Гидрофильные и гидрофобные радикалы. Подробная классификация аминокислот. Отрицательно заряженные аминокислоты

Глава III. БЕЛКИ

§ 6. АМИНОКИСЛОТЫ КАК СТРУКТУРНЫЕ ЭЛЕМЕНТЫ БЕЛКОВ

Природные аминокислоты

Аминокислоты в живых организмах встречаются преимущественно в составе белков. Белки построены в основном двадцатью стандартными аминокислотами. Они являются a-аминокислотами и отличаются друг от друга строением боковых групп (радикалов), обозначаемых буквой R:

Разнообразие боковых радикалов аминокислот играет ключевую роль при формировании пространственной структуры белков, при функционировании активного центра ферментов.

Структура стандартных аминокислот приведена в конце параграфа в табл.3. Природные аминокислоты имеют тривиальные названия, оперировать которыми при записях структуры белков неудобно. Поэтому для них введены трехбуквенные и однобуквенные обозначения, которые также представлены в табл.3.

Пространственная изомерия

У всех аминокислот, за исключением глицина, a-углеродный атом является хиральным, т.е. для них характерна оптическая изомерия. В табл. 3 хиральный атом углерода обозначен звездочкой. Например, для аланина проекции Фишера обоих изомеров выглядят следующим образом:

Для их обозначения, как и для углеводов, используется D, L-номенклатура. В состав белков входят только L-аминокислоты.

L- и D-изомеры могут взаимно превращаться друг в друга. Этот процесс называется рацемизацией.

Интересно знать! В белке зубов – дентине – L -аспарагиновая кислота самопроизвольно рацемизуется при температуре человеческого тела со скорость 0,10 % в год. В период формирования зубов в дентине содержится только L -аспарагиновая кислота, у взрослого же человека в результате рацемизации образуется D -аспарагиновая кислота. Чем старше человек, тем выше содержание D-изомера. Определив соотношение D- и L-изомеров, можно достаточно точно установить возраст. Так были изобличены жители горных селений Эквадора, приписывавшие себе слишком большой возраст.

Химические свойства

Аминокислоты содержат амино- и карбоксильную группы. В силу этого они проявляют амфотерные свойства, то есть свойства и кислот и оснований.

При растворении аминокислоты в воде, например, глицина, его карбоксильная группа диссоциирует с образованием иона водорода. Далее ион водорода присоединяется за счет неподеленной пары электронов у атома азота к аминогруппе. Образуется ион, в котором одновременно присутствуют положительный и отрицательный заряды, так называемый цвиттер-ион:

Такая форма аминокислоты является преобладающей в нейтральном растворе. В кислой среде аминокислота, присоединяя ион водорода, образует катион:

В щелочной среде образуется анион:

Таким образом, в зависимости от рН среды аминокислота может быть положительно заряженной, отрицательно заряженной и электронейтральной (при равенстве положительных и отрицательных зарядов). Значение рН раствора, при котором суммарный заряд аминокислоты равен нулю, называется изоэлектрической точкой данной аминокислоты. Для многих аминокислот изоэлектрическая точка лежит вблизи рН 6. Например, изоэлектрические точки глицина и аланина имеют значения 5,97 и 6,02 соответственно.

Две аминокислоты могут реагировать друг с другом, в результате чего отщепляется молекула воды и образуется продукт, который называется дипептидом :

Связь, соединяющая две аминокислоты, носит название пептидной связи . Если пользоваться буквенными обозначениями аминокислот, образование дипептида можно схематически представить следующим образом:

Аналогично образуются трипептиды, тетрапептиды и т.д.:

H 2 N – лиз – ала – гли – СООН – трипептид

H 2 N – трп – гис – ала – ала – СООН – тетрапептид

H 2 N – тир – лиз – гли – ала – лей – гли – трп – СООН – гептапептид

Пептиды, состоящие из небольшого числа аминокислотных остатков, имеют общее название олигопептиды .

Интересно знать! Многие олигопептиды обладают высокой биологической активностью. К ним относится ряд гормонов, например, окситоцин (нанопептид) стимулирует сокращение матки, брадикинин (нанопептид) подавляет воспалительные процессы в тканях. Антибиотик грамицидин С (циклический декапептид) нарушает регуляцию ионной проницаемости в мембранах бактерий и тем самым убивает их. Грибные яды аманитины (октапептиды), блокируя синтез белка, способны вызвать сильное отравление у человека. Широко известен аспартам - метиловый эфир аспартилфенилаланина. Аспартам имеет сладкий вкус и используется для придания сладкого вкуса различным продуктам, напиткам.

Классификация аминокислот

Существует несколько подходов к классификации аминокислот, но наиболее предпочтительной является классификация, основанная на строении их радикалов. Выделяют четыре класса аминокислот, содержащих радикалы следующих типов; 1) неполярные (или гидрофобные); 2) полярные незаряженные; 3) отрицательно заряженные и 4) положительно заряженные:


К неполярным (гидрофобным) относятся аминокислоты с неполярными алифатическими (аланин, валин, лейцин, изолейцин) или ароматическими (фенилаланин и триптофан) R-группами и одна серусодержащая аминокислота – метионин.

Полярные незаряженные аминокислоты в сравнении с неполярными лучше растворяются в воде, более гидрофильны, так как их функциональные группы образуют водородные связи с молекулами воды. К ним относятся аминокислоты, содержащие полярную НО-группу (серин, треонин и тирозин), HS-группу (цистеин), амидную группу (глутамин, аспарагин) и глицин (R-группа глицина, представленная одним атомом водорода, слишком мала, чтобы компенсировать сильную полярность a-аминогруппы и a-карбоксильной группы).

Аспарагиновая и глутаминовая кислоты относятся к отрицательно заряженным аминокислотам. Они содержат по две карбоксильные и по одной аминогруппе, поэтому в ионизированном состоянии их молекулы будут иметь суммарный отрицательный заряд:

К положительно заряженным аминокислотам принадлежат лизин, гистидин и аргинин, в ионизированном виде они имеют суммарный положительный заряд:

В зависимости от характера радикалов природные аминокислоты также подразделяются на нейтральные, кислые и основные . К нейтральным относятся неполярные и полярные незаряженные, к кислым – отрицательно заряженные, к основным – положительно заряженные.

Десять из 20 аминокислот, входящих в состав белков, могут синтезироваться в человеческом организме. Остальные должны содержаться в нашей пище. К ним относятся аргинин, валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин и гистидин. Эти аминокислоты называются незаменимыми. Незаменимые аминокислоты входят часто в состав пищевых добавок, используются в качестве лекарственных препаратов.

Интересно знать! Исключительно важную роль играет сбалансированность питания человека по аминокислотам. При недостатке незаменимых аминокислот в пище организм саморазрушается. При этом страдает в первую очередь головной мозг, что приводит к различным заболеваниям центральной нервной системы, психическим расстройствам. Особенно уязвим молодой растущий организм. Так, например, при нарушении синтеза тирозина из фенилаланина у детей развивается тяжелое заболевание финилпировиноградная олигофрения, вызывающее тяжелую умственную отсталость или гибель ребенка.

Таблица 3

Стандартные аминокислоты

Аминокислота

(тривиальное название)

Условные обозначения

Структурная формула

Латинское

трехбук- венное

однобук-венное

НЕПОЛЯРНЫЕ (ГИДРОФОБНЫЕ)

Изолейцин

Фенилаланин

Триптофан

Метионин

ПОЛЯРНЫЕ НЕЗАРЯЖЕННЫЕ

Аспарагин

Глутамин

БИОЛОГИЧЕСКАЯ ХИМИЯ

Методический материал для самоподготовки)

Петрозаводск

ТЕМА 1. СТРОЕНИЕ, КЛАССИФИКАЦИЯ

И БИОЛОГИЧЕСКАЯ РОЛЬ АМИНОКИСЛОТ

Задание:

1. Выучить предложенный теоретический материал.

2. Ознакомиться с вариантами контрольной работы по теме.

(Выполнение контрольной работы по этой теме проводится на первом лабораторном занятии в 6-м семестре, во время летней сессии).

Аминокислотный состав белков

Историческая справка. Первая аминокислота – глицин была выделена в 1820 г. методом кислотного гидролиза желатины,полностью расшифрован аминокислотный состав белков в 1938 г., когда была идентифицирована последняя аминокислота – треонин (Имеются данные, что первым был выделен аспарагин из аспарагуса в 1806 г.).

Функции аминокислот. В настоящее время известно более 300 аминокислот, они могут выполнять разные функции:

· входят в состав всех белков – их 20, и такие аминокислоты называют стандартными, или протеиногенными ;

· входят в состав только редких, или определённых, белков (например, оксипролин, 5-оксилизин входят в состав коллагена; десмозин – в состав эластина);

· входят в состав других соединений (например, b-аланин входит в состав витамина В 3 , который необходим для синтеза КоА-SH);

· являются промежуточными метаболитами обменных процессов (например, орнитин, цитруллин);

· необходимы для синтеза биологически активных соединений, например, биогенных аминов, нейромедиаторов;

· необходимы для синтеза азотсодержащих соединений (полиаминов, нуклеотидов и нуклеиновых кислот);

· углеродный скелет аминокислот может использоваться для синтеза других соединений:

а) глюкозы – такие аминокислоты называются глюкогенными (большинство из протеиногенных);

б) липидов – кетогенными (вал, лей, иле, фен, тир);

· аминокислоты могут быть источником определенных функциональных групп – сульфатной (цистеин), одноуглеродных фрагментов (метионин, глицин и серин), аминогруппы (глутамин, аспарат).

Номенклатура аминокислот. Аминокислоты – производные карбо-новых кислот, в молекуле которых атом водорода у С, стоящего в a-положении, замещён аминогруппой. Общая формула L-изомеров аминокислот:



Отличаются аминокислоты между собой функциональными группами в боковой цепи (R). Каждая аминокислота имеет тривиальное, рациональное и сокращенное трех- или однобуквенное обозначение , например, глицин, аминоуксусная, гли.

Тривиальное название чаще всего связано с источником выделения или свойствами аминокислоты:

· серин входит в состав фиброина шелка (от лат. serius – шелковистый),

· тирозин впервые выделен из сыра (от греч. tyros – сыр),

· глутамин выделен из клейковины злаковых (от лат. gluten – клей),

· цистин – из камней мочевого пузыря (от греч. kystis – пузырь),

· аспарагиновая кислота – ростков спаржи (от лат. asparagus – спаржа),

· глицин от греч. glykos – сладкий.

Рациональное название складывается исходя из того, что каждая аминокислота является производной соответствующей карбоновой кислоты.

Сокращенное обозначение используют для написания аминокислотного состава и последовательности аминокислот в цепи. В биохимии чаще всего применяют тривиальное и сокращенное обозначение.

Классификация аминокислот.

Существует несколько классификаций:

1) по химической природе боковой цепи (R),

2) рациональная классификация (по степени полярности радикала, по Ленинджеру),

3) по способности синтезироваться в организме.

По химической природе боковой цепи (R) все аминокислоты делятся на:

Ациклические (алифатические):

· моноаминомонокарбоновые

· моноаминодикарбоновые

· диаминомонокарбоновые

· диаминодикарбоновые

Циклические:

1) гомоциклические (фен, тир);

2) гетероциклические :

· аминокислоты (гис, три);

· иминокислоты (про).

По Ленинджеру (по способности радикала взаимодействовать с водой) все аминокислоты делят на 4 группы:

· неполярные , незаряженные (гидрофобные ) – их 8: ала, вал, лей, иле, мет, фен, три, про;

· полярные , незаряженные (гидрофильные ) – их 7: сер, тре, глн, асн, цис, тир, гли;

· отрицательно-заряженные – их 2: асп, глу;

· положительно-заряженные – их 3: гис, арг, лиз.

По способности синтезироваться в организме аминокислоты могут быть:

· заменимыми , которые могут синтезироваться в организме;

· незаменимыми , которые не могут синтезироваться в орга-низме и должны поступать с пищей.

Понятие «незаменимые» относительно для каждого вида – у человека и свиней их 10 (вал, лей, иле, тре, мет, фен, три, арг, гис, лиз), у животных с четырехкамерным желудком – 2 серосодержащие (цис, мет), у птиц – 1 (гли).

Физико-химические свойства аминокислот:

1. Растворимы в воде (лучше растворимы положительно- и отрицательно заряженные аминокислоты, затем гидрофиль-ные, хуже – гидрофобные).

2. Имеют высокую точку плавления (обусловлено тем, что в кристаллическом виде находятся в виде биполярных ионов).

3. Обладают оптической активностью, которая обусловлена наличием асимметрического атома углерода(за исключением гли). В связи с этим аминокислоты:

· существуют в виде L- и D-стереоизомеров, но в состав белков высших животных входят в основном аминокислоты L-ряда; количество стереоизомеров зависит от количестваасимметрических атомов углерода и рассчитывается по формуле 2 n , где n – количество асимметрических атомов С;

· способны вращать плоскость поляризованного света вправо или влево; величина удельного вращения у разных аминокислот варьирует от 10 до 30 º .

4. Амфотерные свойства (аминокислоты, кроме гли, при физиологических значениях рН и в кристаллическом виде находятся в виде биполярных ионов). Величина рН, при которой суммарный заряд аминокислоты равен 0, называется изоэлектрической точкой. Для моноаминомонокарбоновых аминокислот она лежит в интервале 5,5-6,3, диаминомоно-карбоновых – больше 7, для дикарбоновых – меньше 7.

5. Химические свойства :

· кислотные свойства, обусловленные наличием карбоксильной группы;

· основные свойства, обусловленные наличием аминогруппы;

· свойства, обусловленные взаимодействием амино-

и карбоксильной групп между собой;

· свойства, обусловленные наличием функциональных групп в боковой цепи.

Эти группы взаимодействуют с дипольными молекулами воды, которые ориентируются вокруг них.

Отрицательно заряженные аминокислоты . Сюда относятся аспарагиновая и глутаминовая кислоты. Имеют дополнительную СООН-группу в радикале - в нейтральной среде приобретают отрицательный заряд.

Все они гидрофильны.

Положительно заряженные аминокислоты: аргинин, лизин и гистидин. Имеют дополнительную NH2-группу (или имидазольное кольцо, как гистидин) в радикале - в нейтральной среде приобретают положительный заряд.

Все они также являются гидрофильными.

Такие свойства характерны для свободных аминокислот. В белке же ионогенные группы общей части аминокислот участвуют в образовании пептидной связи, и все свойства белка определяются только свойствами радикалов аминокислот.

Не все аминокислоты, принимающие участие в построении белков человеческого тела, способны синтезироваться в нашем организме. На этом основана еще одна классификация аминокислот - биологическая.

II. Биологическая классификация.

а) Незаменимые аминокислоты, их еще называют "эссенциальные". Они не могут синтезироваться в организме человека и должны обязательно поступать с пищей. Их 8 и еще 2 аминокислоты относятся к частично незаменимым.

Незаменимые: метионин, треонин, лизин, лейцин, изолейцин, валин, триптофан, фенилаланин.

Частично незаменимые: аргинин, гистидин.

а) Заменимые (могут синтезироваться в организме человека). Их 10: глутаминовая кислота, глутамин, пролин, аланин, аспарагиновая кислота, аспарагин, тирозин, цистеин, серин и глицин.

III. Химическая классификация - в соответствии с химической структурой радикала аминокислоты (алифатические, ароматические).

Белки синтезируются на рибосомах, не из свободных аминокислот, а из их соединений с транспортными РНК (т-РНК).

Этот комплекс называется «аминоацил-т-РНК».

ТИПЫ СВЯЗЕЙ МЕЖДУ АМИНОКИСЛОТАМИ В МОЛЕКУЛЕ БЕЛКА

1. КОВАЛЕНТНЫЕ СВЯЗИ - обычные прочные химические связи.

а) пептидная связь

б) дисульфидная связь

2. НЕКОВАЛЕНТНЫЕ (СЛАБЫЕ) ТИПЫ СВЯЗЕЙ - физико-химические взаимодействия родственных структур. В десятки раз слабее обычной химической связи. Очень чувствительны к физико-химическим условиям среды. Они неспецифичны, то есть соединяются друг с другом не строго определенные химические группировки, а самые разнообразные химические группы, но отвечающие определенным требованиям.

а) Водородная связь

б) Ионная связь

в) Гидрофобное взаимодействие

ПЕПТИДНАЯ СВЯЗЬ.

Формируется за счет COOH-группы одной аминокислоты и NH2-группы соседней аминокислоты. В названии пептида окончания названий всех аминокислот, кроме последней, находящейся на «С»-конце молекулы меняются на «ил»

Тетрапептид: валил-аспарагил-лизил-серин

ПЕПТИДНАЯ СВЯЗЬ формируется ТОЛЬКО ЗА СЧЕТ АЛЬФА-АМИНОГРУППЫ И СОСЕДНЕЙ COOH-ГРУППЫ ОБЩЕГО ДЛЯ ВСЕХ АМИНОКИСЛОТ ФРАГМЕНТА МОЛЕКУЛЫ!!! Если карбоксильные и аминогруппы входят в состав радикала, то они никогда(!) не участвуют в формировании пептидной связи в молекуле белка.

Любой белок - это длинная неразветвленная полипептидная цепь, содержащая десятки, сотни, а иногда более тысячи аминокислотных остатков. Но какой бы длины ни была полипептидная цепь, всегда в основе ее - стержень молекулы, абсолютно одинаковый у всех белков. Каждая полипептидная цепь имеет N-конец, на котором находится свободная концевая аминогруппа и С-конец, образованный концевой свободной карбоксильной группой. На этом стержне сидят как боковые веточки радикалы аминокислот. Числом, соотношением и чередованием этих радикалов один белок отличается от другого. Сама пептидная связь является частично двойной в силу лактим-лактамной таутомерии. Поэтому вокруг нее невозможно вращение, а сама она по прочности в полтора раза превосходит обычную ковалентную связь. На рисунке видно, что из каждых трех ковалентных связей в стержне молекулы пептида или белка две являются простыми и допускают вращение, поэтому стержень (вся полипептидная цепь) может изгибаться в пространстве.

Хотя пептидная связь довольно прочная, ее сравнительно легко можно разрушить химическим путем – кипячением белка в крепком растворе кислоты или щелочи в течении 1-3 суток.

К ковалентным связям в молекуле белка помимо пептидной, относится также ДИСУЛЬФИДНАЯ СВЯЗЬ.

Цистеин - аминокислота, которая в радикале имеет SH-группу, за счет которой и образуются дисульфидные связи.

Дисульфидная связь - это ковалентная связь. Однако биологически она гораздо менее устойчива, чем пептидная связь. Это объясняется тем, что в организме интенсивно протекают окислительно-восстановительные процессы. Дисульфидная связь может возникать между разными участками одной и той же полипептидной цепи, тогда она удерживает эту цепь в изогнутом состоянии. Если дисульфидная связь возникает между двумя полипептидами, то она объединяет их в одну молекулу.

СЛАБЫЕ ТИПЫ СВЯЗЕЙ

В десятки раз слабее ковалентных связей. Это не определенные типы связей, а неспецифическое взаимодействие, которое возникает между разными химическими группировками, имеющими высокое сродство друг к другу (сродство – это способность к взаимодействию). Например: противоположно заряженные радикалы.

Таким образом, слабые типы связей - это физико-химические взаимодействия. Поэтому они очень чувствительны к изменениям условий среды (температуры, pH среды, ионной силы раствора и так далее).

ВОДОРОДНАЯ СВЯЗЬ - это связь, возникающая между двумя электроотрицательными атомами за счет атома водорода, который соединен с одним из электроотрицательных атомов ковалентно (см. рисунок).

Водородная связь примерно в 10 раз слабее, чем ковалентная. Если водородные связи повторяются многократно, то они удерживают полипептидные цепочки с высокой прочностью. Водородные связи очень чувствительны к условиям внешней среды и присутствию в ней веществ, которые сами способны образовывать такие связи (например, мочевина).

ИОННАЯ СВЯЗЬ - возникает между положительно и отрицательно заряженными группировками (дополнительные карбоксильные и аминогруппы), которые встречаются в радикалах лизина, аргинина, гистидина, аспарагиновой и глутаминовой кислот.

ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ - неспецифическое притяжение, возникающее в молекуле белка между радикалами гидрофобных аминокислот - вызывается силами Ван-дер-Ваальса и дополняется выталкивающей силой воды. Гидрофобное взаимодействие ослабевает или разрывается в присутствии различных органических растворителей и некоторых детергентов. Например, некоторые последствия действия этилового спирта при проникновении его внутрь организма обусловлены тем, что под его влиянием ослабляются гидрофобные взаимодействия в молекулах белков.

Аминокисло́ты (аминокарбо́новые кисло́ты) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминные группы.

Открытие аминокислот в составе белков

Аминокислота аббревиатура Год Источник Кто впервые выделил
Глицин Gly 1820 Желатин А. Браконно
Лейцин Leu 1820 Мышечные волокна А. Браконно
Тирозин Tyr 1848 Казеин Ф. Бопп
Серин Ser 1865 Шёлк Э. Крамер
Глутаминовая кислота Glu 1866 Растительные белки Г. Риттхаузен
Аспарагиновая кислота Asp 1868 Конглутин, легумин (ростки спаржи) Г. Риттхаузен
Фенилаланин Phe 1881 Ростки люпина Э. Шульце, Й. Барбьери
Аланин Ala 1888 Фиброин шелка Т. Вейль
Лизин Lys 1889 Казеин Э. Дрексель
Аргинин Arg 1895 Вещество рога С. Гедин
Гистидин His 1896 Стурин, гистоны А. Кессель, С. Гедин
Цистеин Cys 1899 Вещество рога К. Мёрнер
Валин Val 1901 Казеин Э. Фишер
Пролин Pro 1901 Казеин Э. Фишер
Гидроксипролин 1902 Желатин Э. Фишер
Триптофан Trp 1902 Казеин Ф. Гопкинс, Д. Кол
Изолейцин Ile 1904 Фибрин Ф. Эрлих
Метионин Met 1922 Казеин Д. Мёллер
Треонин Thr 1925 Белки овса С. Шрайвер и др.
Гидроксилизин 1925 Белки рыб С. Шрайвер и др.

Физические свойства

Аминокислоты — бесцветные кристаллические вещества, хорошо растворимые в воде. Многие из них обладают сладким вкусом.

Общие химические свойства

Все аминокислоты амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы —COOH, так и основные свойства, обусловленные аминогруппой —NH2. Аминокислоты взаимодействуют с кислотами и щелочами:

NH2 —CH2 —COOH + HCl → HCl . NH2 —CH2 —COOH (хлороводородная соль глицина)

NH2 —CH2 —COOH + NaOH → H2O + NH2 —CH2 —COONa (натриевая соль глицина)

Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов, т.е. находятся в состоянии внутренних солей.

NH2 —CH2COOH N+H3 —CH2COO-

Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.

Этерификация:

NH2 —CH2 —COOH + CH3OH → H2O + NH2 —CH2 —COOCH3 (метиловый эфир глицина)

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона.

Реакция образования пептидов:

HOOC —CH2 —NH —H + HOOC —CH2 —NH2 → HOOC —CH2 —NH —CO —CH2 —NH2 + H2O

Изоэлектрической точкой аминокислоты называют значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком pH аминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов.

Цвиттер-ионом называют молекулу аминокислоты, в которой аминогруппа представлена в виде -NH3+, а карбоксигруппа — в виде -COO−. Такая молекула обладает значительным дипольным моментом при нулевом суммарном заряде. Именно из таких молекул построены кристаллы большинства аминокислот.

Некоторые аминокислоты имеют несколько аминогрупп и карбоксильных групп. Для этих аминокислот трудно говорить о каком-то конкретном цвиттер-ионе.

Получение

Большинство аминокислот можно получить в ходе гидролиза белков или как результат химических реакций:

CH3COOH + Cl2 + (катализатор) → CH2ClCOOH + HCl; CH2ClCOOH + 2NH3 → NH2 —CH2COOH + NH4Cl

Оптическая изомерия

Все входящие в состав живых организмов α-аминокислоты, кроме глицина, содержат асимметричный атом углерода (треонин и изолейцин содержат два асимметричных атома) и обладают оптической активностью. Почти все встречающиеся в природе α-аминокислоты имеют L-форму, и лишь L-аминокислоты включаются в состав белков, синтезируемых на рибосомах.

Данную особенность «живых» аминокислот весьма трудно объяснить, так как в реакциях между оптически неактивными веществами L и D-формы образуются в одинаковых количествах. Возможно, выбор одной из форм (L или D) — просто результат случайного стечения обстоятельств: первые молекулы, с которых смог начаться матричный синтез, обладали определенной формой, и именно к ним «приспособились» соответствующие ферменты.

D-аминокислоты в живых организмах

Аспарагиновые остатки в метаболически неактивных структурных белках претерпевают медленную самопроизвольную неферментативную рацемизацию: так в белках дентина и эмали зубов L-аспартат переходит в D-форму со скоростью ~0,1 % в год, что может быть использовано для определения возраста млекопитающих. Рацемизация остатков аспарагиновой также отмечена при старении коллагена, предполагается, что такая рацемизация специфична для аспарагиновой кислоты и протекает за счет образования сукцинимидного кольца при внутремолекулярном ацилировании пептидного азота свободной карбоксильной группой аспарагиновой кислоты.

С развитием следового аминокислотного анализа D-аминокислоты были обнаружены сначала в составе клеточных стенок некоторых бактерий (1966), а затем и в тканях высших организмов. Так, D-аспартат и D-метионин предположительно являются нейромедиаторами у млекопитающих.

В состав некоторых пептидов входят D-аминокислоты, образующиеся при посттрансляционной модификации.

Например, D-метионин и D-аланин входят в состав опиоидных гептапептидов кожи южноамериканских амфибий филломедуз (дерморфина, дермэнкефалина и делторфинов). Наличие D-аминокислот определяет высокую биологическую активность этих пептидов как анальгетиков.

Сходным образом образуются пептидные антибиотики бактериального происхождения, действующие против грамположительных бактерий — низин, субтилин и эпидермин.

Гораздо чаще D-аминокислоты входят в состав пептидов и их производных, образующихся путем нерибосомного синтеза в клетках грибов и бактерий. Видимо, в этом случае исходным материалом для синтеза служат также L-аминокислоты, которые изомеризуются одной из субъединиц ферментного комплекса, осуществляющего синтез пептида.

Протеиногенные аминокислоты

В процессе биосинтеза белка в полипептидную цепь включаются 20 α-аминокислот, кодируемых генетическим кодом. Помимо этих аминокислот, называемых протеиногенными, или стандартными, в некоторых белках присутствуют специфические нестандартные аминокислоты, возникающие из стандартных в процессе посттрансляционных модификаций. В последнее время к протеиногенным аминокислотам иногда причисляют трансляционно включаемые селеноцистеин (Sec, U) и пирролизин (Pyl, O). Это так называемые 21-я и 22-я аминокислоты.

Вопрос, почему именно эти 20 аминокислот стали «избранными», остаётся не решённым. Не совсем ясно, чем эти аминокислоты оказались предпочтительнее других похожих. Например, ключевым промежуточным метаболитом пути биосинтеза треонина, изолейцина и метионина является α-аминокислота гомосерин. Очевидно, что гомосерин — очень древний метаболит, но для треонина, изолейцина и метионина существуют аминоацил-тРНК-синтетазы, тРНК, а для гомосерина — нет.

Структурные формулы 20-ти протеиногенных аминокислот обычно приводят в виде так называемой таблицы протеиногенных аминокислот:

Для запоминания однобуквенного обозначения протеиногенных аминокислот используется мнемоническое правило (последний столбец).

Классификация

  • По радикалу
  • Неполярные: глицин, аланин, валин, изолейцин, лейцин, пролин, метионин, фенилаланин, триптофан
  • Полярные незаряженные (заряды скомпенсированы) при pH=7: серин, треонин, цистеин, аспарагин, глутамин, тирозин
  • Полярные заряженные отрицательно при pH<7: аспартат, глутамат
  • Полярные заряженные положительно при pH>7: лизин, аргинин, гистидин

По функциональным группам

  • Алифатические
  • Моноаминомонокарбоновые: глицин, аланин, валин, изолейцин, лейцин
  • Оксимоноаминокарбоновые: серин, треонин
  • Моноаминодикарбоновые: аспартат, глутамат, за счёт второй карбоксильной группы несут в растворе отрицательный заряд
  • Амиды моноаминодикарбоновых: аспарагин, глутамин
  • Диаминомонокарбоновые: лизин, аргинин, несут в растворе положительный заряд
  • Серосодержащие: цистеин, метионин
  • Ароматические: фенилаланин, тирозин, триптофан, (гистидин)
  • Гетероциклические: триптофан, гистидин, пролин
  • Иминокислоты: пролин

По классам аминоацил-тРНК-синтетаз

  • Класс I: валин, изолейцин, лейцин, цистеин, метионин, глутамат, глутамин, аргинин, тирозин, триптофан
  • Класс II: глицин, аланин, пролин, серин, треонин, аспартат, аспарагин, гистидин, фенилаланин

Для аминокислоты лизин существуют аминоацил-тРНК-синтетазы обоих классов.

По путям биосинтеза

Пути биосинтеза протеиногенных аминокислот разноплановы. Одна и та же аминокислота может образовываться разными путями. К тому же совершенно различные пути могут иметь очень похожие этапы. Тем не менее, имеют место и оправданы попытки классифицировать аминокислоты по путям их биосинтеза.

Существует представление о следующих биосинтетических семействах аминокислот: аспартата, глутамата, серина, пирувата и пентоз. Не всегда конкретную аминокислоту можно однозначно отнести к определённому семейству; делаются поправки для конкретных организмов и учитывая преобладающий путь.

По семействам аминокислоты обычно распределяют следующим образом:

  • Семейство аспартата: аспартат, аспарагин, треонин, изолейцин, метионин, лизин.
  • Семейство глутамата: глутамат, глутамин, аргинин, пролин.
  • Семейство пирувата: аланин, валин, лейцин.
  • Семейство серина: серин, цистеин, глицин.
  • Семейство пентоз: гистидин, фенилаланин, тирозин, триптофан.
  • Фенилаланин, тирозин, триптофан иногда выделяют в семейство шикимата.

Гистидин также синтезируется в организме человека, но не всегда в достаточных количествах, потому должен поступать с пищей.

По характеру катаболизма у животных

Биодеградация аминокислот может идти разными путями.

По характеру продуктов катаболизма у животных протеиногенные аминокислоты делят на три группы:

  • глюкогенные (при распаде дают метаболиты, не повышающие уровень кетоновых тел, способные относительно легко становиться субстратом для глюконеогенеза: пируват, α-кетоглутарат, сукцинил-KoA, фумарат, оксалоацетат);
  • кетогенные (распадаются до ацетил-KoA и ацетоацетил-KoA, повышающие уровень кетоновых тел в крови животных и человека и преобразующиеся в первую очередь в липиды);
  • глюко-кетогенные (при распаде образуются метаболиты обоих типов).

Глюкогенные: глицин, аланин, валин, пролин, серин, треонин, цистеин, метионин, аспартат, аспарагин, глутамат, глутамин, аргинин, гистидин.

Кетогенные: лейцин, лизин.

Глюко-кетогенные (смешанные): изолейцин, фенилаланин, тирозин, триптофан.

«Миллеровские» аминокислоты

«Миллеровские» аминокислоты — обобщенное название аминокислот, получающихся в условиях, близких к эксперименту Стенли Л. Миллера 1953 года. Установлено образование в виде рацемата множества различных аминокислот, в том числе: глицин, аланин, валин, изолейцин, лейцин, пролин, серин, треонин, аспартат, глутамат

Родственные соединения

В медицине ряд веществ, способных выполнять некоторые биологические функции аминокислот, также (хотя и не совсем верно) называют аминокислотами:

Применение

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона, энанта.

Аминокислоты входят в состав спортивного питания и комбикорма.

К ним относятся гидрофобные радикалы аланина, валина, лейцина, изолейцина, пролина, метионина, фенилаланина и триптофана. Радикалы этих аминокислот воду не притягивают, а стремятся друг к другу или к другим гидрофобным молекулам.

2. Аминокислоты с полярными (гидрофильными) радикалами.

К ним относятся серин, треонин, тирозин, аспарагин, глутамин и цистеин. В состав радикалов этих аминокислот входят полярные функциональные группы, образующие водородные связи с водой.

В свою очередь, эти аминокислоты делят на две группы:

1) способные к ионизации в условиях организма (ионогенные).

Например, при рН = 7 фенольная гидроксильная группа тирозина ионизирована на 0,01%; тиольная группа цистеина  на 8%.

2) не способные к ионизации (неионогенные).

Н
апример, гидроксильная группатреонина:

3. Аминокислоты с отрицательно заряженными радикалами.

К этой группе относят аспарагиновую и глутаминовую кислоты. Эти аминокислоты называют кислыми, так как они содержат дополнительную карбоксильную группу в радикале, которая диссоциирует с образованием карбоксилат-аниона. Полностью ионизированные формы этих кислот называют аспартатом и глутаматом:

К этой же группе иногда относят аминокислоты аспарагин и глутамин, содержащие карбоксамидную группу (СОNH 2), как потенциальную карбоксильную группу, возникающую в процессе гидролиза.

Величины р K a β-карбоксильной группы аспарагиновой кислоты и γ-карбоксильной группы глутаминовой кислоты выше по сравнению с р K a α-карбоксильных групп и в большей степени соответствуют значениям р K a карбоновых кислот.

4. Аминокислоты с положительно заряженными радикалами

К ним относят лизин, аргинин и гистидин. У лизина есть вторая аминогруппа, способная присоединять протон:

У аргинина положительный заряд приобретает гуанидиновая группа:

Один из атомов азота в имидазольном кольце гистидина содержит неподеленную пару электронов, которая также может присоединять протон:

Эти аминокислоты называют оснóвными.

Отдельно рассматриваются модифицированные аминокислоты, содержащие в радикале дополнительные функциональные группы: гидроксилизин, гидроксипролин, γ-карбоксиглутаминовая кислота и др. Эти аминокислоты могут входить в состав белков, однако модификация аминокислотных остатков осуществляется уже в составе белков, т.е. только после окончания их синтеза.

Способы получения α-аминокислот в условиях in vitro.

1. Действие аммиака на α-галогенкислоты:

2. Циангидринный синтез:

3. Восстановление α-нитрокислот, оксимов или гидразонов α-оксокислот:

4. Каталитическое восстановление оксокислот в присутствии аммиака:

Стереоизомерия аминокислот

Все природные α-аминокислоты, кроме глицина (NH 2  CH 2  COOH), имеют асимметрический атом углерода (α-углеродный атом), а некоторые из них даже два хиральных центра, например, треонин. Таким образом, все аминокислоты могут существовать в виде пары несовместимых зеркальных антиподов (энантиомеров).

За исходное соединение, с которым принято сравнивать строение α-аминокислот, условно принимают D- и L-молочные кислоты, конфигурации которых, в свою очередь, установлены по D- и L-глицериновым альдегидам.

Все превращения, которые осуществляются в этих рядах при переходе от глицеринового альдегида к α-аминокислоте, выпол-няются в соответствии с главным требованием  они не создают новых и не разрывают старых связей у асимметрического центра.

Для определения конфигурации α-аминокислоты в качестве эталона часто используют серин (иногда аланин). Конфигурации их так же выведены из D- и L-глицериновых альдегидов:

Природные аминокислоты, входящие в состав белков, относятся к L-ряду. D-формы аминокислот встречаются сравнительно редко, они синтезируются только микроорганизмами и называются «неприрод-ными» аминокислотами. Животными организмами D-аминокислоты не усваиваются. Интересно отметить действие D- и L-аминокислот на вкусовые рецепторы: большинство аминокислот L-ряда имеют сладкий вкус, а аминокислоты D-ряда  горькие или безвкусные.

Без участия ферментов самопроизвольный переход L-изомеров в D-изомеры с образованием эквимолярной смеси (рацемическая смесь) осуществляется в течение достаточно длительного промежутка времени.

Рацемизация каждой L-кислоты при данной температуре идет с определенной скоростью. Это обстоятельство можно использовать для установления возраста людей и животных. Так, например, в твердой эмали зубов имеется белок дентин, в котором L-аспартат переходит в D-изомер при температуре тела человека со скоростью 0,01% в год. В период формирования зубов в дентине содержится только L-изомер, поэтому по содержанию D-аспартата можно рассчитать возраст человека или животного.