Энергосберегающая лампа. Схемы включения газоразрядных ламп Из каких металлов состоит газоразрядная лампа

Области применения

Благодаря линейчатому спектру излучения газоразрядные лампы первоначально применялись лишь в специальных случаях, когда получение заданного спектрального состава излучения являлось фактором более важным, чем значение световой отдачи. Возникла широкая номенклатура , предназначенных для применения в научно-исследовательской аппаратуре, которые объединяют под одним общим названием - спектральные лампы.

Рисунок 1. Спектральные лампы с парами натрия и магния

Возможность создания интенсивного ультрафиолетового излучения, отличающегося высокими химической активностью и биологическим действием, привела к использованию газоразрядных ламп в химической и полиграфической промышленности, а также в медицине.

Короткая дуга в газе или парах металла при сверхвысоком давлении отличается высокой яркостью, что позволило в настоящее время отказаться от открытой угольной дуги в прожекторной технике.

Применение люминофоров, позволившее получать газоразрядные лампы с непрерывным спектром излучения в видимой области, определило возможность внедрения газоразрядных ламп в осветительные установки и вытеснение из ряда областей ламп накаливания.

Особенности изотермической плазмы, обеспечивающей получение спектра излучения, близкого к излучению тепловых источников, при температурах, недоступных в лампах накаливания, привели к разработке сверхмощных осветительных ламп со спектром, практически совпадающим с солнечным.

Практическая безынерционность газового разряда позволила применить газоразрядные лампы в фототелеграфе и вычислительной технике, а также создать импульсные лампы, концентрирующие в кратковременном световом импульсе огромную световую энергию.

Видео 1. Импульсные лампы

Требования снижения расхода электроэнергии во всех областях народного хозяйства расширяют применение экономичных газоразрядных ламп, объем выпуска которых непрерывно растет.

Лампы тлеющего разряда

Как известно, нормальный тлеющий разряд возникает при малых плотностях тока. Если при этом расстояние между катодом и анодом настолько мало, что в его пределах не может разместиться столб разряда, то имеют место катодное свечение и отрицательное тлеющее свечение, покрывающие поверхность катода. Расход мощности в лампе тлеющего разряда весьма мал, так как мал ток, а напряжение определяется лишь катодным падением. Излучаемый лампой световой поток незначителен, однако совершенно достаточен для того, чтобы зажигание лампы было заметным, особенно если разряд происходит в газе, дающем цветное излучение, например в неоне (длина волны 600 нм, красный цвет излучения). Такие лампы различной конструкции широко используют в качестве индикаторов. Так называемые цифровые лампы являлись ранее составной частью многих автоматических устройств с цифровыми указателями.

Рисунок 3. Лампа тлеющего разряда предназначенная для индикации цифр

При длинном газоразрядном промежутке с расстоянием между электродами значительно большим, чем прикатодная область, основное излучение разряда сосредотачивается в столбе разряда, который при тлеющем разряде отличается от столба при дуговом разряде лишь меньшей плотностью тока. Излучение такого столба может иметь высокую световую отдачу при большой длине. Высокое значение катодного падения напряжения в тлеющем разряде обусловило разработку ламп на высокое напряжение питания, то есть напряжение на них значительно превосходит напряжение, считающееся безопасным по условиям работы в закрытых помещениях, особенно бытовых. Однако такие лампы с успехом применяют для различного рода рекламных и сигнальных установок.

Рисунок 4. Лампы с длинным столбом тлеющего разряда

Преимуществом лампы тлеющего разряда является простота конструкции катода по сравнению с катодом лампы дугового разряда. Кроме того, тлеющий разряд менее чувствителен к наличию случайных примесей в газоразрядном пространстве, а следовательно, более долговечен.

Лампы дугового разряда

Дуговой разряд применяется практически во всех газоразрядных лампах. Связано это с тем, что при дуговом разряде ослабевает катодное падение напряжения и уменьшается его роль в балансе энергии лампы. Дуговые лампы могут быть изготовлены на рабочие напряжения равные напряжениям электрических сетей. При небольшой и средней плотности тока дугового разряда, а также при невысоком давлении в лампе источником излучения в основном выступает положительный столб, а свечение катода практически не имеет никакого значения. Повышая давление газа или паров металла наполняющих горелку прикатодная область постепенно уменьшается, а при значительных давлениях (более 3 × 10 4 Па) ее практически не остается совсем. Увеличением давления в лампах достигают высоких параметров излучения при небольших расстояниях между электродами. Высокие значения светоотдачи при совсем малых расстояниях можно получить при сверхвысоких давлениях (более 10 6 Па). С ростом давления и уменьшением расстояния между электродами сильно возрастает плотность тока и яркость шнура разряда.

При увеличении давления и плотности тока происходит образование изотермической плазмы, излучение которой в основном состоит из нерезонансных спектральных линий, возникающих при переходе электрона в атоме на более низкие, но не основные уровни.

Дуговой разряд используют в самых различных газах и парах металлов от самых низких давлений до сверхвысоких. В связи с этим конструкции колб дуговых ламп чрезвычайно разнообразны как по форме, так и по роду применяемого материала. Для ламп сверхвысокого давления большое значение приобретает прочность колб в условиях высоких температур, что привело к разработке соответствующих методов их расчета и исследования параметров.

После появления дугового разряда из катодного пятна выбивается основная масса электронов. Светящаяся катодная часть разряда начинается с катодного пятна, представляющего из себя небольшую светящуюся точку на спирали. Катодных пятен бывает несколько. В самокалящихся катодах катодное пятно занимает небольшую часть его поверхности, перемещаясь по ней по мере испарения оксида. Если плотность тока высока на материале катода возникают местные тепловые перегрузки. По причине таких перегрузок приходится применять катоды специальных сложных конструкций. Количество конструкций катодов разнообразно, но все они могут быть разделены на катоды ламп низкого давления, высокого давления и сверхвысокого давления.

Рисунок 5. Трубчатая газоразрядная лампа низкого давления

Рисунок 6. Газоразрядная лампа высокого давления

Рисунок 7. Газоразрядная лампа сверхвысокого давления

Разнообразие материалов, применяемых для колб дуговых ламп, большие значения токов требуют решения вопроса о создании специальных вводов. Подробно о конструкциях газоразрядных ламп можно прочитать в специальной литературе.

Классификация ламп

Аналогично лампам накаливания газоразрядные лампы отличаются между собой областью применения, видом разряда, давлением и видом наполняющего газа или паров металла, использованием люминофора. Если смотреть глазами изготовителей газоразрядных ламп то они могут также отличаться особенностями конструкций, важнейшими из которых являются форма и размеры колбы (газоразрядного промежутка), используемый материал из которого изготавливается колба, материал и конструкция электродов, конструкция цоколей и выводов.

При классификации газоразрядных ламп могут возникнуть некоторые затруднения связанные с многообразием признаков, на основе которых они могут быть классифицированы. В связи с этим для классификации принятой в настоящее время и используемой в качестве основы системы обозначений газоразрядных ламп, определен ограниченный ряд признаков. Стоит отметить, что для ртутных трубчатых низкого давления, являющихся наиболее массовыми газоразрядными лампами, существует своя система обозначений.

Итак, для обозначения газоразрядных ламп пользуются следующими основными признаками:

  1. рабочее давление (лампы сверхвысокого давления – более 10 6 Па, высокого давления – от 3 × 10 4 до 10 6 Па и низкого давления – от 0,1 до 10 4 Па);
  2. состав наполнителя, в котором происходит разряд (газ, пары металла и их соединений);
  3. наименование используемого газа или пара металла (ксенон – Кс, натрий – На, ртуть – Р и тому подобные);
  4. вид разряда (импульсный – И, тлеющий – Т, дуговой – Д).

Форма колбы обозначается буквами: Т – трубчатая, Ш – шаровая; если на колбу лампы наносится люминофор то в обозначение добавляется буква Л. Лампы делятся также по: области свечения – лампы тлеющего свечения и лампы со столбом разряда; по способу охлаждения – на лампы с принудительным и естественным воздушным охлаждением, лампы с водяным охлаждением.

Ртутные трубчатые люминесцентные лампы низкого давления принято обозначать проще. Например, в их обозначении первая буква Л говорит о том, что лампа принадлежит к данному виду источников света, последующие буквы – а их может быть одна, две или даже три, обозначают цветность излучения. Цветность является важнейшим параметром обозначения, так как цветность определяет область использования лампы.

Классификация газоразрядных ламп может также вестись по их значимости в области техники освещения: дуговые лампы высокого давления с исправленной цветностью; дуговые трубчатые лампы высокого давления; дуговые высокого давления; дуговые натриевые лампы низкого и высокого давления; дуговые высокого давления; дуговые шаровые сверхвысокого давления; дуговые ксеноновые трубчатые и шаровые лампы; люминесцентные лампы низкого давления; электродосветные, импульсные и другие виды специальных газоразрядных ламп.

Современные виды ламп, которые применяются для освещения жилых, офисных, хозяйственно-бытовых помещений на сегодняшний день впечатляют своим разнообразием. Отличаются они друг от друга не только мощностью освещения, но и принципом действия, как следствие – разнообразием оттенков света, долговечностью и потребляемым количеством электроэнергии.

Соответственно, бывают виды ламп освещения, которые потребляют небольшое количество электроэнергии и при этом излучают яркое освещение и минимум тепла – эти лампы классифицируются, как энергосберегающие лампы, виды их по конструкции также разнообразны.

Нового поколения виды электрических ламп бывают таковыми, которые являются устойчивыми к перепадам напряжения в сети и имеют большее количество часов работы и циклов включения/выключения, что в сочетании с низким энергопотреблением значительно отличает их от традиционных ламп накаливания.

Однако, современные лампы освещения не ограничиваются этим, они имеют не только показатели светоотдачи, потребления электроэнергии и количество часов работы, существует и множество и других нюансов, как частота мерцания, экологичность, наличие/отсутствие встроенных выпрямителей тока, и многое другое.

Посему рассмотрим, какие бывают виды ламп на сегодняшний день, в первую очередь – основные положения, затем — рассмотрим принцип действия электрических ламп освещения из такого существующего их перечня:

  • лампы накаливания;
  • газоразрядные лампы;
  • светодиодные лампы.

Лампы накаливания являются наиболее распространенными на территории стран СНГ, и, пожалуй, самым древним видом ламп. Они не имеют ни каких особенных преимуществ, выделяют много тепла, потребляют много электричества, не имеют защиты от перепадов напряжения.

Единственное преимущество – теплое, подобное натуральному, солнечное освещение, которое, по мнению многих, не сравнится с явно искусственным освещением других видов ламп. Кроме того, они являются экологически чистыми в отличие от следующего вида ламп.

Газоразрядные лампы , а также их разновидность — люминесцентные лампы хороши тем, что имеют множество разновидностей, каждая из которых имеет определенное лучшее качество.

Ранее на территории СНГ были распространены классические, ртутные лампы дневного освещения, но на сегодня они в большей степени ушли в небытие и на их место пришли новые их разновидности.

Виды современных газоразрядных ламп применяются не только как обыкновенные источники электрического освещения в быту; они имеют декоративные разновидности, приемлемые для подсветки потолков, ниш и т. д.

Светодиодные лампы являются ничем иным, как современной альтернативой предыдущим двум видам ламп. Эти лампы – нового поколения энергосберегающие, экологичные и долговечные (стойкие к перепадам напряжения) осветительные электрические элементы.

Они имеют явное преимущество перед остальными видами ламп, но единственный недостаток – стоимость, так как технология их производства на сегодня новая и довольно дорогостоящая. Но их долговечность и экономичность, по мнению производителей, окупит разовые затраты на их приобретение.

Виды и принцип работы современных ламп накаливания

Принцип работы лампы накаливания основан на нагреве металлической спирали, находящейся в вакууме (лампы мощностью до 25Вт) или газе аргон или аргон+азот (средней мощности и высокомощные лампы) в герметично запаянной стеклянной колбе.

При прохождении через спираль, ток разогревает ее до температуры, равной впредь до 3000 градусов по Цельсию, вместе с этим происходит и излучение света, инфракрасных лучей.

Сама спираль выполнена из особо прочного и весьма тугоплавкого металла – вольфрама, а степень яркости освещения прямо пропорционально зависит от температуры нагрева; кроме того, газовая среда, в которой находится спираль, может содержать в себе частицы галогенов – соединений 17-ой гр. Таб. Менделеева (F, Cl, Br, I).

Современные лампы накаливания производятся из стекла с металлическим плафоном, имеющим резьбу, по средствам которой происходит фиксация в патроне, но имеются разновидности с контактно-зажимными и штыревыми типами соединений.

Виды ламп накаливания могут иметь четыре модификации, четыре условных обозначения, указывающих на тип спирали и окружающей ее среды в лампе накаливания: В (вакуумная), Б (биспиральная с аргоновым напылением), БО (биспиральная с аргоновым наполнением в опаловой колбе), Г (моноспиральная с аргоновым напылением).

Отдельным видом наиболее современных ламп накаливания являются галогенные лампы накаливания, отличие которых от вышеописанных обусловлено содержанием галогенных частиц в газовой среде лампы накаливания (частиц йода, хлора, брома), которые вступают в реакцию с испарившемся металлом с поверхности спирали.

После этого процесса металл возвращается на поверхность спирали по средствам температурного разложения получившегося соединения. Таким образом, они имеют больший КПД, срок годности и другие характеристики.

Что касается бытового назначения ламп накаливания, то они являются лампы общего назначения и обозначаются аббревиатурой ЛОН.

Виды и принцип работы современных газоразрядных ламп

Принцип работы газоразрядных ламп состоит в том, что видимое излучение света происходит вследствие возникновения разряда электричества в герметичной среде газа (неон, аргон, криптон, ксенон) или пара металлов (натрий, ртуть).

Таким образом, среда газа/пара металла – это и есть проводник тока, который от вольфрамового электрода с большим потенциалом (фазы, «+») проводит его к вольфрамовому электроду с меньшим потенциалом (нуля, «-»), излучая минимум тепла при высокой степени светоотдачи.

При этом в составе среды газа/пара могут применяться и галогены (фтор/F, хлор/Cl, бром/Br, йод/I), которые улучшают светоотдачу и остальные показатели газоразрядных ламп.

Существует также и газоразрядные люминесцентные лампы – лампы, в которых в результате разряда в парах ртути образуется невидимое для человеческого глаза ультрафиолетовое излучение (тепловое излучение), которое преобразуется в видимый свет при помощи находящегося на внутренних стенках колбы напыления люминофора (соединений галофосфата).

подразделяются на лампы низкого и высокого давления – по давлению внутри колбы.

Лампы высокого давления имеют в качестве основного преимущества высшую степень светоотдачи, и подразделяются в свою очередь по типу наполнителя на:

  • ртутные;
  • натриево-ртутные;
  • иодидо-металло-ртутные;
  • инертно-газовые.

Ртутные газоразрядные лампы высокого давления имеют напыление люминофора, является Люминесцентной лампой высокого давления и обозначается аббревиатурой ДРЛ.

Натриево-ртутные газоразрядные лампы высокого давления именуются также как просто натриевые и обозначаются аббревиатурой ДНаТ.

Иодидо-металло-ртутные газоразрядные лампы, а точнее лампы высокого давления с наполнителем — иодидами редкоземельных металлов с вмещением ртутных паров, именуются как металлогалогенные лампы и носят аббревиатуру ДРИ.

Инертно-газовые газоразрядные лампы высокого давления являются сугубо газовыми лампами, в которых применяются аргон, ксенон, неон, криптон или же их смеси и носят названия соответственно содержания газа.

Лампы низкого давления имеют преимущества только при освещении помещений, не нуждающихся в высокой мощности осветительных приборов; чаще всего – это декоративного освещения источники света, которые в зависимости от наполнителя бывают такие:

  • ртутные с инертным газом;
  • натриевые.

Лампы низкого давления с наполнителем паров ртути с примесью разновидностей инертного газа, именуемые как обыкновенные люминесцентные лампы (ЛЛ) и содержат еще слой люминесцена (см. принцип работы газоразрядных ламп).

Лампы низкого давления с наполнителем паров натрия – не являются таковыми, как предыдущие из-за совсем иного принципа действия, обозначаются аббревиатурой ДнаС.

Прочитав вышеописанные виды и принцип работы, Вы уже догадались, что по источнику света эти лампы подразделяются на газоразрядные и люминесцентные, а что касается низкого давления таких ламп, он на сегодняшний день их производят в качестве энергосберегающих.

Виды и принцип работы современных светодиодных ламп

Принцип работы светодиодных ламп состоит в излучении света от находящихся в этих лампах одиночных светодиодов или групп светодиодов, связанных специальной микросхемой, вмещающей в себе преобразователь сетевого тока в рабочий ток, на котором работают данные элементы.

Сам же светодиод представляет собой полупроводниковый аналоговый элемент, ранее использовавшийся для индикации в микроэлектронике. Этот элемент семейства диодов перерабатывает электрический ток в свет по средствам прохождения его (тока) через полупроводниковый кристалл. Кроме того, он имеет свойство пропускать ток только в одном направлении.

Если подробнее о принципе действия светодиода лампы, то он состоит из анода и катода, которые расположены по противоположным сторонам светоизлучающего кристалла, который легирован с этих сторон примесями: с одной – акцепторными, со второй — донорскими. В свою очередь кристалл находится на подложке из различного материала: кремния, силикона или находится в стеклянной оболочке.

При прохождении электрического тока от источника с большим потенциалом (анода, «+»), он движется через кристалл в направлении электрода с меньшим потенциалом (катод, «-»). Эту область перехода тока называют p-n переходом, в котором, собственно и возникает свечение при рекомбинации электронов и дырок в его области.

Виды светодиодных ламп как таковые, различные по конструкции, по составу внутренней среды и остальным техническим параметрам, присущим лампам накаливания и газоразрядным лампам, не существуют.

Имеются различия по форме плафонов (стандарты соответствуют остальным лампам), цветовой отдаче, и по рабочему питанию, что мы рассмотрим подробнее. Касаемо последнего, светодиодные лампы различают:

  • питание 4В;
  • питание 12В;
  • питание 220В.

Светодиодные лампы с питанием 4В применяются для слабомощных источников освещения, часто применяются в декоративных светильниках — «свечках». Соответственно, применяются как вспомогательное локальное, часто-густо декоративное освещение.

Светодиодные лампы 12В являются заменой современных ламп накаливания, также и галогенных ламп, а также разновидностей газоразрядных/люминесцентных ламп. Они имеют достойную мощность освещения при невысокой теплоотдачи, что делает их не только хорошими источниками общего, но и мебельного встроенного освещения.

Светодиодные лампы 220В – используются для высокомощного освещения, входное питание 220В преобразуется в меньшее по средствам встроенного трансформатора и питает светоизлучающие элементы (светодиоды). Единственный вид светодиодных ламп, которые не требуют отдельного подключения трансформатора.

Газоразрядная лампа – осветительный прибор, принцип действия базируется на горении дуги ионизированного газа. Это обширное семейство, в начале XXI века захватившее в мире едва ли не три четверти сегмента иллюминации. Сюда входят популярные люминесцентные лампы дневного света, лампы ДРЛ. Ещё до внедрения в обиход осветительные устройства, работающие за счёт газового разряда, встречаются в романе Жюля Верна «Путешествие к центру Земли» (1864 год).

История развития электростатической ионизации газов

Принято считать годом рождения газоразрядных ламп 1675. Однажды ночью французский учёный Жан-Феликс Пикар заметил свечение ртутного барометра, когда переносил его из обсерватории в порт святого Майкла. Чтобы читатели представили явление, нужно учесть особенности конструкции. В ртутном барометре имеется трубка, запаянная с конца. Вдобавок наличествует чаша. Оба предмета заполнены металлической ртутью.

Для определения давления трубку резко переворачивают и опускают в чашу. Тогда ртуть под действием земного тяготения стекает вниз, образуя выше себя вакуум. В результате запаянный конец трубки остаётся полым, и протяжённость пустого пространства зависит от атмосферного давления, которое, действуя на ртуть в чаше, призвано уравновесить силу тяжести.

При транспортировке барометра Пикар спешил и сильно растряс прибор. В результате произошла электризация стекла трением о ртуть, и статический заряд вызвал ионизацию металлических паров. Процесс сильно облегчался, благодаря созданному вакууму. Пары ртути и сегодня используются в отдельных газоразрядных источниках света. К примеру, ультрафиолетовая составляющая свечения активизирует люминофор лампы дневного света.

Пикар не смог объяснить обнаруженного явления, но немедленно доложил о произошедшем в научных кругах. Позднее изучением занялся известный швейцарский математик Иоганн Бернулли. Ему задача оказалась также не по зубам, но сей учёный муж активно практиковал опыт со свечением, дал представление французской академии наук. В 1700 году на демонстрации явление лицезрел английский механик, по совместительству учёный, Фрэнсис Хоксби. На базе Королевского научного общества Британии Хоксби принимается активно ставить опыты.

За основу решающего эксперимента Хоксби берет модель электростатического генератора Герике (1660 год). По описаниям машина представляла солидных размеров шар из серы, вращающийся на железном стержне. Трением о ладони оператора объект приобретал при вращении значительный заряд. Дальнейший ход мыслей Хоксби понятен. В инструкции Герике фигурировало предложение залить серу в стеклянный шар, потом разбить. Английский учёный пропустил указанный шаг. К сожалению, неизвестно, имели ли ранние работы (к примеру, трактат Гильберта 1600 года) представление об электризации стекла, но Хоксби выдвинул соответствующее предположение.

В результате экспериментальная установка содержала вместо серного шара стеклянный с каплями ртути на дне, а внутри по возможности создали вакуум. При вращении сферы на железном стержне и электризации путём трения ладонями наблюдалось свечение, чтобы читать книгу в непосредственной близости. В 1705 году английское научное общество продемонстрировало первую газоразрядную лампу. Предоставлялось верное объяснение, что к обнаруженному явлению причастны пары ртути. Потом – ход работ замер на целый век. Не находилось практического применения вновь открытому явлению.

Первые газоразрядные лампы

Нельзя сказать, чтобы XVIII век прошёл бесполезно для исследований в сфере электричества, несмотря на фразу, оброненную выше. Значимыми считаются работы Дюфе, в 1733 году предположившего наличие двух родов зарядов с целью теоретического обоснования наблюдаемого явления. Он их назвал смоляными и стеклянными. Речь идёт об объяснении феномена, рассмотренного Гильбертом в 1600 году:

  1. Наэлектризованный шар притягивает тела.
  2. Соприкоснувшись с шаром, тела начинают от предмета отталкиваться.

В понимании Дюфе объект приобретал заряд аналогичного знака при соприкосновении. Чем объясняется рассмотренное явление. Но истинный прогресс в науке начался, когда государства отменяли наказание за занятие колдовством. В результате на свет появилась Лейденская банка, а Бенджамин Франклин доказал электрическую природу молнии, Вольта изобрёл первый электрохимический источник энергии. В 1729 году произошло революционное открытие, ставшее основой для прочих: Стивен Грей додумался собрать проводники воедино и получил первую в мире электрическую цепь. С тех пор ток стали передавать на расстояние.

Изобретённая в 1746 году Вильямом Ватсоном электрическая машина сплавляла заряд по шёлковым шнурам, что позволило Жану-Антуану Нолле продемонстрировать эффектную дугу в среде разряженного газа. В указанное Готфрид Груммерт высказал предположение, что подобное освещение подойдёт для использования в шахтах и местах, где открытое пламя повышает вероятность взрыва. Иоганн Винклер заметил, что неплохо вместо шаров использовать длинные колбы, согнутые по форме букв алфавита, предвосхитив появление на свет трубок Гейслера и экрана телевизора.

Чуть позднее, в 1752 году, Ватсон частично реализовал перечисленные задумки (первый дисплей запатентован в 1893 году). К примеру, демонстрируя опыт с горением дуги в трубке длиной 32 дюйма. Благодаря столь блистательным открытиям, в 1802 году произошло сразу два значимых для рассматриваемой темы события:

  • Англичанин Хампфри Дэви открыл явление свечения накаливаемой электричеством платиновой проволоки.
  • Наш соотечественник, В. Петров при помощи вольтова столба, состоящего из 4200 (по другим данным – 2100) пар медных и цинковых пластин. Для сравнения – источник энергии сэра Хампфри Дэви показывал вдвое меньшую мощность (2000 пластин).

Достижения Петрова оказались забыты под влиянием событий Отечественной войны 1812 года и в силу российского наплевательства. В Англии к электричеству подошли серьёзно. Заслуга Хампфри Дэви немалая. Он, будучи химиком, повторяя опыты зарубежного коллеги, начал экспериментировать с различными газовыми средами. Конечно, член Королевского научного общества был знаком с опытами Фрэнсиса Хоксби и захотел проверить, не стало ли новое открытие повторением ранних попыток создать искусственные источники света.

Эти эксперименты привели к открытию линейных спектров газовых разрядов. Попутно замеченные Волластоном и Фраунгофером особенности излучения Солнца в последующем позволили Кирхгофу и Бунзену высказывать предположения о составе атмосферы светила. Это тесно связно с рассматриваемой темой, спектр разряда также линейчатый. К примеру, натриевые лампы дают оранжевый свет, и при помощи люминофора приходится распределение частот корректировать (лампы ДРЛ). Потом эстафету принял Майкл Фарадей (с середины 30-х годов XIX века), показал процесс возникновения дуги в среде разреженных газов. Внёс лепту и Генрих Румкорф, предоставив в руки физиков инструмент для получения импульсов высокого напряжения (катушка Румкорфа, 1851 год). В 1835 году Чарльз Уитстон зарегистрировал спектр разряда дуги в парах ртути, попутно отметив ультрафиолетовую составляющую.

Газоразрядные лампы Гейслера

Первыми коммерчески успешными считаются творения Гейслера. Датой рождения принято считать 1857 год. Упомянутый стеклодув и по совместительству физик догадался в колбу с разряженным газов вставить 2 электрода. Подавая на них напряжение, лицезрел красочный разряд дуги. Гейслер соединил воедино открытия Петрова и Хоксби. Дуга тлеет в колбе с атмосферой из паров газа. А дальнейшее – выбор цвета – уже не составило труда, опираясь на наработки сэра Хампфри Дэви и Майкла Фарадея.

С 80-х годов трубки Гейслера широко выпускаются для целей развлечения населения. Сегодня неоновые огни считаются лицом США. Примечательно, что будучи помещены рядом с источниками сильного электромагнитного излучения — катушки Тесла — лампы Гейслера загораются самопроизвольно. Выполняются условия ионизации разреженной газовой среды. Исследования, сопряжённые с поиском технических решений для целей освещения привели учёных к открытию электрона, измерению его заряда и массы, появлению на свет электронных ламп.

Тем временем в России

Возможность розжига порохового заряда электрической искрой известна примерно с 1745 года. Но едва ли сапер мог унести лейденскую банку или терпеливо натирать шерстью янтарь в любых погодных условиях. Долгое время военное дело не брало во внимание подобные мелочи. В 1812 году российский офицер Шиллинг сумел через электрический элемент питания произвести подводный взрыв. Считается, что военное дело дало толчок к развитию исследований электричества в России. Первая дуговая лампа установлена в 1849 году изобретателем (Якоби) на башне Адмиралтейства Санкт-Петербурга. Ее свет оказался столь ярок, что сравнивался обывателями с солнечным.

Применение прожекторов с разрядными лампами ограничивается военным делом, за малым исключением, когда источники указывают путь кораблям с маяка. Нас в теме интересуют наработки Джона Томаса Рея, датированные 1860 годом, догадавшимся объединить электрическую дугу (Петров и Якоби) с атмосферой паров ртути (Майкл Фарадей) при нормальном давлении.

От Эдисона до современных газоразрядных ламп

Несмотря на явные преимущества, газоразрядные лампы Гейслера демонстрировали существенные недостатки. К примеру, малый срок службы. С 90-х годов XIX века некто Дэниэл МакФарлен Мур работал в компании Эдисона и вскоре после поступления на службу стал изучать историю. Его заинтересовали газоразрядные лампы Гейслера. Что не так с моим светом? – вопрошал Эдисон. Мур ответил: он слишком тусклый, слишком горячий и чересчур красный. Это вся правда о лампах накаливания того времени.

В 1892 году ртутная газоразрядная лампа усовершенствована Мартином Лео Аронсом. Наработка в 1901 году усовершенствована Петером Купером Хьюиттом и обрела коммерческий успех.

С 1894 Мур организовывает две собственные компании, занимающиеся проблемами освещения. Главной особенностью ламп (1896 год) стало то, что газ по мере расходования возобновлялся. В результате устройство работало сколь угодно долго. Первое коммерческое использование зарегистрировано в 1904 году. Лампа с отдачей 10 люменов на 1 Вт осветила магазин оборудования и приборов. Как писали очевидцы, несмотря на сложность и громоздкость (50 ярдов длиной) отдача того стоила. КПД новых газоразрядных ламп в 3 раза превышал аналогичные цифры для ламп накаливания.

Отличительной особенностью стало использование в лампах Мура паров азота и углекислого газа. В результате получался дневной свет. А пары азота давали мягкое свечение и низкую цветовую температуру. Появление на свет вольфрамовых нитей сделало невыгодным дальнейшее производство, компании поглощены (1912 год) Дженерал Электрик, а патенты скуплены. Но Мур не остался без работы, перейдя в лаборатории своего преемника в бесконечной эстафете. Позже изобрёл неоновую лампу.

Желающие узнать больше могут заглянуть в разделы про лампы ДРЛ и люминесцентные лампы.

Освещение всегда и везде является главным атрибутом, без которого сложно представить современный мир. При этом мало кто задумывается о том, какие источники света существуют на сегодняшний день, а ведь каждый вид ламп создает свой световой поток.
Среди всего разнообразия лампочек, которые можно вкрутить в осветительный прибор, особое место занимают газоразрядные источники света.

Газоразрядные лампы на сегодняшний день встречаются очень часто и в самых разнообразных сферах человеческой деятельности, начиная от подсветки авто и заканчивая домашним освещением. Поэтому не лишним будет знать, что представляет собой это изделие, и как с ним следует обращаться. Обо всем, что нужно знать о газоразрядных лампочках, расскажет сегодняшняя статья.

Обзор

Газоразрядные лампы – современный источник света, который излучает световую энергию в видимом для человеческого глаза диапазоне. В своей основе газоразрядная лампочка имеет стеклянную колбу, в которую под давлением закачивается газ или пары металла. Кроме этого в строении изделия имеются электроды, которые расположены по концам стеклянной колбы.

Строение лампы

Принцип работы лампочки основывается именно на таком строении, так как вся система активируется при прохождении через колбу электрического разряда. В центральной части колбы располагается основной электрод. Под ним установлен токоограничительный резистор. Благодаря такой конструкции в колбе, при прохождении через нее электрического разряда, формируется свечение.
Помимо колбы и электродов, изделие содержит еще и цоколь, благодаря которому может вкручиваться в различные светильники с целью создания домашнего или уличного типа освещения.
Обратите внимание! Наиболее часто газоразрядные лампочки встречаются именно в системе уличного типа освещения. Их часто вкручивают в фонари, в авто и т.д.
Газоразрядные лампы представляют собой специальные устройства, которые способны создавать свечение с помощью электрического разряда.

Как работает лампочка

С конструкционными особенностями, которые имеют газоразрядные лампы, мы разобрались в предыдущем разделе. Также вскользь коснулись и того, какой принцип работы имеет это изделие. Теперь рассмотрим принцип работы более детально, чтобы понять, каким же именно образом формирует освещение подобный тип источника света.

Принцип работы лампы

Газоразрядная лампа – особые источники освещения, которые способны генерировать свет вследствие создания внутри своей колбы электрического разряда. Принцип работы такой лампы основывается на ионизации газа, который находится внутри стеклянной колбы.
Принцип, по которому работает газоразрядная лампочка, предполагает, что внутри колбы под давлением закачивается определенный газ.
Чаще всего для освещения домов, улиц и авто используются благородные (инертные) газы:

  • неон;
  • криптон;
  • аргон;
  • ксенон;
  • смесь газов в различных пропорциях.

Ртутная модель

Очень часто для освещения домов, авто и улиц используются такие источники света, в состав которых входят дополнительные газы. Например, в состав газовой смеси может входить натрий (натриевые модели) или ртуть (ртутные модели).
Обратите внимание! Ртутные лампочки сегодня имеют большее распространение, чем натриевые. Их часто вставляют в фонари при создании уличного типа освещения. Также они применяются для подсветки домов изнутри.

Ртутные и натриевые модели входят в группу металлогалогенных источников света.
Когда на газоразрядную лампочку подается питание, в трубке начинает генерироваться электрическое поле. Оно приводит к ионизации газа и свободных электронов. В результате этого электроны, которые вращаются на верхних уровнях атомов, начинают сталкиваться с другими электронами атомов металла (специальных добавок в газовые смеси). В результате столкновения происходит переход электронов на внешние орбитали. В конечном итоге происходит высвобождение энергии и фотонов. Таким образом и формируется свечение лампочки.

Обратите внимание! Освещение, которое получается в результате работы такой лампочки, может быть различным: от ультрафиолетового до инфракрасного видимого излучения.

Вариант свечения лампы

Чтобы добиться различного цветового свечения, на колбу газоразрядных ламп наносят специальное люминесцентное покрытие. Им покрывают внутреннюю сторону колбы. С помощью такого покрытия происходит преобразование ультрафиолетового излучения в видимый свет.

Виды газоразрядных ламп

Натриевые лампы высокого давления

Газоразрядная лампа, которая используется для создания уличного освещения или подсветки авто, может иметь разнообразное строение, которое не отходит от принципов работы. На этом основывается классификация таких источников света.
На сегодняшний день газоразрядные источники света бывают следующих видов:

  • газоразрядные лампы высокого давления. Они в свою очередь могут подразделяться на ДРЛ (ртутные модели), ДРИ, ДНат и ДКсТ. Их особенностью является отсутствие необходимости в наличии пускорегулирующего аппарата. Такие модели можно встретить в качестве подсветки улиц (их вставляют в фонари системы уличного освещения), авто, домов и наружной рекламы;

Обратите внимание! Лампы газоразрядного типа высокого давления являются самыми распространенными (особенно ртутные модели). Очень часто с их помощью (натриевые и ртутные модели) формируют подсветку именно улиц. А вот дома такие источники света встречаются достаточно редко.

Лампы низкого давления

  • газоразрядные лампы низкого давления. Они подразделяются на ЛЛ (различные модели) и КЛЛ. Такие лампочки сегодня с успехом вытесняют устаревшие лампы накаливания. Они применяются для создания подсветки дома, улиц (в составе системы уличного освещения) и даже авто.

Обратите внимание! Самые распространенные лампы низкого давления – люминесцентные. Такие модели часто применяются для освещения улиц в составе системы уличного освещения. Особенно часто такие лампочки вкручивают в фонари.

Свое широкое распространение газоразрядные лампочки получили из-за наличия у них ряда достоинств.

Достоинства и недостатки

Уличная подсветка

К основным достоинствам подобных лампочек относятся следующие качества:

  • высокая светоотдача (на уровне 55 лм/Вт). Она остается достаточно высокой, даже если фонари, в которые была установлена лампочка, имеют непрозрачный плафон;
  • длительный период службы. Средняя производительность газоразрядных лампочек составляет примерно 10 тыс. часов. Поэтому такие изделия часто используют для подсветки улиц и авто;
  • высокая устойчивость (например, ртутные модели) к плохим климатическим условиям. В результате они часто используются для уличного освещения. Они могут вкручиваться в фонари и другие типы светильников. Но если для региона характерны заморозки, то использовать ртутные модели для совещания улиц, даже если они вкручены в специальные фонари и фары авто, нельзя;
  • доступная стоимость;
  • экономичность, которая позволяет обходиться без затрат на дорогие комплектующие к осветительной аппаратуре.

Вместе с тем, здесь имеются и свои недостатки:

  • лампы имеют плохую цветопередачу. Это связано с ограниченным спектром лучей. Таким образом рассмотреть в созданном лампочкой свете цвет предмета будет несколько затруднительно. В связи с этим, газоразрядные лампочки зачастую используются для освещения улиц и монтируются в фары авто;
  • может работать только при наличии переменного тока;
  • включение происходит с помощью балластного дросселя;
  • имеется период, необходимый для разогрева источника света;
  • опасность использования, так как в состав газовой смеси могут входить пары ртути;
  • такие лампы обладают повышенной пульсацией испускаемого светового потока.

Отдельно следует отметить, что установка данной продукции осуществляется по стандартной схеме, как и лампы накаливания.

Область применения

Конструкционные особенности, которыми обладают газоразрядные лампочки, обеспечили им обширную область применении.
Сегодня подобная продукция применяется для:

  • создания уличного освещения в городской и сельской местности. Отлично такие лампы смотрятся, если они вкручиваются в фонари для создания качественной подсветки парков и скверов;
  • освещения производственных сооружений, магазинов, торговых площадок, офисов, а также общественных помещений;
  • с помощью газоразрядных источников света, которые вкручены в фонари, можно оформить уличную декоративную подсветку зданий или пешеходных дорожек;
  • подсветки наружной рекламы и рекламных щитов;
  • высокохудожественного освещения эстрад и кинотеатров. Но здесь необходимо применение специального оборудования.

Освещение в авто

Отдельно стоит отметить, что источники света газоразрядного типа сегодня очень часто используются для освещения транспортных средств. Здесь зачастую применяются грл с высокой интенсивностью (например, неоновые). Многие авто имеют в своей комплектации фары, которые заполнены газообразной смесью из металлогалоидных солей и ксенона. Такие фары можно встретить в таких марках, как БМВ, Тойота или Опель.
Иногда подобные лампочки можно встретить и в подсветке дома. Но здесь необходимо обязательно учитывать специфику источников света, чтобы их недостатки можно было минимизировать.
Но в целом область применения данной продукции достаточно обширна и разнообразна.

Заключение

Газоразрядные лампочки представляют собой современный и довольно востребованный источник света, который обладает как своими недостатками, так и преимуществами. Для создания уличного освещения такие источники света подходят лучше всего, а вот в домашних условиях они во многом уступают более безопасным лампочкам.


Выбираем светильники над рабочим столом для кухни

В соответствии с новыми нормами по освещению для осветительных установок рекомендуется применять в первую очередь газоразрядные лампы как наиболее экономичные.

Рис. 1.5. Вольт-амперная характеристика газоразрядного промежутка:
1 - тихий разряд; 2 - переходная область; 3 - нормальный тлеющий разряд; 4 - аномальный тлеющий разряд; 5 -дуговой разряд.
Работа газоразрядных источников света основана на использовании электрического разряда в газовой среде и парах металла. Чаще всего для этого применяют аргон и пары ртути. Излучение происходит за счет перехода электронов атомов ртути с орбиты с высоким содержанием энергии на орбиту с меньшей энергией. При этом возможно несколько видов электрических разрядов (например, тихий, тлеющий, дуговой). Дуговой разряд имеет наибольшую плотность электрического тока и как следствие этого создает наибольший световой поток.
На рисунке 1.5 изображена вольтамперная характеристика электрического разряда в газе при изменении тока от нуля до предельного значения.
При определенных плотностях тока характер процесса ионизации межэлектродного промежутка - лавинообразный. В этом случае с увеличением тока сопротивление межэлектродного промежутка резко уменьшается, что ведет, в свою очередь, к еще большему увеличению тока и, как следствие этого, к аварийному режиму. Такой режим может возникнуть, если включить газоразрядный источник света непосредственно в сеть. При увеличении напряжения от нуля до значения (рис. 1.5) ток плавно увеличивается. Дальнейшее увеличение напряжения до значения UT приводит к неустойчивой точке в, после которой ток резко возрастает за счет уменьшения сопротивления промежутка при лавинообразной ионизации. Ограничить этот ток, а следовательно, и стабилизировать режим работы в области 5 можно путем включения токоограничивающего сопротивления, называемого балластным, так как мощность на нем расходуется бесполезно Значение балластного сопротивления можно определить графически. Для этого, имея вольтамперную характеристику газоразрядного источника излучения, необходимо задаться рабочей точкой А и величиной напряжения сети Uc.
Тогда
(1.17)
Точка А характеризуется двумя видами сопротивления: статическим
и динамическим


Рис. 1.6. Изменение положения рабочей точки при изменении напряжения сети (а) и сопротивления балласта (б).
Рис. 1.7. Влияние величины Ua/Ue на стабильность работы газоразрядной лампы npи изменении напряжения питающей сети.
Динамическое сопротивление на падающем участке рассматриваемой волы амперной характеристики отрицательно.
Изменить положение рабочей точки А можно либо путем изменения сопротивления R (рис. 1.6,6), либо путем изменения напряжения сети Uc (рис. 1.6,с). При этом изменяется как статическое Rлc, так и динамическое Rлд сопротивление лампы. Необходимо отметить, что статическое сопротивление лампы Rлд вместе с сопротивлением балласта определяют рабочий ток в каждой точке, а динамическое- устойчивость горения дуги. Устойчивость горения дуги определяется из условия
(1-18)
Это условие соблюдается на участке вольт-амперной характеристики правее точки Д. При этом чем дальше вправо рабочая точка отстоит от точки Д, тем устойчивей горит дуга, так как уменьшается реакция тока на случайные небольшие изменения напряжения сети Uc.
Работа газоразрядной лампы в любой рабочей точке возможна при различных значениях напряжения сети Uc. Для этого необходимо подобрать сопротивление балласта таким, чтобы рабочий ток оставался постоянным (рис. 1.7). Однако стабильность работы лампы при этом будет различной. Чем выше напряжение питающей сети Uc и соответственно сопротивление балласта Rб, тем меньше влияют отклонения напряжения на ток лампы. Но следует помнить, что при этом возрастают потери мощности в балластном сопротивлении. Учитывая это, в практике рекомендуется балластное сопротивление брать таким, чтобы соблюдалось условие, позволяющее получить достаточную устойчивость работы газоразрядных ламп при минимальных потерях в балласте.
Для работы на постоянном токе используются активные балласты, на переменном - индуктивные и емкостные (иногда и активные).
Все газоразрядные источники по значению рабочего давления делятся на лампы низкого, высокого и сверхвысокого давления.
Люминесцентные лампы низкого давления представляют собой стеклянную цилиндрическую колбу, внутренняя поверхность которой покрыта люминофором. В торцы колбы вварены стеклянные ножки. На ножках смонтированы вольфрамовые электроды в виде биспиралей, покрытые слоем оксида (окисла щелочно-земельных металлов), обеспечивающего хорошую эмиссию электронов. Для защиты от бомбардировки в анодный период к электродам приварены проволочные экраны. На концах колба имеет цоколи со штырьками. Из колбы лампы откачан воздух и введен в нее аргон при давлении около 400 Па с небольшим количеством ртути (30-50мг.).
В люминесцентных лампах световая энергия возникает в результате двойного преобразования энергии электрического тока. Во-первых, электрический ток, протекая между электродами лампы, вызывает электрический разряд в парах ртути, сопровождающийся излучением (электролюминесценция). Во-вторых, возникающая при этом лучистая энергия, большая часть которой представляет собой ультрафиолетовое излучение, воздействует на люминофор, нанесенный на стенки колбы лампы и преобразуется в световое излучение (фотолюминесценция). В зависимости от состава люминофора получают видимые излучения различного спектрального состава. Наша промышленность выпускает люминесцентные лампы пяти типов: дневного света ЛД, дневного света с улучшенной цветопередачей ЛДЦ, холодно-белого света ЛХБ, белого света ЛБ и тепло-белого ЛТБ. Колбы люминесцентных ламп чаще всего имеют прямолинейную, образную и кольцевую формы. Люминесцентные лампы выпускаются мощностью 15, 20, 30, 40, 65 и 80 Вт. В сельском хозяйстве применяются лампы преимущественно мощностью 40 и 80 Вт (табл. 1.3).
Таблица 1.3
Характеристики люминесцентных ламп, используемых в сельском хозяйстве


Тип лампы

Мощность,
Вт

Напряжение на лампе, В

Сила тока, А

Световой поток, лм

В настоящее время выпускаются новые лампы с улучшенной цветопередачей типа ЛЕ.
По сравнению с лампами накаливания люминесцентные лампы имеют более благоприятный спектральный состав излучения, большую световую отдачу (60 ... 70 лм-Вт-1) и больший срок службы (10 000 ч).
Кроме того, в сельском хозяйстве применяются специальные лампы низкого давления: фитолампы - для выращивания растений, эритемные - для УФ облучения животных и птиц, бактерицидные- в установках обеззараживания. Эритемные и фитолампы имеют специальный люминофор, бактерицидные - без люминофора (табл. 1.4)
Все люминесцентные лампы низкого давления включаются в сеть через балластное сопротивление.

Характеристики эритемных, бактерицидных и фитоламп


Тип лампы

Мощность,
Вт

Напряжение,
В

Эритемный поток, мэр

Бактерицидный поток, б

Световой поток, лм

Следует помнить, что зажигание люминесцентных ламп без специальных мероприятий осуществляется при напряжении U3, как правило, больше сетевого Uc. Одним из способов снижения напряжения зажигания U3 является предварительный подогрев электродов, облегчающий эмиссию электронов. Этот подогрев можно осуществлять, используя стартерные и бесстартерные схемы (рис. 1.8).

Рис. 1.8. Схема включения люминесцентной лампы низкого давления:
1 - зажим сетевого напряжения; 2 - дроссель; 3, 5 - электроды лампы; 4 - трубка; 6, 7 - электроды стартера; 8 - стартер.
Стартер представляет собой миниатюрную неоновую лампу, один или оба электрода которой выполнены из биметалла. При нагревании эти электроды могут между собой замыкаться. В исходном состоянии они разомкнуты. При подаче напряжения на зажимы 1 все оно оказывается практически приложенным к зажимам стартера 6 и 7 и в его колбе 8 возникает тлеющий разряд. За счет протекающего при этом тока выделяется тепло, которое нагревает подвижной биметаллический контакт 7, и он замыкается с неподвижным контактом 6. Ток в цепи в этом случае резко возрастает. Его величина оказывается достаточной для нагрева электродов 5 и 5 люминесцентной лампы, выполненных в виде спиралей. За 1...2 с электроды лампы разогреваются до 800...900°С. Так как разряда в это время в колбе стартера нет, электроды его остывают и размыкаются.
В момент разрыва цепи в дросселе 2 возникает э. д. с. самоиндукции, значение которой пропорционально индуктивности дросселя и скорости изменения тока в момент разрыва цепи. Образовавшееся за счет э. д. с. самоиндукции повышенное напряжение (700... 1000 В) оказывается приложенным к электродам лампы, подготовленным к зажиганию. Между электродами возникает дуговой разряд, и лампа 4 начинает светиться. В этом режиме сопротивление лампы оказывается примерно одинаковым с сопротивлением последовательно включенного дросселя и напряжение на ней снижается приблизительно до половины напряжения сети Это же напряжение приложено к стартеру, включенному параллельно лампе, но стартер больше не зажигается, ибо напряжение его зажигания устанавливается в пределах

Таким образом, стартер и дроссель выполняют важные в процессе зажигания и работы функции. Стартер: 1) замыкает цепь «спирали электродов - дроссель», ток, протекающий при этом, нагревает электроды, облегчая зажигание лампы за счет термоэлектронной эмиссии; 2) разрывает после разогрева электродов лампы электрическую цепь и тем самым вызывает импульс повышенного напряжения на лампе, обеспечивающего пробой газового промежутка.
Дроссель: 1) ограничивает ток при замыкании электродов стартера; 2) генерирует импульс напряжения для пробоя лампы за счет э. д. с. самоиндукции в момент размыкания электродов стартера; 3) стабилизирует горение дуги после зажигания.
Так как стартер является самым ненадежным элементом в схеме зажигания, разработаны и бесстартерные схемы. Предварительный подогрев электродов в этом случае осуществляется от специального накального трансформатора.
Для люминесцентных ламп низкого давления выпускаются специальные пускорегулирующие аппараты (ПРА).
Стартерные ПРА обозначаются 1УБИ, 1УБЕ, 1УБК (цифра указывает число ламп, работающих от одного ПРА, У - стартерный, Б - балласт, И - индуктивный, Е - емкостный; К - компенсированный, т.. е. повышающий коэффициент мощности осветительной установки до 0,9...0,95). Для двух ламп соответственно 2УБИ, 2УБЕ, 2УБК.
Бесстартерные аппараты имеют в своем обозначении букву А: АБИ, АБЕ, АБК. Например, марка ПРА 2АБК-80/220-АНП расшифровывается так: двухламповый бесстартерный аппарат, компенсированный, мощность каждой лампы 80 Вт, напряжение сети 220 В, антистробоскопический (А), для независимой установки (Н), с пониженном уровнем шума (П).
Одним из недостатков газоразрядных ламп является пульсация светового потока, вызывающая стробоскопический эффект - мелькание быстро движущегося предмета. Для уменьшения величины пульсации светового потока рекомендуется включать лампы на разные фазы или применять специальные антистробоскопические ПРА.

Рис. 1 9. Лампа ДРТ (а) и схема ее включения (б):
1 - трубка из кварцевого стекла; 2 - электрод; 3 - хомут с держателем; 4 - токопроводящая полоса.
Рис. 1.10 Четырехэлектродная лампа ДР-С (а) и схема ее включения (б):
1 - ртутно-кварцевая горелка; 2 - колба; 3 - люминофор; 4 - поджигающие электроды; 5 - основные электроды; 6 - токоограничивающие резисторы.
При включении люминесцентных ламп на напряжение повышенной частоты увеличивается их световая отдача, уменьшаются размеры балласта и потери в нем, уменьшается величина пульсации светового потока.
Газоразрядные лампы высокого давления. Наиболее распространенными в сельскохозяйственном производстве являются лампы типа ДРТ - дуговая, ртутная, трубчатая и ДРЛ - дуговая, ртутная, люминесцентная.
Лампа ДРТ представляет собой прямую трубку 1 из кварцевого стекла (рис. 1.9,а), в торцы которой впаяны электроды 2. Трубка заполнена аргоном и небольшим количеством ртути. Так как кварцевое стекло хорошо пропускает УФ излучение, лампа в основном используется для УФ облучения животных и птицы и для обеззараживания воды, продуктов, воздуха и т. д.
Включается в сеть лампа через дроссель (рис. 1.9,6). Зажигание осуществляется кратковременным нажатием кнопки S. При этом через дроссель L и конденсатор С1 протекает ток. При размыкании кнопки ток резко уменьшается и за счет э. д. с. самоиндукции дросселя резко повышается напряжение на электродах лампы, что способствует ее зажиганию. Металлическая полоса Я, подключенная через конденсатор С2, обеспечивает перераспределение электрического поля внутри лампы, что облегчает зажигание лампы.
Лампы ДРЛ используются для освещения. Они могут быть как двух- так и четырехэлектродными. В настоящее время выпускаются только четырехэлектродные лампы, конструкция и схема включения которых показаны на рисунке 1.10. Ртутно-кварцевая горелка I является источником УФ излучений. Колба 2 выполнена из термостойкого стекла и с внутренней стороны покрыта люминофором 3, который преобразует УФ излучение горелки в световое. Для облегчения зажигания четырехэлектродная лампа имеет поджигающие электроды 4. Разряд возникает сначала между поджигающим и основным электродами 5, а затем между основными электродами (рабочий промежуток).
Перспективными для освещения являются металлогалоидные лампы высокого давления типа ДРИ. В колбы этих ламп добавляются иодиды натрия, таллия и индия, что позволяет увеличить световую отдачу в 1,5...2 раза по сравнению с лампами ДРЛ.
Для использования в теплицах на базе лампы ДРЛ разработаны специальные фитолампы типа ДРФ и ДРЛФ. Колба этих ламп выполнена из стекла, выдерживающего при нагретом состоянии брызги холодной воды и покрыта специальным люминофором, имеющим повышенную фитоотдачу. В верхней части колбы нанесен отражающий слой.