляне использовали систему исчисления, для отображения цифр в виде букв. Они использовали в своей системе исчисления следующие буквы: I. V. L. C. D. M. Каждая буква имела различное значение, каждая цифра соответствовала номеру положения буквы (рис. 12).

Предки русского народа – славяне - для обозначения чисел также употребляли буквы. Над буквами, употребляемыми для обозначения чисел, ставились специальные знаки – титла. Чтобы отделить такие буквы – числа от текста, спереди и сзади ставились точки.

Этот способ обозначения цифр называется цифирью. Он был заимствован славянами от средневековых греков – византийцев. Поэтому цифры обозначались только теми буквами, для которых есть соответствия в греческом алфавите (Рис. 13).

https://pandia.ru/text/79/058/images/image015_55.jpg" align="left" width="276" height="256 src=">

Десять тысяч – тьма,

десять тем – легион,

десять легионов – леодр,

десять леодров – ворон,

десять воронов – колода.

Такой способ обозначения чисел по сравнению с принятой в Европе десятичной системой был очень неудобен. Поэтому Петр I ввел в России привычные для нас десять цифр, отменив буквенную цифирь.

А какая же у нас система исчисления в настоящее время?

Наша система исчисления имеет три основных характеристики: она позиционная, аддитивная и

десятичная.

Позиционная, поскольку каждая цифра имеет определенное значение согласно месту,

занимаемому в ряду, выражающим число: 2 означает две единицы в числе 52 и двадцать единиц в

Аддитивная, или слагаемая, поскольку значение одного числа равно сумме цифр, образующих

его. Так, значение 52 равно сумме 50+2.

Десятичная, поскольку каждый раз, когда одна цифра смещается на одно место влево

в написании числа, его значение увеличивается в десять раз. Так, число 2, имеющее значение две

единицы, превращается в двадцать единиц в числе 26, поскольку перемещается на одно место

Заключение:

Работая над темой, я сделала много интересных открытий для себя: узнала как, когда, где и кем были придуманы цифры, о том, что мы пользуемся десятичной системой счёта, так как у нас десять пальцев. Система счёта, которую мы используем сегодня, была изобретена в Индии тысячу лет назад. Арабские купцы распространили её по всей Европе к 900 году. В этой системе использовались цифры 1, 2, 3, 4, 5, 6, 7, 8, 9 и 0. Это десятичная система, построенная на основе десятка. В наше время мы используем систему исчисления, имеющую три характеристики: позиционная, аддитивная и десятичная. В дальнейшем полученные знания я буду использовать на уроках математики, информатики и истории.

Возникновение чисел в нашей жизни не случайность. Невозможно представить себе общение без использования чисел. История чисел увлекательна и загадочна. Человечеству удалось установить целый ряд законов и закономерностей мира чисел, разгадать кое-какие тайны и использовать свои открытия в повседневной жизни. Без замечательной науки о числах – математики – немыслимо сегодня ни прошлое, ни будущее. А сколько ещё неразгаданного!

Древние люди не умели считать. Да и считать им было нечего, потому что предметов, которыми они пользовались – орудий труда, – было совсем немного: один топор, одно копье Постепенно количество вещей увеличивалось, обмен ими усложнялся и возникала потребность в счете. Издавна числа казались людям чем-то таинственным. Любой предмет можно было увидеть и потрогать. Число потрогать нельзя, и вместе с тем числа реально существуют, поскольку все предметы можно посчитать. Эта странность заставила людей приписывать числам сверхъестественные свойства

В наш скоростной быстролётный век – век большого изобилия информации, различных печатных изданий и виртуального мира трудно чем - либо удивить людей. Написать, создать что-либо, да так, чтобы интересно было читать! Итак

С самого раннего детства мы знакомимся с числами. А какие же бывают числа? На этот вопрос я попыталась ответить в своей работе. Моя работа можно - это мини-пособие для ознакомления с таким интересным понятием как «Числа». Возможно, не все подробно, но в своей работе я старалась затронуть все аспекты, связанные с выбранной темой. Этой работой могут воспользоваться те, кто хочет знать о математике больше, чем рядовой школьник.

История развития числа

На первых этапах существования человеческого общества числа служили для примитивного счета предметов, дней, шагов. В первобытном обществе человек нуждался лишь в нескольких первых числа. С развитием цивилизации ему потребовалось изобретать все больше числа, этот процесс продолжался на протяженности многих столетий и требовал напряженного интеллектуального труда. При обмене продуктами появилась необходимость сравнивать числа, возникли понятия больше, меньше, равно. На этом же этапе люди стали складывать числа, затем научились вычитать, делить, умножать. При делении двух натуральных чисел появились дроби, при вычитании – отрицательные числа.

Необходимость выполнять арифметические действия привела к понятию рациональных чисел. В IV в. до н. э. греческие математики открыли несоизмеримые отрезки, длины которых не выражались ни целым, ни дробным числом (например, длина диагонали квадрата со стороной, равной 1). Потребовалась не одна сотня лет, чтобы математики смогли выработать способ записи таких чисел в виде бесконечной непериодической десятичной дроби. Так появились иррациональные числа, которые вместе с рациональными назвали действительными числами.

Но затем выяснилось, что во множестве действительных чисел не имеют решения простейшие квадратные уравнения, например, х2 + 1 = 0. Математики пришли к необходимости расширить понятия числа, чтобы в новом множестве можно было всегда извлечь квадратный корень. Новое множество назвали множеством комплексных чисел, введя понятие мнимой единицы: i2 = – 1.

Выражение вида а + вi назвали комплексным числом. Долгое время многие ученые не признавали их за числа. Только после того, как нашли возможность представить мнимое число геометрически, так называемые мнимые числа получили свое место во множестве чисел.

N – натуральные числа.

Q – рациональные числа.

R – действительные числа.

Комплексными называются числа вида а + вi, где а и в – действительные числа, i – мнимая единица: i2 = – 1. а называется действительной частью, вi – мнимой частью комплексного числа.

Определение. Два комплексных числа называются равными, если равны их действительные части и коэффициенты при мнимых частях, т. е. а + вi = с + di a = c, b = d.

Для комплексных чисел не существует соотношений «больше», «меньше».

Учёные математики, которые внесли

Вклад в развитие теории чисел

Мы живем в мире больших чисел

Задумывались ли вы когда-нибудь о том, сколько километров проходит человек за свою жизнь, сколько товаров производится и приходит в негодность ежечасно в пределах города, страны? Во сколько раз скорость пассажирского реактивного самолета превосходит скорость тренированного спортсмена-пешехода? Ответы на эти и тысячи подобных вопросов выражаются числами, занимающими зачастую по числу своих десятичных разрядов целую строку и даже больше.

Для сокращения записи больших чисел давно используется система величин, в которой каждая из последующих в тысячу раз больше предыдущей:

1000 единиц – просто тысяча (1000 или 1 тыс.)

1000 тысяч – 1 миллион

1000 миллионов – 1 биллион (или 1 миллиард)

1000 биллионов – 1 триллион

1000 триллионов – 1 квадриллион

1000 квадриллионов – 1 квинтиллион

1000 квинтиллионов – 1 секстиллион

1000 секстиллионов – 1 септиллион

1000 нониллионов – 1 дециллион и т. д.

Таким образом, 1 дециллион запишется в десятичной системе единицей с 3 * 11= 33 нулями. 1. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000.

«Напрасно думают, что ноль играет маленькую роль»

Самуил Яковлевич Маршак

Степень числа – произведение его самого на себя требуемое число раз, которое называется показателем степени (а само число – ее основанием). Например, 3 * 3= 32 (здесь 3 – основание, 2- показатель степени), 2 * 2 * 2= 23, 10 * 10= 102=100, 105= 10 * 10 * 10 * 10 * 10= 100000.

Заметьте, что число нулей степени 10 всегда равно ее показателю:

101=10, 102 =100, 103 =1000 и т. д.

И еще одно: математики во всем мире давно приняли, что любое число в нулевой степени равно единице (а0 =1). При записи больших чисел часто используют степень числа 10.

Единица – 100=1

Тысяча – 103= 1000

Миллион – 106= 1000 000

Биллион – 109= 1000 000 000

Триллион – 1012=1000 000 000 000

Квадриллион – 1015 =1000 000 000 000 000

Квинтиллион – 1018 =1000 000 000 000 000 000

Секстиллион – 1021 = 1000 000 000 000 000 000 000

Септиллион – 1024 = 1000 000 000 000 000 000 000 000

Октиллион - 1027 = 1000 000 000 000 000 000 000 000 000

Теперь приведем несколько интересных сведений:

Радиус Земли – 6400 км.

Длина Земного экватора – около 40 тыс. км.

Площадь Земного шара 510 млн. км.

Среднее расстояние от Земли до Солнца – 150 млн. км.

Диаметр нашей Галактики – 85 тыс. световых лет.

С начала нашей эры прошло немногим более миллиарда секунд.

Число Шахерезады

Существуют числа, носящие имена великих математиков: число Архимеда - , Неперово число – основание натуральных логарифмов е=2, 718281 [Непер Джон (150-1617), шотландский математик, изобретатель логарифмов].

Число, о котором пойдет речь, не менее популярно. Это 1001. Его иногда называют числом Шехерезады, известно каждому, кто читал сказки «Тысяча и одна ночь». Число 1001 обладает рядом интересных свойств:

1. Это самое маленькое натуральное четырехзначное число, которое можно представить в виде суммы кубов двух натуральных чисел: 1001=103+13.

2. Состоит из 77 «злополучных чертовых дюжин». (1001=77*13), из 91 одиннадцатки или 143 семерок (вспомним, что число «7» считалось магическим числом); далее, если будем считать, что год равен 52 неделям, то 1001=143*7=(104+26+13)*7=2 года + ½ года+ ¼ года

3. На свойствах числа 1001 базируется метод определения делимости числа на 7, на 11 и на 13.

Рассмотрим этот метод на примерах:

Делится ли на 7 число 348285?

348285=348*1000+285=348*1000+348-348+285=348*1001-(348-285)

Так как 1001 делится на 7, то чтобы 348285 делилось на 7, достаточно, чтобы на 7 делилась разность 348-285. Так как 348-285=63, то 348285 делится на 7.

Таким образом, чтобы узнать, делится ли число на 7 (на 11 или 13), необходимо от этого числа без последних трех цифр отнять число из трех последних цифр; если эта разность делится на 7 (11 или 13), то и заданное число также делится на 7 (11 или 13).

Задумайтесь, может и вы найдёте сказочное число. Внесите свой вклад в царицу наук - МАТЕМАТИКУ!!!

Взаимно- обратные числа

Обратное число́ (обратное значение, обратная величина) - это число, на которое надо умножить данное число, чтобы получить единицу. Два таких числа называются взаимно обратными.

Примеры: 5 и 1/5, −6/7 и −7/6, π и 1 / π

Для всякого числа а, не равного нулю, существует обратное 1/a.

На земном шаре обитают птицы – безошибочные составители прогноза погоды на лето. Название этих птиц зашифровано примерами, записанными на доске. Последовательно решив примеры и заменив ответы буквами, вы прочтёте название птиц – метеорологов.

1. 17/8 5/6 6/5;

2. 3,4 7/3 3/7;

3. 11/12 5,6 12/11;

4. 2,5 0,4 3;

5. 2/3 0,1 3/2;

6. 41/2 1/2 2;

8. 11/12 31/3 12/11.

17/8 31/3 0,1 3,4 3 41/2 5,6 1

ф о и л м н а г

Простые числа

«Простые числа остаются всегда готовыми ускользнуть от исследования»

Если записать натуральные числа в ряд, и в тех местах, где стоят простые числа, зажечь фонарики, то не нашлось в этом ряду места, где была бы сплошная темнота. Фонарики расположились бы очень причудливо. Между ними есть только одно число - четное, это 2, а остальные нечетные. 2 и 3 последовательные натуральные числа, наименьшие простые -такая пара единственная, где одно число четное, а другое нечетное.

1, 2, 3,4 ,5 ,6, 7,8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Два последовательных нечетных числа, каждое из которых является простым – называются числами – близнецами.

Первые простые числа-близнецы:

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61),

(71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193),

(197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349),

(419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619),

(641, 643), (659, 661), (809, 811), (821, 823), (827, 829), (857, 859), (881, 883)

Греческий ученый Евклид в своей книге «Начала» утверждал следующее: «Самого большого числа не существует». До сих пор неизвестно, есть ли самые большие числа-близнецы. И до сих пор нет ответа на вопрос: существует ли бесконечно много пар простых чисел-близнецов.

Первым глубокие исследования о том, как разбросаны простые числа среди натуральных, получил русский математик Пафнутий Львович Чебышев. Но до сих пор математики не знают формулы, с помощью которой можно получить простые числа одно за другим, нет даже формулы, дающей только простые числа.

Над тем, как составить список простых чисел, задумался живущей в 3 веке до нашей эры александрийский ученый Эратосфен. Его имя вошло в науку в связи с методом отыскания простых чисел. В древности писали на восковых табличках острой палочкой-стилем, поэтому Эратосфен «выкалывал» составные числа острым концом стиля. После выкалывания всех составных чисел таблица напоминала решето. Отсюда и название «решето Эратосфена». Древнегреческих ученых заинтересовало: сколько может быть всех простых чисел в натуральном ряду.

В 1750 году Леонард Эймер установил, что число 231 – 1 является простым. Оно оставалось самым большим из известных простых чисел более ста лет. В 1876 году французский математик Лукас установил, что огромное число

2127 – 1 = 170. 141. 183. 460. 469. 231. 731. 678. 303. 715. 884. 105. 727 также простое. Оно содержит 39 цифр. Для его вычисления были использованы механические настольные счетные машины. В 1957 году было найдено следующее простое число: 23217- 1. А простое число 244497-1 состоит из 13000 цифр.

Рациональные числа

Рациональное число (лат. ratio - отношение, деление, дробь) - число, представляемое обыкновенной дробью, где m - целое число, а n - натуральное число. При этом число m называется числителем, а число n - знаменателем дроби. Такую дробь следует интуитивно понимать, как результат деления m на n, даже если нацело разделить не удаётся. В реальной жизни можно использовать рациональные числа для счёта частей некоторых целых, но делимых объектов, например, тортов или других продуктов, разрезаемых на несколько частей перед употреблением, или для грубой оценки пространственных отношений протяжённых объектов.

Совершенные числа

Совершенное число́ (др. греч. ἀριθμὸς τέλειος) - натуральное число, равное сумме всех своих собственных делителей (т. е. всех положительных делителей, отличных от самого́ числа).

Первое совершенное число - 6 (1 + 2 + 3 = 6), следующее - 28 (1 + 2 + 4 + 7 + 14 = 28). По мере того как натуральные числа возрастают, совершенные числа встречаются всё реже. Третье совершенное число - 496, четвёртое - 8128, пятое - 33 550 336, шестое - 8 589 869 056 (последовательность A000396 в OEIS).

«Перестаньте отыскивать интересные числа!

Оставьте для интереса хотя бы одно неинтересное число!»

Из письма читателя Мартину Гарднеру

Среди всех интересных натуральных чисел, издавна изучаемых математиками, особое место занимают совершенные и близко связанные с ними дружественные числа.

Совершенным называется число, равное сумме всех своих делителей (включая 1, но исключая само число). Наименьшее из совершенных чисел 6 равно сумме трех своих делителей 1, 2 и 3. Следующее совершенное число 28=1+2+4+7+14. Ранние комментаторы Ветхого завета, пишет в своей книге «Математические новеллы» Мартин Гарднер, усматривали в совершенстве чисел 6 и 28 особый смысл. Разве не за 6 дней был сотворен мир, восклицали они, и разве Луна обновляется не за 28 суток?

Первым крупным достижением теории совершенных чисел была теорема Евклида о том, что число 2n-1(2n-1) - четное и совершенное, если число 2n-1 - простое 1. Лишь две тысячи лет спустя Эйлер доказал, что формула Евклида содержит все четные совершенные числа. Поскольку не известно ни одного нечетного совершенного числа (у читателей есть шанс найти его и прославить свое имя), то обычно, говоря о совершенных числах, имеют в виду четное совершенное число.

Приглядевшись к формуле Евклида, мы увидим связь совершенных чисел с членами геометрической прогрессии 1, 2, 4, 8, 16, Эту связь лучше проследить на примере древней легенды, согласно которой Раджа обещал изобретателю шахмат любую награду. Изобретатель попросил положить на первую клетку шахматной доски одно зерно пшеницы, на вторую клетку - два зерна, на третью - четыре, на четвертую - восемь и так далее. На последнюю, 64-ю клетку, должно быть насыпано 263 зерен, а всего на шахматной доске окажется «кучка» из 264-1 зерен пшеницы. Это больше, чем собрано во всех урожаях за историю человечества.

Если на каждой клетке шахматной доски мы напишем, сколько зерен пшеницы причиталось бы за нее изобретателю шахмат, а затем снимем с каждой клетки по одному зерну, то число оставшихся зерен будет точно соответствовать выражению, стоящему в скобках в формуле Евклида. Если это число простое, то, умножив его на число зерен на предыдущей клетке (то есть на 2n-1), мы получим совершенное число! Простые числа вида 2n-1 называются числами Мерсенна в честь французского математика XVII века. На шахматной доске со снятыми по одному зерну с каждой клетки есть девять чисел Мерсенна, соответствующих девяти простым числам, меньших 64, а именно: 2, 3, 5, 7, 13, 17, 19, 31 и 61. Умножив их на число зерен на предыдущих клетках, мы получим девять первых совершенных чисел. (Числа n=29, 37, 41, 43, 47, 53, и 59 не дают числа Мерсенна, т. е. соответствующие им числа 2n-1 составные.)

Формула Евклида позволяет без труда доказывать многочисленные свойства совершенных чисел. Например, все совершенные числа треугольные. Это значит, что, взяв совершенное число шаров, мы всегда сможем сложить из них равносторонний треугольник. Из той же формулы Евклида следует другое любопытное свойство совершенных чисел: все совершенные числа, кроме 6, можно представить в виде частичных сумм ряда кубов последовательных нечетных чисел 13+33+53+ Еще более удивительно, что сумма величин, обратных всем делителям совершенного числа, включая его самого, всегда равна 2. Например, взяв делители совершенного числа 28, получим:

Кроме того, интересны представление совершенных чисел в двоичной форме, чередование последних цифр совершенных чисел и другие любопытные вопросы, которые можно найти в литературе по занимательной математике. Главные из них - наличие нечетного совершенного числа и существование наибольшего совершенного числа - до сих пор не решены.

От совершенных чисел повествование непременно перетекает к дружественным числам. Это такие два числа, каждое из которых равно сумме делителей второго дружественного числа. Наименьшие из дружественных чисел 220 и 284 были известны еще пифагорейцам, которые считали их символом дружбы. Следующая пара дружественных чисел 17296 и 18416 была открыта французским юристом и математиком Пьером Ферма лишь в 1636 году, а последующие числа находили Декарт, Эйлер и Лежандр. Шестнадцатилетний итальянец Никколо Паганини (тезка знаменитого скрипача) в 1867 году потряс математический мир сообщением о том, что числа 1184 и 1210 дружественные! Эту пару, ближайшую к 220 и 284, проглядели все знаменитые математики, изучавшие дружественные числа.

Дружественные числа

Дружественные числа - два натуральных числа́, для которых сумма всех собственных делителей первого числа́ равна второму числу и сумма всех собственных делителей второго числа́ равна первому числу. Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе.

Ниже приведены пары дружественных чисел, меньших 130 000.

6. 10744 и 10856

7. 12285 и 14595

8. 17296 и 18416

9. 63020 и 76084

10. 66928 и 66992

11. 67095 и 71145

12. 69615 и 87633

13. 79750 и 88730

14. 100485 и 124155

15. 122265 и 139815

16. 122368 и 123152

Прах Диофанта гробница покоит: дивись ей - и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругой он обручился;

С нею пять лет проведя, сына дождался мудрец.

Только полжизни отцовской возлюбленный сын его прожил,

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

Сколько лет прожил Диофант?

Фигурные числа

Давным-давно, помогая себе при счете камушками, люди обращали внимание на правильные фигуры, которые можно выложить из камушков. Можно просто класть камушки в ряд: один, два, три. Если класть их в два ряда, чтобы получались прямоугольники, мы обнаружим, что получаются все четные числа. Можно выкладывать камни в три ряда: получатся числа, делящиеся на три. Всякое число, которое на что-нибудь делится, можно представить таким прямоугольником, и только простые числа не могут быть "прямоугольными". А что если складывать треугольник? Треугольник получается из трех камушков: два в нижнем ряду, один в верхнем, в ложбинке, образованной двумя нижними камнями. Если добавить камень в нижний ряд, появится еще одна ложбинка; заполнив ее, мы получим ложбинку, образованную двумя камушками второго ряда; положив в нее камень, мы наконец получим треугольник. Итак, нам пришлось добавить три камушка. Следующий треугольник получится, если добавить четыре камушка. Выходит, что на каждом шаге мы добавляем столько камней, сколько их становится в нижнем ряду. Если теперь считать, что один камень - это тоже треугольник, самый маленький, у нас получится такая последовательность чисел: 1, 1+2=3, 1+2+3=6, 1+2+3+4=10, 1+2+3+4+5=15 и т. д. Итак, фигурные числа - это общее название чисел, геометрическое представление которых связано с той или иной геометрической фигурой. Числа древними греками, а вместе с ними Пифагором и пифагорейцами мыслились зримо, в виде камешков, разложенных на песке или на счетной доске - абаке.

По этой причине греки не знали нуля, т. к. его невозможно было "увидеть". Но и единица еще не была полноправным числом, а представлялась как некий "числовой атом", из которого образовывались все числа Пифагорейцы называли единицу "границей между числом и частями", т. е. между целыми числами и дробями, но в то же время видели в ней "семя и вечный корень". Число же определялось как множество, составленное из единиц. Особое положение единицы как "числового атома", роднило ее с точкой, считавшейся "геометрическим атомом". Вот почему Аристотель писал: "Точка есть единица, имеющая положение, единица есть точка без положения". Т. о. пифагорейские числа в современной терминологии - это натуральные числа. Числа камешки раскладывались в виде правильных геометрических фигур, эти фигуры классифицировались. Так возникли числа, сегодня именуемые фигурными. Древние греки, когда им приходилось умножать числа, рисовали прямоугольники; результатом умножения трех на пять был прямоугольник со сторонами три и пять. Это - развитие счета на камушках. Множество закономерностей, возникающих при действиях с числами, были обнаружены древнегреческими учеными при изучений чертежей. И долгие века лучшим подтверждением справедливости таких соотношений считался способ геометрический, с прямоугольниками, квадратами, пирамидами и кубами. В V - IV веках до нашей эры ученые, комбинируя натуральные числа, составляли из них затейливые ряды, придавая элементам этих рядов то или иное геометрическое истолкование. С их помощью можно выложить правильные геометрические фигуры: треугольники, квадраты, пирамиды и т. д. Увлеклись, причем независимо друг от друга, нахождением таких чисел Б. Паскаль и П. Ферма.

Даже в XVII века, когда была уже хорошо развита алгебра с обозначениями величин буквами, со знаками действий, многие считали ее варварской наукой, пригодной для низменных целей- бытовых расчетов, вспомогательных вычислений, - но никак не для благородных научных трудов. Один из крупнейших математиков того времени, Бонавентура Кавальери, пользовался алгеброй, ибо вычислять с ее помощью проще, но для обоснования своих научных результатов все алгебраические выкладки заменял рассуждениями с геометрическими фигурами.

Среди фигурных чисел различают: Линейные числа (т. е. простые числа) - числа, которые делятся только на единицу и на самих себя и, следовательно, представимы в виде последовательности точек, выстроенных в линию: (линейное число 5)

Плоские числа - числа, представимые в виде произведения двух сомножителей: (плоское число 6)

Телесные числа, выражаемые произведением трех сомножителей: (телесное число 8)

Треугольные числа: (треугольные числа 3,6,10)

Квадратные числа: (квадратные числа 4,9,16)

Пятиугольные числа:(пятиугольные числа 5,12)

Именно от фигурных числе пошло выражение "Возвести число в квадрат или куб".

Представление чисел в виде правильных геометрических фигур помогало пифагорейцам находить различные числовые закономерности. Например, чтобы получить общее выражение для n-угольного числа, которое есть не что иное, как сумма n натуральных чисел 1+2+3+. +n, достаточно дополнить это число до прямоугольного числа n(n+1) и увидеть (именно глазами!) равенство

Написав последовательность квадратных чисел, опять-таки легко увидеть глазами выражение для суммы n нечетных чисел:

Наконец, разбивая n-е пятиугольное число на три (n-1) треугольных (после чего остается ещё n "камешков"), легко найти его общее выражение

Разбиением на треугольные числа получается и общая формула для n-го k-угольного числа:

При k=3 мы получаем треугольные числа, а k=4 - квадратные числа и т. д.

Аналогично можно представить число в виде прямоугольника. Для числа 12 это можно сделать многими способами (рис.), а для числа 13 - лишь расположив все предметы в одну линию. Такое древние не считали прямоугольным.

Таким образом, прямоугольными числами являются все составные числа, а не прямоугольными - простые числа. Фигурное представление чисел помогало пифагорейцам открывать законы арифметических операций, а также легко переходить к числовой характеристике геометрических объектов - измерению площадей и объемов.

Так, представляя число 10 в двух формах: 5*2=2*5, легко "увидеть" переместительный закон умножения: a*b=b*a. В том же числе 10: (2+3)*2=2*2+3*2=10 можно "разглядеть" и распределительный закон сложения относительно умножения: (a+b)c=ac+bc.

Наконец, если "камешки", образующие фигурные числа, мыслить в виде равных по площади квадратиков, то, укладывая их в прямоугольное число ab:. автоматически получаем формулу для вычисления площади прямоугольника: S=ab. К фигурным числам также относятся пирамидальные числа, которые получаются, если шарики складывать пирамидой, как раньше складывали ядра около пушки.

Нетрудно заметить, что пирамидальное число равно сумме всех треугольных чисел - от первого до n-го. Формула для вычисления n-го пирамидального числа имеет вид:

«Числовые забавы »

Это число, прежде всего, замечательно тем, что определяет число дней в не високосном году. При делении на 7 оно даёт в остатке 1, эта особенность числа 365 имеет большое значение для нашего семидневного календаря.

Существует ещё одна особенность числа 365:

365=10×10×11×11×12×12, то есть 365 равно в сумме квадратов трёх последовательных чисел, начиная с 10:

10²+11²+12²=100+121+144=365.

Но и это ещё не всё. Число 365 равно сумме квадратов двух следующих чисел, 13 и 14:

13²+14²=169+196=365.

Если человек не знает выше изложенных свойств числа 365, то он при решении примера:

10²+11²+12²+13²+14²

365 начнёт выполнять громоздкие вычисления.

Например:

10²+11²+12²+13²+14² ‗ 100+121+144+169+196 ‗ 221+313+196 ‗ 730

Человек же знающий решит этот пример в уме моментально и получит в ответе 2.

10²+11²+12²+13²+14² ‗ 365+365 ‗ 730

Следующее число, которое я буду описывать – это 999.

Оно намного удивительнее, чем его перевёрнутое изображение – 666 –«звериное число»

Апокалипсиса, вселяющее страх в суеверных людей, но оно по своим арифметическим свойствам ничем не выделяется среди других чисел.

Особенность числа 999 в том, что его можно легко умножить на трёхзначные числа. Тогда получится шестизначное произведение: первые три цифры его есть умножаемое число, уменьшенное на единицу, а остальные три цифры являются дополнениями первых трех до 9. Например,

Стоит лишь взглянуть на следующую строку, чтобы понять происхождение этой особенности:

573×999=573×(1000-1)= 573

Зная эту особенность, мы можем мгновенно умножить любое трёхзначное число на 999.

Например:

947×999=946053, 509×999=508491, 981×999=980019,

543×999=542457, 167×999=166833, 952×999=951048 и т. п.

А так как 999=9×111=3×3×3×37,то вы можете описать целые столбцы шестизначных чисел, кратных 37. Не знакомый же со свойствами числа 999, этого сделать не сможет.

1. Число 1001

Сначала рассмотрим число 1001. Это число сказок, которое царица Шехерезада рассказывала царю Шахрияру.

Число 1001 с первого взгляда кажется самым обыкновенным. Его можно разложить на три последовательных простых множителя 7, 11 и 13. Следовательно, оно является их произведением.

Но в том, что 1001=7×11×13 нет ничего интересного. Замечательно то, что если его умножить на любое трехзначное число, то в результате получится тоже самое число, записанное дважды. Нужно применить распределительный закон умножения.

Разложим 1001 на сумму 1000+1.

Например:

247×1001=247×(1000+1)=247×1000+247×1=247000+247=247247

Число 111111

Следующее число, о котором я хочу рассказать – это 111 111.

Благодаря знакомству со свойствами числа 1001 мы сразу видим, что

111 111=111×1001

Но мы знаем, что

111=3×37, 1001=7×11×13.

Отсюда следует, что наша новая числовая диковинка, состоящая из одних единиц, представляет собой произведение пяти простых множителей. Соединяя же эти 5 множителей в две группы на всевозможные лады, мы получаем 15 пар множителей, дающих в произведении одно и то же число, 111 111.

3×(7×11×13×37)=3×37037=111 111

7×(3×11×13×37)=7×15873=111 111

11×(3×7×13×37)=11×10101=111 111

13×(3×7×11×37)=13×8547=111 111

37×(3×7×11×13)=37×3003=111 111

(3×7)×(11×13×37)=21×5291=111 111

(3×11)×(7×13×37)=33×3367=111 111

(3×13)×(7×11×37)=39×2849=111 111

(3×37)×(7×13×11)=111×1001=111 111

(7×3)×(11×13×37)=21×5291=111 111

(7×11)×(3×13×37)=77×1443=111 111

(7×13)×(11×3×37)=91×1221=111 111

(7×37)×(11×3×13)=259×429=111 111

(11×13)×(7×37×3)=143×777=111 111

(37×11)×(13×7×3)=407×273=111 111

«Фокус с числом»

Арифметические фокусы – честные, добросовестные фокусы. Здесь никто никого не стремится обмануть, ввести транс или усыпить внимание зрителя. Чтобы выполнить такой фокус, не нужны, ни чудодейственная ловкость рук, ни изумительное проворство движений, ни какие – либо другие артистические способности, требующие иногда многолетних упражнений. Кружок товарищей, не посвящённых в математические тайны можно поразить следующими фокусами.

Фокус № 1.

Запишите число 365 два раза: 365 365.

Разделите полученное число на 5: 365 365÷5=73 0 73.

Разделите полученное частное на 73: 73 0 73÷73=1001.

У вас получится число Шехерезады, то есть 1001.

Разгадка фокуса, очень проста: число 365=5×73. То есть число 365365 мы делим на 365 и получаем в ответе 1001.

Фокус № 2.

Пусть кто-нибудь напишет любое трехзначное число, и затем к нему припишет еще раз это же самое число. Получится шестизначное число, состоящее из повторяющихся цифр.

Предложите своему товарищу разделить это число в тайне от вас на 7. Результат нужно передать соседу, который должен разделить его на 11. Полученный результат передается следующему ученику, которого вы просите разделить это число на 13.

Результат третьего деления вы, не глядя, вручаете первому товарищу. Это и есть задуманное число.

Этот фокус объясняется очень просто. Если приписать к трехзначному числу его само – значит умножить его на 1001, или на произведение 7×11×13=1001. Шестизначное число, которое ваш товарищ получит после того, как припишет к заданному числу его само, должно будет делиться без остатка и на 7, и на 11, и на 13.

Фокус № 3.

Запишите любую цифру три раза подряд. Полученное число разделите на 37 и на 3. И у вас получится в ответе ваша цифра.

Разгадка: когда мы делим трехзначное число, записанное тремя одинаковыми цифрами вначале на 37, а затем на 3,то мы, не замечая, делим на 111.

Фокус № 4.

Число 111 111 так же можно использовать для проделывания фокусов, как и число 1001. В данном случае надо предлагать товарищу число однозначное, и попросить записать его уже шесть раз подряд. Делителями здесь могут служить пять простых чисел: 3, 7, 11, 13, 37 и получающиеся из них составные: 21, 33, 39 и т. п. Это дает возможность очень разнообразить выполнение фокуса.

Например: предложите своим товарищам задумать любую цифру, кроме нуля. Нужно умножить ее на 37. Затем умножить на 3. Результат приписать еще раз справа. Полученное число разделить на первоначально задуманную цифру.

Получилось число 111 111.

Разгадка фокуса основана на свойстве числа 111 111. Когда мы умножаем его на 1001 (со свойствами числа 1001 мы познакомились в предыдущей главе) и получилось задуманное число, записанное в начале. Далее при делении на задуманное число явно получается шесть единиц.

Фокус № 5.

Пусть ваш товарищ запишет любое трехзначное число. Справа к нему нужно приписать три нуля. От шестизначного числа предложите отнять первоначальное трехзначное. Затем попросите товарища разделить на задуманное, полученный результат. Частное нужно разделить на 37.

Получилось число 27.

Секрет фокуса понять просто. Он основан на свойствах числа 999.

Число 999 является произведением четырех простых множителей:

3×3×3×37=999, а, следовательно, 999÷37=27

Когда умножают на него трехзначное число, получается результат, состоящий из двух половин: первая – это умножаемое число, уменьшенное на единицу, а вторая – результат вычитания первой половины из множителя.

Фокус № 6.

Число 111 111 111: можно также использовать для наших числовых фокусов:

Спросим у одноклассника его любимую цифру (от 1 до 9).

Попросим эту цифру умножить на 9, а затем полученное произведение умножить на число 123456789. В результате получится число, состоящее из любимых цифр одноклассника.

Например:

5 – это любимая цифра ученика, тогда

45×123456789=555 555 555 т. е. 9×123456789=111 111 111

Заключение

Я думаю, что моя работа является мини-пособием для изучения числового разнообразия. Интересные способы вычисления чисел очень могут помочь в школе, в вузе, на работе, и вообще в жизни. Так в кругу товарищей можно загадывать интересные арифметические фокусы без обманов и волшебства. Исходя из всего вышесказанного, я делаю вывод, что эти и многие другие числовые диковинки желательно знать каждому. Эти знания обязательно понадобятся в жизни!

Белоусова Арина

Выступление на Школьной научно-практической конференции об истории возникновения арабских цифр.

Скачать:

Предварительный просмотр:

Муниципальное автономное образовательное учреждение лицей №42

Октябрьского района городского округа город Уфа

Республики Башкортостан

Номинация: математика

Секция: математика

Тема работы:

История возникновения цифр

Работу выполнила:

Белоусова Арина Михайловна

Класс 2 Д

Руководитель

Нуруллина Татьяна Петровна Классный руководитель

Уфа 2013

Введение.

2. Как считали древние люди

3. Цифры у разных народов

4. Цифры нашего времени

5. Заключение

6. Приложения

7. Литература

Введение

С самого раннего возраста человек сталкивается с необходимостью считать. Однако, научившись считать, люди мало знают о том, откуда появились числа, кто придумал использовать ту или иную форму записи числа. Проведенный мною опрос показал, что некоторые обучающиеся нашего класса, а также наши родители не смогли дать ответ на вопрос: « Как и где возникли первые числа?». Встречаясь с цифрами на каждом шагу, мы настолько привыкли к их существованию, что вряд ли задумываемся, а откуда же они взялись. А, между прочим, история их возникновения чрезвычайно увлекательна. Поэтому я решила изучить историю возникновения чисел и представить полученный материал другим обучающимся, который можно так же использовать на уроках математики.

Цель: Узнать историю возникновения цифр

Задачи:

1.Изучить имеющуюся литературу по теме.

2.Определить, как появились цифры

3.Выяснить, как считали древние люди, которые не знали цифр.

4.Собрать информацию о цифрах других народов

В современных условиях очень важно каждому человеку правильно понимать законы чисел. Числа – являются необходимой частью математики. Отсюда-актуальность темы.

1. Из истории возникновения чисел

Учится считать, люди начали в незапамятные времена, а учителем у них была сама жизнь. Древние люди добывали себе пищу главным образом охотой. На крупного зверя – бизона или лося – приходилось охотиться всем племенем: в одиночку ведь с ним не справишься. Командовал облавой обычно самый старый и опытный охотник. Что бы добыча не ушла, ее надо было окружить, ну вот хотя бы так: пять человек справа, семь сзади, четыре слева. Тут уж без счета никак не обойдешься! И вождь первобытного племени справлялся с этой задачей. Даже в те времена, когда человек не знал таких слов, как «пять» или «семь». Он мог показать числа на пальцах рук.

2. Как считали древние люди

Сначала были…пальцы. Весьма универсальное, удобное и сподручное средство для счёта. Его используют и до сих пор, правда, лишь в том случае, если нужно показать небольшое, ограниченное одним десятком число (здесь учитываем лишь возможности рук, пальцы ног не в счёт).

Пальцы сыграли немаловажную роль в истории счета. Особенно когда люди начали обмениваться друг с другом предметами своего труда. Так, например, желая поменять, сделанное им копье с каменным наконечником на пять шкурок для одежды, человек клал на землю свою руку и показывал, что против каждого вальца его руки нужно положить шкуру. Одна пятерня означала 5, две – 10. Не удивительно, что очень быстро назрела потребность в других, более совершенных символах счёта. Когда рук не хватало, вход шли и ноги. Две руки и одна нога – 15, две руки и две ноги – 20.

3. Цифры у разных народов

На протяжении истории каждый народ писал числа, считал и вычислял с их помощью. У разных народов было свое, определенное написание чисел (см. приложение 1).

Первое подобие цифр возникло около пяти тысяч лет назад в Египте и Месопотамии и представляло собой засечки на дереве или камнях. Египетские жрецы использовали для письма папирус, а в Месопотамии для этих целей служила мягкая глина. Единица изображалась колом, десяток - как бы парой рук, сотня - свернутым пальмовым листом, тысяча - цветком лотоса, символом обилия, сто тысяч - лягушкой, так как лягушек было очень много во время разлива Нила (см. приложение 2).

Не всем для записи чисел понадобилось столько символов. Например, майя в первом тысячелетии нашей эры писали любое число, используя лишь три знака: точку, линию и эллипс (см. приложение 3). Точка означала единицу, линия имела значение пяти, а эллипс, находясь под любым из этих знаков, увеличивал его значение в двадцать раз. Подобная минимизация отнюдь не приводила к упрощению записи: для обозначения того или иного числа приходилось использовать длинные ряды символов.

Следующий этап в истории цифр принадлежит древним римлянам. Изобретенная ими система исчисления основана на использовании букв для отображения чисел (римские цифры). Но это было очень не удобно - записи длинные, умножение и деление в письменном виде производить было невозможно. Все действия надо производить в уме. Даже чтобы прочитать число, нужно устно складывать или вычитать потому, что каждая римския цифра означает всюду, где бы она ни стояла, одно и то же число (см. приложение 4).

4. Цифры нашего времени

Современные привычные для нас цифры имеют арабское происхождение. Хотя арабы в свою очередь заимствовали их у индусов, видоизменив их и приспособив к своему письму. Характер написания каждой из девяти арабских цифр хорошо прослеживается, если записать их в «угловатой» форме (см. приложение 5). Количество углов каждой цифры соответствует количеству, которое эта цифра обозначает. Привычные, нам формы цифр, более округлые. Это влияние скорописи: так цифры записывать быстрее и удобнее (см. приложение 6).

Десятичная система, которой широко пользуется в настоящее время во всем мире, более совершенна. Вместо палочек, взятых от одной до девяти, используют цифры 1, 2, 3, 4, 5, 6, 7, 8, 9. Для обозначения десятков, сотен и т.д. не нужны новые значки, так как те же цифры используют и для записи десятков, сотен и т.д. Одна и та же цифра имеет различные значения в зависимости от места (позиции), где она записана. Благодаря этому свойству современную систему счисления называют позиционной. Десятичная позиционная система счисления позволяет записывать сколь угодно большие натуральные числа.

Народы пришли к этой системе постепенно. Она зародилась в Индии в V веке. В IХ веке ею уже владели арабы, в Х она дошла до Испании, а в ХII веке появилась в других странах Европы, но широкое распространение получила в ХVI веке. Долгое время развитие позиционной системы счисления тормозилось отсутствием в ней числа и цифры нуль. Только после введения нуля система стала совершенной.

Сейчас мы постоянно пользуемся числами. Используем их, чтобы измерять время, покупать и продавать, звонить по телефону, смотреть телевизор, водить автомобиль. К тому же у каждого человека есть различные числа, идентифицирующие лично его. Например, в удостоверении личности, в банковском счете, в кредитной карточке и т.д. Более того, в компьютерном мире вся информация, и этот текст в том числе, передается посредством числовых кодов.

Мы встречаемся с числами на каждом шагу и настолько к ним привыкли, что почти не отдаем себе отчета, насколько важную роль они играют в нашей жизни. Числа составляют часть человеческого мышления.

5. Заключение

В ходе выполнения данной работы, мною были прочитаны, рассмотрены книги и сайты об истории чисел и цифр. Я узнала как люди научились считать, как появились цифры которые мы используем в нашей жизни.

Изученный материал я обобщила и предоставила своим одноклассникам.

6. Приложения