Графики функций и их формулы примеры. Функции и графики. Построение графиков дробно-рациональных функций

Для начала попробуй найти область определения функции:

Справился? Сравним​ ответы:

Все верно? Молодец!

Теперь попробуем найти область значений функции:

Нашел? Сравниваем:

Сошлось? Молодец!

Еще раз поработаем с графиками, только теперь чуть-чуть посложнее - найти и область определения функции, и область значений функции.

Как найти и область определения и область значений функции (продвинутый вариант)

Вот что получилось:

С графиками, я думаю, ты разобрался. Теперь попробуем в соответствии с формулами найти область определения функции (если ты не знаешь как это сделать, прочитай раздел про ):

Справился? Сверим ответы :

  1. , так как подкоренное выражение должно быть больше или равно нулю.
  2. , так как на ноль делить нельзя и подкоренное выражение не может быть отрицательным.
  3. , так как, соответственно при всех.
  4. , так как на ноль делить нельзя.

Однако, у нас остался еще один не разобранный момент…

Еще раз повторю определение и сделаю на нем акцент:

Заметил? Слово «единственный» - это очень-очень важный элемент нашего определения. Постараюсь объяснить тебе на пальцах.

Допустим, у нас есть функция, заданная прямой. . При, мы подставляем данное значение в наше «правило» и получаем, что. Одному значению соответствует одно значение. Мы даже можем составить таблицу различных значений и построить график данной функции, чтобы убедится в этом.

«Смотри! - скажешь ты, -« » встречается два раза!» Так быть может парабола не является функцией? Нет, является!

То, что « » встречается два раза далеко не повод обвинять параболу в неоднозначности!

Дело в том, что, при расчёте для, мы получили один игрек. И при расчёте с мы получили один игрек. Так что все верно, парабола является функцией. Посмотри на график:

Разобрался? Если нет, вот тебе жизненный пример сооовсем далекий от математики!

Допустим, у нас есть группа абитуриентов, познакомившихся при подаче документов, каждый из которых в разговоре рассказал, где он живет:

Согласись, вполне реально, что несколько ребят живут в одном городе, но невозможно, чтобы один человек жил в нескольких городах одновременно. Это как бы логичное представление нашей «параболы» - нескольким разным икс соответствует один и тот же игрек.

Теперь придумаем пример, когда зависимость не будет функцией. Допустим, эти же ребята рассказывали, на какие специальности они подали документы:

Здесь у нас совершенно другая ситуация: один человек может спокойно подать документы как на одно, так и на несколько направлений. То есть одному элементу множества ставится в соответствие несколько элементов множества. Соответственно, это не функция.

Проверим твои знания на практике.

Определи по рисункам, что является функцией, а что нет:

Разобрался? А вот и ответы :

  • Функцией является - В,Е.
  • Функцией не является - А, Б, Г, Д.

Ты спросишь почему? Да вот почему:

На всех рисунках кроме В) и Е) на один приходится несколько!

Уверена, теперь, ты с легкостью отличишь функцию от не функции, скажешь, что такое аргумент и что такое зависимая переменная, а так же определишь область допустимых значений аргумента и область определения функции. Приступаем к следующему разделу - как задать функцию?

Способы задания функции

Как ты думаешь, что означают слова «задать функцию» ? Правильно, это значит объяснить всем желающим, о какой функции в данном случае идет речь. Причем объяснить так, чтобы каждый понял тебя правильно и нарисованные людьми по твоему объяснению графики функций были одинаковы.

Как это можно сделать? Как задать функцию? Самый простой способ, который уже не раз применялся в этой статье - с помощью формулы. Мы пишем формулу, и, подставляя в нее значение, высчитываем значение. А как ты помнишь, формула - это закон, правило, по которому нам и другому человеку становится ясно, как икс превращается в игрек.

Обычно, именно так и делают - в заданиях мы видим уже готовые функции, заданные формулами, однако, существуют и другие способы задать функцию, про которые все забывают, в связи с чем вопрос «как еще можно задать функцию?» ставит в тупик. Разберемся во всем по порядку, а начнем с аналитического способа.

Аналитический способ задания функции

Аналитический способ это и есть задание функции с помощью формулы. Это самый универсальный и исчерпывающий и однозначный способ. Если у тебя есть формула, то ты знаешь о функции абсолютно все - ты можешь составить по ней табличку значений, можешь построить график, определить, где функция возрастает, а где убывает, в общем, исследовать ее по полной программе.

Рассмотрим функцию. Чему равно?

«Что это значит?» - спросишь ты. Сейчас объясню.

Напомню, что в записи выражение в скобках называется аргументом. И этот аргумент может быть любым выражением, не обязательно просто. Соответственно, каким бы ни был аргумент (выражение в скобках), мы его запишем вместо в выражении.

В нашем примере получится так:

Рассмотрим еще задание, связанное с аналитическим способом задания функции, которое будет у тебя на экзамене.

Найдите значение выражения, при.

Уверена, что сначала, ты испугался, увидев такое выражение, но в нем нет абсолютно ничего страшного!

Все как и в прошлом примере: каким бы ни был аргумент (выражение в скобках), мы его запишем вместо в выражении. Например, для функции.

Что же нужно сделать в нашем примере? Вместо надо написать, а вместо - :

сократить получившееся выражение:

Вот и все!

Самостоятельная работа

Теперь попробуй самостоятельно найти значение следующих выражений:

  1. , если
  2. , если

Справился? Сравним наши ответы: Мы привыкли, что функция имеет вид

Даже в наших примерах мы задаем функцию именно таким образом, однако аналитически можно задать функцию в неявном виде, например.

Попробуй построить эту функцию самостоятельно.

Справился?

Вот как строила ее я.

Какое уравнение мы в итоге вывели?

Правильно! Линейное, а это значит, что графиком будет прямая линия. Сделаем табличку, чтобы определить, какие точки принадлежат нашей прямой:

Вот как раз то, о чем мы говорили… Одному соответствует несколько.

Попробуем нарисовать то, что получилось:

Является ли то, что у нас получилось функцией?

Правильно, нет! Почему? Попробуй ответить на этот вопрос с помощью рисунка. Что у тебя вышло?

«Потому что одному значению соответствует несколько значений!»

Какой вывод мы можем из этого сделать?

Правильно, функция не всегда может быть выражена явно, и не всегда то, что «замаскировано» под функцию является функцией!

Табличный способ задания функции

Как следует из названия, этот способ представляет собой простую табличку. Да, да. Наподобие той, которой мы с тобой уже составляли. Например:

Здесь ты сразу подметил закономерность - игрек в три раза больше чем икс. А теперь задание на «очень хорошо подумать»: как ты считаешь, равносильная ли функция, заданная в виде таблицы, функции?

Не будем долго рассуждать, а будем рисовать!

Итак. Рисуем функцию, заданную обоями способами:

Видишь разницу? Дело совсем не в отмеченных точках! Присмотрись внимательнее:

Теперь увидел? Когда мы задаем функцию табличным способом, мы на графике отражаем только те точки, которые есть у нас в таблице и линия (как в нашем случае) проходит только через них. Когда мы задаем функцию аналитическим способом, мы можем взять любые точки, и наша функция ими не ограничивается. Вот такая вот особенность. Запоминай!

Графический способ построения функции

Графический способ построения функции не менее удобен. Мы рисуем нашу функцию, а другой заинтересованный человек может найти чему равен игрек при определенном икс и так далее. Графический и аналитический способы одни из самых распространенных.

Однако, здесь нужно помнить о чем мы с тобой говорили в самом начале - не каждая «загогулина» нарисованная в системе координат является функцией! Вспомнил? На всякий случай скопирую тебе сюда определение, что функцией является:

Как правило, люди обычно называют именно те три способа задания функции, которые мы разобрали - аналитический (с помощью формулы), табличный и графический, напрочь забывая о том, что функцию можно словесно описать. Как это? Да очень просто!

Словесное описание функции

Как же описать функцию словесно? Возьмем наш недавний пример - . Данную функцию можно описать «каждому действительному значению икс соответствует его утроенное значение». Вот и все. Ничего сложного. Ты, конечно, возразишь - «есть настолько сложные функции, которые словесно задать просто невозможно!» Да, есть и такие, но есть функции, которые описать словесно легче, чем задать формулой. Например: «каждому натуральному значению икс соответствует разница между цифрами, из которых он состоит, при этом за уменьшаемое берется наибольшее цифра, содержащиеся в записи числа». Теперь рассмотрим, как наше словесное описание функции реализуется на практике:

Наибольшая цифра в данном числе - , соответственно, - уменьшаемое, тогда:

Основные виды функций

Теперь перейдем к самому интересному - рассмотрим основные виды функций, с которыми ты работал/работаешь и будешь работать в курсе школьной и институтской математики, то есть познакомимся с ними, так сказать и дадим им краткую характеристику. Более подробно про каждую функцию читай в соответствующем разделе.

Линейная функция

Функция вида, где, - действительные числа.

Графиком данной функции служит прямая, поэтому построение линейной функции сводится к нахождению координат двух точек.

Положение прямой на координатной плоскости зависит от углового коэффициента.

Область определения функции (aka область допустимых значений аргумента) - .

Область значений - .

Квадратичная функция

Функция вида, где

Графиком функции является парабола, при ветви параболы направлены вниз, при — вверх.

Многие свойства квадратичной функции зависят от значения дискриминанта. Дискриминант вычисляется по формуле

Положение параболы на координатной плоскости относительно значения и коэффициента показаны на рисунке:

Область определения

Область значений зависит от экстремума данной функции (точки вершины параболы) и коэффициента (направления ветвей параболы)

Обратная пропорциональность

Функция, задаваемая формулой, где

Число называется коэффициентом обратной пропорциональности. В зависимости от того, какое значение, ветви гиперболы находятся в разных квадратах:

Область определения - .

Область значений - .

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

1. Функцией называется правило, по которому каждому элементу множества ставится в соответствие единственный элемент множества.

  • - это формула, обозначающая функцию, то есть зависимость одной переменной от другой;
  • - переменная величина, или, аргумент;
  • - зависимая величина - изменяется при изменении аргумента, то есть согласно какой-либо определенной формуле, отражающей зависимость одной величины от другой.

2. Допустимые значения аргумента , или область определения функции - это то, что связано с возможными, при которых функция имеет смысл.

3. Область значений функции - это то, какие значения принимает, при допустимых значениях.

4. Существует 4 способа задания функции:

  • аналитический (с помощью формул);
  • табличный;
  • графический
  • словесное описание.

5. Основные виды функций:

  • : , где, - действительные числа;
  • : , где;
  • : , где.

Построить функцию

Мы предлагаем вашему вниманию сервис по потроению графиков функций онлайн, все права на который принадлежат компании Desmos . Для ввода функций воспользуйтесь левой колонкой. Вводить можно вручную либо с помощью виртуальной клавиатуры внизу окна. Для увеличения окна с графиком можно скрыть как левую колонку, так и виртуальную клавиатуру.

Преимущества построения графиков онлайн

  • Визуальное отображение вводимых функций
  • Построение очень сложных графиков
  • Построение графиков, заданных неявно (например эллипс x^2/9+y^2/16=1)
  • Возможность сохранять графики и получать на них ссылку, которая становится доступной для всех в интернете
  • Управление масштабом, цветом линий
  • Возможность построения графиков по точкам, использование констант
  • Построение одновременно нескольких графиков функций
  • Построение графиков в полярной системе координат (используйте r и θ(\theta))

С нами легко в режиме онлайн строить графики различной сложности. Построение производится мгновенно. Сервис востребован для нахождения точек пересечения функций, для изображения графиков для дальнейшего их перемещения в Word документ в качестве иллюстраций при решении задач, для анализа поведенческих особенностей графиков функций. Оптимальным браузером для работы с графиками на данной странице сайта является Google Chrome. При использовании других браузеров корректность работы не гарантируется.

Линейной функцией называется функция вида y=kx+b, где x-независимая переменная, k и b-любые числа.
Графиком линейной функции является прямая.

1. Чтобы постороить график функции, нам нужны координаты двух точек, принадлежащих графику функции. Чтобы их найти, нужно взять два значения х, подставить их в уравнение функции, и по ним вычислить соответствующие значения y.

Например, чтобы построить график функции y= ⅓ x+2, удобно взять x=0 и x=3, тогда ординаты эти точек будут равны y=2 и y=3. Получим точки А(0;2) и В(3;3). Соединим их и получим график функции y= ⅓ x+2:

2. В формуле y=kx+b число k называется коэффицентом пропорциональности:
если k>0, то функция y=kx+b возрастает
если k
Коэффициент b показывает смещение графика функции вдоль оси OY:
если b>0, то график функции y=kx+b получается из графика функцииy=kx сдвигом на b единиц вверх вдоль оси OY
если b
На рисунке ниже изображены графики функций y=2x+3; y= ½ x+3; y=x+3

Заметим, что во всех этих функциях коэффициент k больше нуля, и функции являются возрастающими. Причем, чем больше значение k, тем больше угол наклона прямой к положительному направлению оси OX.

Во всех функциях b=3 – и мы видим, что все графики пересекают ось OY в точке (0;3)

Теперь рассмотрим графики функций y=-2x+3; y=- ½ x+3; y=-x+3

На этот раз во всех функциях коэффициент k меньше нуля, и функции убывают. Коэффициент b=3, и графики также как в предыдущем случае пересекают ось OY в точке (0;3)

Рассмотрим графики функций y=2x+3; y=2x; y=2x-3

Теперь во всех уравнениях функций коэффициенты k равны 2. И мы получили три параллельные прямые.

Но коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
График функции y=2x+3 (b=3) пересекает ось OY в точке (0;3)
График функции y=2x (b=0) пересекает ось OY в точке (0;0) - начале координат.
График функции y=2x-3 (b=-3) пересекает ось OY в точке (0;-3)

Итак, если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции y=kx+b.
Если k 0

Если k>0 и b>0 , то график функции y=kx+b имеет вид:

Если k>0 и b , то график функции y=kx+b имеет вид:

Если k, то график функции y=kx+b имеет вид:

Если k=0 , то функция y=kx+b превращается в функцию y=b и ее график имеет вид:

Ординаты всех точек графика функции y=b равны b Если b=0 , то график функции y=kx (прямая пропорциональность) проходит через начало координат:

3. Отдельно отметим график уравнения x=a. График этого уравнения представляет собой прямую линию, параллельую оси OY все точки которой имеют абсциссу x=a.

Например, график уравнения x=3 выглядит так:
Внимание! Уравнение x=a не является функцией, так одному значению аргумента соотвутствуют разные значения функции, что не соответствует определению функции.


4. Условие параллельности двух прямых:

График функции y=k 1 x+b 1 параллелен графику функции y=k 2 x+b 2 , если k 1 =k 2

5. Условие перепендикулярности двух прямых:

График функции y=k 1 x+b 1 перепендикулярен графику функции y=k 2 x+b 2 , если k 1 *k 2 =-1 или k 1 =-1/k 2

6. Точки пересечения графика функции y=kx+b с осями координат.

С осью ОY. Абсцисса любой точки, принадлежащей оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY нужно в уравнение функции вместо х подставить ноль. Получим y=b. То есть точка пересечения с осью OY имеет координаты (0;b).

С осью ОХ: Ордината любой точки, принадлежащей оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ нужно в уравнение функции вместо y подставить ноль. Получим 0=kx+b. Отсюда x=-b/k. То есть точка пересечения с осью OX имеет координаты (-b/k;0):

Функции и их графики - одна из самых увлекательных тем в школьной математике. Жаль только, что проходит она... мимо уроков и мимо учеников. На нее вечно не хватает времени в старших классах. А те функции, которые проходят в 7-м классе, - линейная функция и парабола - слишком просты и незамысловаты, чтобы показать все разнообразие интересных задач.

Умение строить графики функций необходимо для решения задач с параметрами на ЕГЭ по математике. Это одна из первых тем курса математического анализа в вузе. Это настолько важная тема, что мы в ЕГЭ-Студии проводим по ней специальные интенсивы для старшеклассников и учителей, в Москве и онлайн. И часто участники говорят: «Жаль, что мы не знали этого раньше».

Но это не все. Именно с понятия функции и начинается настоящая, «взрослая» математика. Ведь сложение и вычитание, умножение и деление, дроби и пропорции - это все-таки арифметика. Преобразования выражений - это алгебра. А математика - наука не только о числах, но и о взаимосвязях величин. Язык функций и графиков понятен и физику, и биологу, и экономисту. И, как сказал Галилео Галилей, «Книга природы написана на языке математики» .

Точнее, Галилео Галилей сказал так:«Математика есть алфавит, посредством которого Господь начертал Вселенную».

Темы для повторения:

1. Построим график функции

Знакомая задача! Такие встречались в вариантах ОГЭ по математике. Там они считались сложными. Но сложного ничего здесь нет.

Упростим формулу функции:

График функции - прямая с выколотой точкой

2. Построим график функции

Выделим в формуле функции целую часть:

График функции - гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции

Выделение целой части - полезный прием, применяемый в решении неравенств, построении графиков и оценке целых величин в задачах на числа и их свойства. Он встретится вам также на первом курсе, когда придется брать интегралы.

3. Построим график функции

Он получается из графика функции растяжением в 2 раза, отражением по вертикали и сдвигом на 1 вверх по вертикали

4. Построим график функции

Главное - правильная последовательность действий. Запишем формулу функции в более удобном виде:

Действуем по порядку:

1) График функции y=sinx сдвинем на влево;

2) сожмем в 2 раза по горизонтали,

3) растянем в 3 раза по вертикали,

4) сдвинем на 1 вверх

Сейчас мы построим несколько графиков дробно-рациональных функций. Чтобы лучше понять, как мы это делаем, читайте статью «Поведение функции в бесконечности. Асимптоты».

5. Построим график функции

Область определения функции:

Нули функции: и

Прямая x = 0 (ось Y) - вертикальная асимптота функции. Асимптота - прямая, к которой бесконечно близко подходит график функции, но не пересекает ее и не сливается с ней (смотри тему «Поведение функции в бесконечности. Асимптоты»)

Есть ли другие асимптоты у нашей функции? Чтобы выяснить это, посмотрим, как ведет себя функция, когда x стремится к бесконечности.

Раскроем скобки в формуле функции:

Если x стремится к бесконечности, то стремится к нулю. Прямая является наклонной асимптотой к графику функции.

6. Построим график функции

Это дробно-рациональная функция.

Область определения функции

Нули функции: точки - 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты:

Если x стремится к бесконечности, то у стремится к 1. Значит, - горизонтальная асимптота.

Вот эскиз графика:

Еще один интересный прием - сложение графиков.

7. Построим график функции

Если x стремится к бесконечности, то и график функции будет бесконечно близко подходить к наклонной асимптоте

Если x стремится к нулю, то функция ведет себя как Это мы и видим на графике:

Вот мы и построили график суммы функций. Теперь график произведения!

8. Построим график функции

Область определения этой функции - положительные числа, поскольку только для положительных x определен

Значения функции равны нулю при (когда логарифм равен нулю), а также в точках, где то есть при

При , значение {cos x} равно единице. Значение функции в этих точках будет равно

9. Построим график функции

Функция определена при Она четная, поскольку является произведением двух нечетных функций и График симметричен относительно оси ординат.

Нули функции - в точках, где то есть при

Если x стремится к бесконечности, стремится к нулю. Но что же будет, если x стремится к нулю? Ведь и x, и sin x будут становиться меньше и меньше. Как же будет вести себя частное ?

Оказывается, что если x стремится к нулю, то стремится к единице. В математике это утверждение носит название «Первого замечательного предела».

А как же производная? Да, наконец-то мы до нее добрались. Производная помогает более точно строить графики функций. Находить точки максимума и минимума, а также значения функции в этих точках.

10. Построим график функции

Область определения функции - все действительные числа, поскольку

Функция нечетна. Ее график симметричен относительно начала координат.

При x=0 значение функции равно нулю. При значения функции положительны, при отрицательны.

Если x стремится к бесконечности, то стремится к нулю.

Найдем производную функции
По формуле производной частного,

Если или

В точке производная меняет знак с «минуса» на «плюс», - точка минимума функции.

В точке производная меняет знак с «плюса» на «минус», - точка максимума функции.

Найдем значения функции при x=2 и при x=-2.

Графики функций удобно строить по определенному алгоритму, или схеме. Помните, вы изучали ее в школе?

Общая схема построения графика функции:

1. Область определения функции

2. Область значений функции

3. Четность - нечетность (если есть)

4. Периодичность (если есть)

5. Нули функции (точки, в которых график пересекает оси координат)

6. Промежутки знакопостоянства функции (то есть промежутки, на которых она строго положительна или строго отрицательна).

7. Асимптоты (если есть).

8. Поведение функции в бесконечности

9. Производная функции

10. Промежутки возрастания и убывания. Точки максимума и минимума и значения в этих точках.


Знание основных элементарных функций, их свойств и графиков не менее важно, чем знание таблицы умножения. Они как фундамент, на них все основано, из них все строится и к ним все сводится.

В этой статье мы перечислим все основные элементарные функции, приведем их графики и дадим без вывода и доказательств свойства основных элементарных функций по схеме:

  • поведение функции на границах области определения, вертикальные асимптоты (при необходимости смотрите статью классификация точек разрыва функции);
  • четность и нечетность;
  • промежутки выпуклости (выпуклости вверх) и вогнутости (выпуклости вниз), точки перегиба (при необходимости смотрите статью выпуклость функции, направление выпуклости, точки перегиба, условия выпуклости и перегиба);
  • наклонные и горизонтальные асимптоты;
  • особые точки функций;
  • особые свойства некоторых функций (например, наименьший положительный период у тригонометрических функций).

Если Вас интересует или , то можете перейти к этим разделам теории.

Основными элементарными функциями являются: постоянная функция (константа), корень n -ой степени, степенная функция, показательная, логарифмическая функция, тригонометрические и обратные тригонометрические функции.

Навигация по странице.

Постоянная функция.

Постоянная функция задается на множестве всех действительных чисел формулой , где C – некоторое действительное число. Постоянная функция ставит в соответствие каждому действительному значению независимой переменной x одно и то же значение зависимой переменной y – значение С . Постоянную функцию также называют константой.

Графиком постоянной функции является прямая, параллельная оси абсцисс и проходящая через точку с координатами (0,C) . Для примера покажем графики постоянных функций y=5 , y=-2 и , которым на рисунке, приведенном ниже, отвечают черная, красная и синяя прямые соответственно.

Свойства постоянной функции.

  • Область определения: все множество действительных чисел.
  • Постоянная функция является четной.
  • Область значений: множество, состоящее из единственного числа С .
  • Постоянная функция невозрастающая и неубывающая (на то она и постоянная).
  • Говорить о выпуклости и вогнутости постоянной не имеет смысла.
  • Асимптот нет.
  • Функция проходит через точку (0,C) координатной плоскости.

Корень n -ой степени.

Рассмотрим основную элементарную функцию, которая задается формулой , где n – натуральное число, большее единицы.

Корень n -ой степени, n - четное число.

Начнем с функции корень n -ой степени при четных значениях показателя корня n .

Для примера приведем рисунок с изображениями графиков функций и , им соответствуют черная, красная и синяя линии.


Аналогичный вид имеют графики функций корень четной степени при других значениях показателя.

Свойства функции корень n -ой степени при четных n .

Корень n -ой степени, n - нечетное число.

Функция корень n -ой степени с нечетным показателем корня n определена на всем множестве действительных чисел. Для примера приведем графики функций и , им соответствуют черная, красная и синяя кривые.


При других нечетных значениях показателя корня графики функции будут иметь схожий вид.

Свойства функции корень n -ой степени при нечетных n .

Степенная функция.

Степенная функция задается формулой вида .

Рассмотрим вид графиков степенной функции и свойства степенной функции в зависимости от значения показателя степени.

Начнем со степенной функции с целым показателем a . В этом случае вид графиков степенных функций и свойства функций зависят от четности или нечетности показателя степени, а также от его знака. Поэтому сначала рассмотрим степенные функции при нечетных положительных значениях показателя a , далее - при четных положительных, далее - при нечетных отрицательных показателях степени, и, наконец, при четных отрицательных a .

Свойства степенных функций с дробными и иррациональными показателями (как и вид графиков таких степенных функций) зависят от значения показателя a . Их будем рассматривать, во-первых, при a от нуля до единицы, во-вторых, при a больших единицы, в-третьих, при a от минус единицы до нуля, в-четвертых, при a меньших минус единицы.

В заключении этого пункта для полноты картины опишем степенную функцию с нулевым показателем.

Степенная функция с нечетным положительным показателем.

Рассмотрим степенную функцию при нечетном положительном показателе степени, то есть, при а=1,3,5,… .

На рисунке ниже приведены графики степенных фнукций – черная линия, – синяя линия, – красная линия, – зеленая линия. При а=1 имеем линейную функцию y=x .

Свойства степенной функции с нечетным положительным показателем.

Степенная функция с четным положительным показателем.

Рассмотрим степенную функцию с четным положительным показателем степени, то есть, при а=2,4,6,… .

В качестве примера приведем графики степенных функций – черная линия, – синяя линия, – красная линия. При а=2 имеем квадратичную функцию, графиком которой является квадратичная парабола .

Свойства степенной функции с четным положительным показателем.

Степенная функция с нечетным отрицательным показателем.

Посмотрите на графики степенной функции при нечетных отрицательных значениях показателя степени, то есть, при а=-1,-3,-5,… .

На рисунке в качестве примеров показаны графики степенных функций – черная линия, – синяя линия, – красная линия, – зеленая линия. При а=-1 имеем обратную пропорциональность , графиком которой является гипербола .

Свойства степенной функции с нечетным отрицательным показателем.

Степенная функция с четным отрицательным показателем.

Перейдем к степенной функции при а=-2,-4,-6,… .

На рисунке изображены графики степенных функций – черная линия, – синяя линия, – красная линия.

Свойства степенной функции с четным отрицательным показателем.

Степенная функция с рациональным или иррациональным показателем, значение которого больше нуля и меньше единицы.

Обратите внимание! Если a - положительная дробь с нечетным знаменателем, то некоторые авторы считают областью определения степенной функции интервал . При этом оговариваются, что показатель степени a – несократимая дробь. Сейчас авторы многих учебников по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции с показателем в виде дроби с нечетным знаменателем при отрицательных значениях аргумента. Мы будем придерживаться именно такого взгляда, то есть, будем считать областями определения степенных функций с дробными положительными показателями степени множество . Рекомендуем учащимся узнать взгляд Вашего преподавателя на этот тонкий момент, чтобы избежать разногласий.

Рассмотрим степенную функцию с рациональным или иррациональным показателем a , причем .

Приведем графики степенных функций при а=11/12 (черная линия), а=5/7 (красная линия), (синяя линия), а=2/5 (зеленая линия).

Степенная функция с нецелым рациональным или иррациональным показателем, большим единицы.

Рассмотрим степенную функцию с нецелым рациональным или иррациональным показателем a , причем .

Приведем графики степенных функций, заданных формулами (черная, красная, синяя и зеленая линии соответственно).

>

При других значениях показателя степени a , графики функции будут иметь схожий вид.

Свойства степенной функции при .

Степенная функция с действительным показателем, который больше минус единицы и меньше нуля.

Обратите внимание! Если a - отрицательная дробь с нечетным знаменателем, то некоторые авторы считают областью определения степенной функции интервал . При этом оговариваются, что показатель степени a – несократимая дробь. Сейчас авторы многих учебников по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции с показателем в виде дроби с нечетным знаменателем при отрицательных значениях аргумента. Мы будем придерживаться именно такого взгляда, то есть, будем считать областями определения степенных функций с дробными дробными отрицательными показателями степени множество соответственно. Рекомендуем учащимся узнать взгляд Вашего преподавателя на этот тонкий момент, чтобы избежать разногласий.

Переходим к степенной функции , кгода .

Чтобы хорошо представлять вид графиков степенных функций при , приведем примеры графиков функций (черная, красная, синяя и зеленая кривые соответственно).

Свойства степенной функции с показателем a , .

Степенная функция с нецелым действительным показателем, который меньше минус единицы.

Приведем примеры графиков степенных функций при , они изображены черной, красной, синей и зеленой линиями соответственно.

Свойства степенной функции с нецелым отрицательным показателем, меньшим минус единицы.

При а=0 и имеем функцию - это прямая из которой исключена точка (0;1) (выражению 0 0 условились не придавать никакого значения).

Показательная функция.

Одной из основных элементарных функций является показательная функция.

График показательной функции , где и принимает различный вид в зависимости от значения основания а . Разберемся в этим.

Сначала рассмотрим случай, когда основание показательной функции принимает значение от нуля до единицы, то есть, .

Для примера приведем графики показательной функции при а = 1/2 – синяя линия, a = 5/6 – красная линия. Аналогичный вид имеют графики показательной функции при других значениях основания из интервала .

Свойства показательной функции с основанием меньшим единицы.

Переходим к случаю, когда основание показательной функции больше единицы, то есть, .

В качестве иллюстрации приведем графики показательных функций – синяя линия и – красная линия. При других значениях основания, больших единицы, графики показательной функции будут иметь схожий вид.

Свойства показательной функции с основанием большим единицы.

Логарифмическая функция.

Следующей основной элементарной функцией является логарифмическая функция , где , . Логарифмическая функция определена лишь для положительных значений аргумента, то есть, при .

График логарифмической функции принимает различный вид в зависимости от значения основания а .

Начнем со случая, когда .

Для примера приведем графики логарифмической функции при а = 1/2 – синяя линия, a = 5/6 – красная линия. При других значениях основания, не превосходящих единицы, графики логарифмической функции будут иметь схожий вид.

Свойства логарифмической функции с основанием меньшим единицы.

Перейдем к случаю, когда основание логарифмической функции больше единицы ().

Покажем графики логарифмических функций – синяя линия, – красная линия. При других значениях основания, больших единицы, графики логарифмической функции будут иметь схожий вид.

Свойства логарифмической функции с основанием большим единицы.

Тригонометрические функции, их свойства и графики.

Все тригонометрические функции (синус, косинус, тангенс и котангенс) относятся к основным элементарным функциям. Сейчас мы рассмотрим их графики и перечислим свойства.

Тригонометрическим функциям присуще понятие периодичности (повторяемости значений функции при различных значениях аргумента, отличных друг от друга на величину периода , где Т - период), поэтому, в список свойств тригонометрических функций добавлен пункт «наименьший положительный период» . Также для каждой тригонометрической функции мы укажем значения аргумента, при которых соответствующая функция обращается в ноль.

Теперь разберемся со всеми тригонометрическими функциями по порядку.

Функция синус y = sin(x) .

Изобразим график функции синус, его называют "синусоида".


Свойства функции синус y = sinx .

Функция косинус y = cos(x) .

График функции косинус (его называют "косинусоида") имеет вид:


Свойства функции косинус y = cosx .

Функция тангенс y = tg(x) .

График функции тангенс (его называют "тангенсоида") имеет вид:

Свойства функции тангенс y = tgx .

Функция котангенс y = ctg(x) .

Изобразим график функции котангенс (его называют "котангенсоида"):

Свойства функции котангенс y = ctgx .

Обратные тригонометрические функции, их свойства и графики.

Обратные тригонометрические функции (арксинус, арккосинус, арктангенс и арккотангенс) являются основным элементарным функциями. Часто из-за приставки "арк" обратные тригонометрические функции называют аркфункциями. Сейчас мы рассмотрим их графики и перечислим свойства.

Функция арксинус y = arcsin(x) .

Изобразим график функции арксинус:

Свойства функции арккотангенс y = arcctg(x) .

Список литературы.

  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват учреждений.
  • Выгодский М.Я. Справочник по элементарной математике.
  • Новоселов С.И. Алгебра и элементарные функции.
  • Туманов С.И. Элементарная алгебра. Пособие для самообразования.