Что такое электричество и что значит работа тока? Объясняем доступным языком! Что такое электрический ток простыми словами Что представляет собой электрический ток

Не влезай. Убьет! (с)

Среднестатистическая грамотность населения в области электроники и электротехники оставляет желать лучшего. Максимум, спаять схемку, а как она работает - темный лес. К сожалению, все русскоязычные учебники пестрят формулами и интегралами, от них любого человека потянет в сон. В англоязычной литературе дела обстоят несколько лучше. Попадаются довольно интересные издания, но камнем преткновения здесь уже выступает английский язык. Постараюсь изложить основные понятия по электротехнике максимально доступно, в вольном стиле, не от инженера инженеру, а от человека человеку. Сведущий читатель, возможно, тоже найдет для себя несколько интересных моментов.

Электрический ток

Пути электрического тока неисповедимы. (с) мысли из интернета

На самом деле, нет. Все так или иначе можно описать с помощью математической модели, моделирования, да даже прикинув по-быстренькому на бумажке, а некоторые уникумы делают это в голове. Кому как удобнее. На самом деле, эпиграф этой главы родился от незнания, что же такое электрический ток.

Электрический ток характеризуется несколькими параметрами. Напряжением U и током I. Конечно, все мы помним определения по физике, но мало кто понимает их значения. Начну с напряжения. Разность потенциалов или работа по перемещению заряда, как сухо и неинтересно пишут в учебниках. На самом деле, напряжение всегда измеряется между двумя точками. Оно характеризует способность создавать электрический ток между этими двумя точками. Назовем эти точки источником напряжения. Чем больше напряжение, тем больше ток. Меньше напряжения – меньше ток. Но об этом чуть позже.

Что же такое ток? Представьте аналогию русло реки – это провода, электрический ток – это скорость потока воды в реке. Тогда напряжение здесь – перепад высоты между начальной точкой реки и конечной точкой. Или напряжение – это насос гоняющий воду, если река течет в одной плоскости. Такие аналогии на начальных этапах очень помогают понять, что же происходит в электрической схеме. Но, в конечном итоге, лучше от них отказаться. Лучше представить ток как некий поток электронов. Количество заряда, перемещаемое в единицу времени. Конечно, в учебниках говорится, что де электроны движутся со скоростью несколько сантиметров в минуту и значение имеет лишь электромагнитное поле, но пока забудем про это. Итак, под током можно понимать движение электрического тока, т.е. заряда. Носители заряда, электроны, отрицательно заряжены и двигаются от отрицательного потенциала к положительному, электрический ток же имеет направление от положительного потенциала к отрицательному, от плюса к минусу, так принято для удобства и так мы будем пользоваться в дальнейшем, забыв про заряд электрона.

Конечно, сам по себе ток не появится, нужно создать напряжение между двумя точками и нужна какая-либо нагрузка для протекания тока через нее, подключенная к этим двум точками. Очень полезно знать свойство, что для протекания тока нужно два проводника: прямой, до нагрузки, и обратный, от нагрузки до источника. Например, если не замкнуты проводники источника напряжения, то тока не будет.

Что же такое источник напряжения? Представим его в виде черного ящика, имеющего как минимум два вывода для подключения. Самые простые примеры из реальной жизни: электрическая розетка, батарейка, аккумулятор и т.п.


Идеальный источник напряжения обладает неизменным напряжением при протекании через него любого значения тока. Что же будет, если замкнуть зажимы идеального источника напряжения? Потечет бесконечно большой ток. В реальности источники напряжения не могут отдать бесконечно большой ток, потому что обладают некоторым сопротивлением. Например, провода в сетевой розетке 220в от самой розетки до подстанции имеют сопротивление, пусть и малое, но довольно ощутимое. Провода от подстанций до электростанций тоже имеют сопротивление. Нельзя забывать про полное сопротивление трансформаторов и генераторов. Батарейки имеют внутреннее сопротивление, обусловленное внутренней химической реакцией, которая имеет конечную скорость протекания.

Что же такое сопротивление? Вообще, это тема довольно обширная. Возможно, опишу в одной из следующих глав. Если кратко – это параметр, связывающий ток и напряжение. Оно характеризует, какой ток потечет при приложенном напряжении к этому сопротивлению. Если говорить «водной» аналогией, то сопротивление – это дамба на пути реки. Чем меньше отверстие в дамбе – тем больше сопротивление. Эту связь описывает закон Ома: . Как говорится: «Не знаешь закон Ома, сиди дома!».

Зная закон Ома, не сидя дома, имея какой-либо источник тока с заданным напряжением и сопротивление в виде нагрузки, мы очень точно можем предсказать какой потечет ток.
Реальные источники напряжения имеют какое-то свое внутреннее напряжение и отдают некий конечный ток, называемый током короткого замыкания. При этом батареи и аккумуляторы еще и разряжаются со временем и имеют нелинейное внутреннее сопротивление. Но пока тоже забудем об этом, и вот почему. В реальных схемах удобнее проводить анализ с использованием сиюминутных мгновенных значений напряжения и тока, поэтому будем считать источники напряжения идеальными. За исключением того факта, когда потребуется посчитать максимальны ток, который способен отдать источник.

Насчет «водной» аналогии электрического тока. Как я уже писал, она не очень правдива, поскольку скорость движения реки до дамбы и после дамбы будет разным, также разным будет кол-во воды до и после дамбы. В реальных схемах электрический ток втекающий в резистор и вытекающий из него будет равен между собой. Ток по прямому проводу, к нагрузке, и по обратному проводу, от нагрузки до источника, тоже равен между собой. Ток ни откуда не берется и никуда не девается, сколько «втекло» в узел схемы, столько и «вытечет», даже если путей несколько. Например, если есть два пути протекания тока от источника, то он потечет по этим путям, при этом полный ток источника будет равен сумме двух токов. И так далее. Это и есть иллюстрация закона Кирхгофа. Это очень просто.


Также есть еще два важных правила. При параллельном соединении элементов, напряжение в каждом из элементов одинаково. Например, напряжение на резисторе R2 и R3, на рисунке выше, одинаковы, но токи могут быть разными, если резисторы имеют разные сопротивления, по закону Ома. Ток через батарейку равен току на резисторе R1 и равен сумме токов на резисторах R2 и R3. При последовательном соединении напряжения элементов складываются. Например, напряжение которое выдает батарея, т.е. ее ЭДС, равно напряжению на резисторе R1 + напряжение на резисторе R2 или R3.

Как я уже писал, напряжение измеряется всегда между двумя точками. Иногда, в литературе можно встретить: «Напряжение в точке такой-то». Это означает напряжение между этой точкой и точкой нулевого потенциала. Создать точку нулевого потенциала можно, например, заземлив схему. Обычно «землят» схему в месте самого отрицательно потенциала около источника питания, например, как на рисунке выше. Правда это бывает не всегда, да и применение нуля довольно условно, например, если нам нужно двухполярное питание +15 и -15 вольт, то «землить» надо уже не -15в, а потенциал посредине. Если же заземлить -15в, то мы получим 0, +15, +30в. См. рисунки ниже.


Заземление также применяется в качестве защитного или рабочего. Защитное заземление называют зануление. Если нарушится изоляция схемы в каком-нибудь другом участке, отличном от земли, то по нулевому проводу потечет большой ток и сработает защита, которая отключит часть схемы. Защиту мы должны предусмотреть заранее, поставив автоматический выключатель или иное устройство на пути протекания тока.

Иногда «землить» схему нельзя или невозможно. Вместо земли применяют термин общая точка или ноль. Напряжения в таких схемах указываются относительно общей точки. При этом вся схема относительно земли, т.е. нулевого потенциала может располагаться где угодно. См. рисунок.


Обычно, Xv близко к 0 вольт. Такие незаземленные схемы с одной стороны более безопасны, поскольку если человек прикоснется одновременно к схеме и земле ток не потечет, т.к. нет обратного пути протекания тока. Т.е. схема станет «заземлена» через человека. Но с другой стороны такие схемы каверзны. Если вдруг нарушится изоляция схемы от земли в какой-либо ее точке, то мы этого не узнаем. Что может быть опасно, при больших напряжениях Xv.

Вообще земля - это термин довольно обширный и расплывчатый. Есть очень много терминов и названий земли, смотря где «землить» схему. Под землей может пониматься как защитная земля, так и рабочая земля (по протеканию тока через нее при нормальной работе), как сигнальная земля, так и силовая земля (по роду тока), как аналоговая земля, так и цифровая земля (по роду сигнала). Под землей может пониматься общая точка или наоборот, под общей точкой пониматься земля или и быть ей. Также в схеме могут присутствовать все земли одновременно. Так что надо смотреть по контексту. Есть даже такая забавная картиночка в иностранной литературе, см. ниже. Но обычно земля – это схемные 0 вольт и это точка от которой измеряют потенциал схемы.


До сих пор, упоминая источник напряжения, я не касался рода этого самого напряжения. Напряжение есть меняющееся со временем и есть не меняющееся. Т.е. переменное и постоянное. Например, напряжение, меняющееся по синусоидальному закону всем хорошо знакомо, это напряжение сети 220в в бытовых розетках. С постоянным напряжением работать очень просто, мы это уже делали выше, когда рассматривали закон Кирхгофа. А что же делать с переменным напряжением и как его рассматривать?

На рисунке приведены несколько периодов переменного напряжения 220в 50Гц (синяя линия). Красная линия – постоянное напряжение 220в, для сравнения.


Определимся, сначала что такое напряжение 220в, кстати, по новому стандарту положено считать 230в. Это действующее значение напряжения. Амплитудное значение будет в корень из 2х раз выше и составит примерно 308в. Действующее значение – это такое значение напряжения, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при постоянном токе такого же напряжения. Выражаясь математическим языком – это среднеквадратичное значение напряжения. В английской литературе используется термин RMS, а приборы, которые измеряют истинное действующее значение имеют знак «true RMS».

На первый взгляд это может показаться неудобным, какое-то действующее значение, но это удобно для расчетов мощности без необходимости конвертации напряжения.

Переменное напряжение еще удобно рассматривать как постоянное напряжение, взятое в какой-либо точке времени. После чего проводить анализ схемы несколько раз, изменяя знак постоянного напряжение на обратный. Сначала рассмотреть работу схемы с постоянным положительным напряжением, потом, изменить знак, с положительного на отрицательный.
Для переменного напряжения также необходимо два провода. Они называются фаза и ноль. Иногда ноль заземляют. Такая система называется однофазной. Напряжение фазы измеряется относительно нуля и меняется со временем, как показано на рисунке выше. При положительной полуволне напряжения ток протекает от фазы к активной нагрузке и от нагрузки возвращается обратно по нулевому проводу. При отрицательной полуволне ток течет по нулевому проводу и возвращается по фазному.

В промышленности широко применяют трехфазную сеть. Это частный случай многофазных систем. По сути все тоже самое, что и однофазная система, только умноженная на 3, т.е. применение одновременно трех фаз и трех земель. Впервые изобретено Н. Тесла, впоследствии усовершенствовано М. О. Доливо-Добровольским. Усовершенствование состояло в том, что для передачи трехфазного электрического тока можно было выкинуть лишние провода, достаточно четырех: три фазы ABC и нулевой провод или же вовсе три фазы, отказавшись от нуля. Нулевой провод очень часто заземляют. На рисунке ниже ноль общий.


Почему же 3 фазы, и не больше, не меньше? С одной стороны, 3 фазы гарантированно создают вращающееся магнитное поле, так необходимое электрическим двигателям для вращения или получаемое от генераторов электростанций, с другой стороны это экономически выгодно с материальной точки зрения. Меньше нельзя, а больше и не нужно.

Чтобы гарантировано создавать вращающееся поле в трехфазной сети нужно чтобы фазы напряжения были сдвинуты друг относительно друга. Если принять полный период напряжения за 360 градусов, то 360/3 = 120 градусов. Т.е. напряжение каждой фазы сдвинуто относительно друг друга на 120 градусов. См. рисунок ниже.


Здесь показан график напряжения 3-х фазной сети 380в по времени. Как видно из рисунка, все тоже самое, что и с однофазной сетью, только напряжений стало больше. 380в – это так называемое линейное напряжение сети Uл, т.е. напряжение, измеряемое между двумя фазами. На рисунке показан пример нахождения мгновенного значения Uл. Оно также изменяется по синусоидальному закону. Также наряду с линейным напряжением различают фазное Uф. Оно измеряется между фазой и нулем. Фазное напряжение в данной трехфазной сети равно 220в. Под фазным и линейным напряжение, конечно же подразумевается действующее напряжение. Соотносятся линейное к фазному напряжению, как корень из трех.


Нагрузку к трехфазной сети можно подключать как угодно – к фазному напряжению: между какой-либо фазой и нулем, либо к линейному напряжению: между двумя фазами. Если нагрузка подключена к фазному напряжению, то такая схема соединения называется звездой. Она и показана выше. Если к линейному напряжения – то соединение треугольником. Если одинаковая нагрузка подключается к линейным напряжениям между всеми тремя фазами, то такие сети симметричные. Ток через нулевой провод в симметричных сетях не течет. См рис. ниже. Промышленные сети также считаются условно симметричными. Как правило ноль в таких сетях присутствует, но лишь в защитных целях. Иногда может и отсутствовать вообще. Веселая картиночка из вики наглядно иллюстрирует как протекает ток в таких сетях.


На этом кратенький обзор по электросетям и электричеству завершен. Возможно в будущем объясню на пальцах как работает диод и транзистор, что такое стабилитрон, тиристор и другие элементы. Пишите, про что вам интересно почитать.

Библиографический список

  1. Искусство схемотехники, П. Хоровиц. 2003.
  2. GROUNDS FOR GROUNDING. A Circuit-to-System Handbook, Elya B. Joffe, Kai-Sang Lock.
  3. Wiki и интернет ресурсы.

Что называют силой тока? Такой вопрос не раз и не два возникал у нас в процессе обсуждения различных вопросов. Поэтому мы решили разобраться с ним более подробно, и постараемся сделать это максимально доступным языком без огромного количества формул и непонятных терминов.

Итак, что называется электрическим током? Это направленный поток заряженных частиц. Но что это за частицы, с чего это вдруг они двигаются, и куда? Это все не очень понятно. Поэтому давайте разберемся в этом вопросе подробнее.

  • Начнем с вопроса про заряженные частицы, которые, по сути, являются носителями электрического тока . В разных веществах они разные. Например, что представляет собой электрический ток в металлах? Это электроны. В газах — электроны и ионы; в полупроводниках – дырки; а в электролитах — это катионы и анионы.

  • Эти частицы имеют определенный заряд. Он может быть положительным или отрицательным. Определение положительного и отрицательного заряда дано условно. Частицы, имеющие одинаковый заряд, отталкиваются, а разноименный — притягиваются.

  • Исходя из этого, получается логичным, что движение будет происходить от положительного полюса к отрицательному. И чем большее количество заряженных частиц имеется на одном заряженном полюсе, тем большее их количество будет перемещаться к полюсу с другим знаком.
  • Но все это глубокая теория, поэтому давайте возьмем конкретный пример. Допустим, у нас имеется розетка, к которой не подключено ни одного прибора. Есть ли там ток?
  • Для ответа на этот вопрос нам необходимо знать, что такое напряжение и ток. Дабы это было понятнее, давайте разберем это на примере трубы с водой. Если говорить упрощенно, то труба - это наш провод. Сечение этой трубы - это напряжение электрической сети, а скорость потока — это и есть наш электрический ток.
  • Возвращаемся к нашей розетке. Если проводить аналогию с трубой, то розетка без подключенных к ней электроприборов, это труба, закрытая вентилем. То есть электрического тока там нет.

  • Но зато там есть напряжение. И если в трубе, для того чтоб появился поток, необходимо открыть вентиль, то чтобы создать электрический ток в проводнике, надо подключить нагрузку. Сделать это можно путем включения вилки в розетку.
  • Конечно, это весьма упрощенное представление вопроса, и некоторые профессионалы будут меня хаять и указывать на неточности. Но оно дает представление о том, что называют электрическим током.

Постоянный и переменный ток

Следующим вопросом, в котором мы предлагаем разобраться – это: что такое переменный ток и постоянный ток. Ведь многие не совсем правильно понимают эти понятия.

Постоянным называется ток, который в течение времени не изменяет своей величине и направлению. Достаточно часто к постоянному еще относят пульсирующий ток, но давайте обо всем по порядку.

  • Постоянный ток характеризуется тем, что одинаковое количество электрических зарядов постоянно сменяет друг друга в одном направлении. Направление — это от одного полюса, к другому.
  • Получается, что проводник всегда имеет либо положительный, либо отрицательный заряд. И в течение времени это неизменно.

Обратите внимание! При определении направления постоянного тока, могут быть несогласности. Если ток образуется движением положительно заряженных частиц, то его направление соответствует движению частиц. Если же ток образован движением отрицательно заряженных частиц, то его направление принято считать противоположным движению частиц.

  • Но под понятие, что такое постоянный ток достаточно часто относят и так называемый пульсирующий ток. От постоянного он отличается только тем, что его значение в течение времени изменяется, но при этом он не меняет своего знака.
  • Допустим, мы имеем ток в 5А. Для постоянного тока эта величина будет неизменной в течении всего периода времени. Для пульсирующего тока, в один отрезок времени она будет 5, в другой 4, а в третий 4,5. Но при этом он ни в коем случае не снижается ниже нуля, и не меняет своего знака.

  • Такой пульсирующий ток очень распространен при преобразовании переменного тока в постоянный. Именно такой пульсирующий ток выдает ваш инвертор или диодный мост в электронике.
  • Одним из главных преимуществ постоянного тока является то, что его можно накапливать. Сделать это можно своими руками, при помощи аккумуляторных батарей или конденсаторов.

Переменный ток

Чтобы понять, что такое переменный ток, нам необходимо представить себе синусоиду. Именно эта плоская кривая лучше всего характеризует изменение постоянного тока, и является стандартом.

Как и синусоида, переменный ток с постоянной частотой меняет свою полярность. В один период времени он положительный, а в другой период времени он отрицательный.

Поэтому, непосредственно в проводнике передвижения, носителей заряда, как такового, нет. Дабы понять это, представьте себе волну, набегающую на берег. Она движется в одну сторону, а затем — в обратную. В итоге, вода вроде движется, но остается на месте.

Исходя из этого, для переменного тока очень важным фактором становится его скорость изменения полярности. Этот фактор называют частотой.

Чем выше эта частота, тем чаще за секунду меняется полярность переменного тока. В нашей стране для этого значения есть стандарт – он равен 50Гц.

То есть, переменный ток меняет свое значение от крайнего положительного, до крайнего отрицательного 50 раз в секунду.

Но существует не только переменный ток частотой в 50Гц. Многое оборудование работает на переменном токе отличных частот.

Ведь за счет изменения частоты переменного тока, можно изменять скорость вращения двигателей.

Можно так же получать более высокие показатели обработки данных – как например в чипсетах ваших компьютеров, и многое другое.

Обратите внимание! Наглядно увидеть, что такое переменный и постоянный ток, можно на примере обычной лампочки. Особенно хорошо это видно на некачественных диодных лампах, но присмотревшись, можно увидеть и на обычной лампе накаливания. При работе на постоянном токе они горят ровным светом, а при работе на переменном токе едва заметно мерцают.

Что такое мощность и плотность тока?

Ну вот, мы выяснили, что такое ток постоянный, а что такое переменный. Но у вас наверняка осталось еще масса вопросов. Их-то мы и постараемся рассмотреть в этом разделе нашей статьи.

Из этого видео Вы подробнее сможете узнать о том, что же такое мощность.

  • И первым из этих вопросов будет: что такое напряжение электрического тока? Напряжением называется разность потенциалов между двумя точками.

  • Сразу возникает вопрос, а что такое потенциал? Сейчас меня вновь будут хаять профессионалы, но скажем так: это избыток заряженных частиц. То есть, имеется одна точка, в которой избыток заряженных частиц — и есть вторая точка, где этих заряженных частиц или больше, или меньше. Вот эта разница и называется напряжением. Измеряется она в вольтах (В).

  • В качестве примера возьмем обычную розетку. Все вы наверняка знаете, что ее напряжение составляет 220В. В розетке у нас имеется два провода, и напряжение в 220В обозначает, что потенциал одного провода больше чем потенциал второго провода как раз на эти 220В.
  • Понимание понятия напряжения нам необходимо для того, чтоб понять, что такое мощность электрического тока. Хотя с профессиональной точки зрения, это высказывание не совсем верное. Электрический ток не обладает мощностью, но является ее производной.

  • Дабы понять этот момент, давайте вновь вернемся к нашей аналогии с водяной трубой. Как вы помните сечение этой трубы - это напряжение, а скорость потока в трубе - это ток. Так вот: мощность — это то количество воды, которое протекает через эту трубу.
  • Логично предположить, что при равных сечениях, то есть напряжениях — чем сильнее поток, то есть электрический ток, тем больший поток воды переместиться через трубу. Соответственно, тем большая мощность передастся потребителю.
  • Но если в аналогии с водой мы через трубу определенного сечения можем передать строго определенное количество воды, так как вода не сжимается, то с электрическим током все не так. Через любой проводник мы теоретически можем передать любой ток. Но практически, проводник небольшого сечения при высокой плотности тока просто перегорит.
  • В связи с этим, нам необходимо разобраться с тем, что такое плотность тока. Грубо говоря — это то количество электронов, которое перемещается через определенное сечение проводника за единицу времени.
  • Это число должно быть оптимальным. Ведь если мы возьмем проводник большого сечения, и будем передавать через него небольшой ток, то цена такой электроустановки будет велика. В то же время, если мы возьмем проводник небольшого сечения, то из-за высокой плотности тока он будет перегреваться и быстро перегорит.
  • В связи с этим, в ПУЭ есть соответствующий раздел, который позволяет выбрать проводники исходя из экономической плотности тока.

  • Но вернемся к понятию, что такое мощность тока? Как мы поняли по нашей аналогии, при одинаковом сечении трубы передаваемая мощность зависит только от силы тока. Но если сечение нашей трубы увеличить, то есть увеличить напряжение, в этом случае, при одинаковых значениях скорости потока, будут передаваться совершенно разные объемы воды. То же самое и в электрике.
  • Чем выше напряжение, тем меньший ток необходим для передачи одинаковой мощности. Именно поэтому, для передачи на большие расстояния больших мощностей используют высоковольтные линии электропередач.

Ведь линия сечением провода в 120 мм 2 на напряжение в 330кВ, способна передать в разы большую мощность в сравнении с линией такого же сечения, но напряжением в 35кВ. Хотя то, что называется силой тока, в них будет одинаковой.

Способы передачи электрического тока

Что такое ток и напряжение мы разобрались. Пришла пора разобраться со способами распределения электрического тока. Это позволит в дальнейшем более уверено чувствовать себя в общении с электроприборами.

Как мы уже говорили, ток может быть переменным и постоянным. В промышленности, и у вас в розетках используется переменный ток. Он более распространен, так как его легче передавать по проводам. Дело в том, что изменять напряжение постоянного тока достаточно сложно и дорогостояще, а изменять напряжение переменного тока можно при помощи обыкновенных трансформаторов.

Обратите внимание! Ни один трансформатор переменного тока не будет работать на постоянном токе. Так как свойства, которые он использует, присущи только переменному току.

  • Но это совсем не обозначает, что постоянный ток нигде не используется. Он обладает другим полезным свойством, которое не присуще переменному. Его можно накапливать и хранить.
  • В связи с этим, постоянный ток используют во всех портативных электроприборах, в железнодорожном транспорте, а также на некоторых промышленных объектах где необходимо сохранить работоспособность даже после полного прекращения электроснабжения.

  • Самым распространенным способом хранения электрической энергии, являются аккумуляторные батареи. Они обладают специальными химическими свойствами, позволяющими накапливать, а затем при необходимости отдавать постоянный ток.
  • Каждый аккумулятор обладает строго ограниченным объемом накапливаемой энергии. Ее называют емкостью батареи, и отчасти она определяется пусковым током аккумулятора.
  • Что такое пусковой ток аккумулятора? Это то количество энергии, которое аккумулятор способен отдать в самый первоначальный момент подключения нагрузки. Дело в том, что в зависимости от физико-химических свойств, аккумуляторы отличаются по способу отдачи накопленной энергии.

  • Одни могут отдать сразу и много. Из-за этого они, понятное дело, быстро разрядятся. А вторые отдают долго, но по чуть-чуть. Кроме того, важным аспектом аккумулятора является возможность поддержания напряжения.
  • Дело в том, что как говорит инструкция, у одних аккумуляторов по мере отдачи емкости, плавно снижается и их напряжение. А другие аккумуляторы способны отдать практически всю емкость с одинаковым напряжением. Исходя из этих основных свойств, и выбирают эти хранилища для электроэнергии.
  • Для передачи постоянного тока, во всех случаях используется два провода. Это положительная и отрицательная жила. Красного и синего цвета.

Переменный ток

А вот с переменным током все намного сложнее. Он может передаваться по одному, двум, трем или четырем проводам. Чтоб объяснить это, нам необходимо разобраться с вопросом: что такое трехфазный ток?

  • Переменный ток у нас вырабатывается генератором. Обычно почти все их них имеют трёхфазную структуру. Это значит, что генератор имеет три вывода и в каждый из этих выводов выдается электрический ток, отличающийся от предыдущих на угол в 120⁰.
  • Дабы это понять, давайте вспомним нашу синусоиду, которая является образцом для описания переменного тока, и согласно законам которой он изменяется. Возьмем три фазы – «А», «В» и «С», и возьмем определенную точку во времени. В этой точке синусоида фазы «А» находится в нулевой точке, синусоида фазы «В» находится в крайней положительной точке, а синусоида фазы «С» — в крайней отрицательной точке.
  • Каждую последующую единицу времени переменный ток в этих фазах будет изменяться, но синхронно. То есть, через определенное время, в фазе «А» будет отрицательный максимум. В фазе «В» будет ноль, а в фазе «С» — положительный максимум. А еще через некоторое время, они вновь сменятся.

  • В итоге получается, что каждая из этих фаз имеет собственный потенциал, отличный от потенциала соседней фазы. Поэтому между ними обязательно должно быть что-то, что не проводит электрический ток.
  • Такая разность потенциалов между двумя фазами называется линейным напряжением. Кроме того, они имеют разность потенциалов относительно земли – это напряжение называется фазным.
  • И вот, если линейное напряжение между этими фазами составляет 380В, то фазное напряжение равно 220В. Оно отличается на значение в √3. Это правило действует всегда и для любых напряжений.

  • Исходя из этого, если нам необходимо напряжение в 220В, то можно взять один фазный провод, и провод, жестко подключенный к земле. И у нас получится однофазная сеть 220В. Если нам необходима сеть 380В, то мы можем взять только 2 любые фазы, и подключить какой-то нагревательный прибор как на видео.

Но в большинстве случаев, используются все три фазы. Все мощные потребители подключаются именно к трехфазной сети.

Вывод

Что такое индукционный ток, емкостной ток, пусковой ток, ток холостого хода, токи обратной последовательности, блуждающие токи и многое другое, мы просто не можем рассмотреть в рамках одной статьи.

Ведь вопрос электрического тока достаточно объемен, и для его рассмотрения создана целая наука электротехника. Но мы очень надеемся, что смогли объяснить доступным языком основные аспекты данного вопроса, и теперь электрический ток не будет для вас чем-то страшным и непонятным.

Содержание:

Каждому обывателю знакомы на слух электрические величины - ток, напряжение, - от них зависит работа бытовых приборов, но полное понимание определения электротока есть у немногих людей. Показательно сравнение электрического тока с течением реки, только в нем двигаются частицы, имеющие заряд, а в реке - вода. Надо понимать, что ток движется только в одном направлении, для его существования должны быть созданы условия, рассмотрим эти процессы подробней.

Основные определения

Электричество каждый день окружает нас, но что такое электрический ток и связанные с ним величины - понимает не каждый человек, однако они важны для повседневной жизни. Есть несколько толкований понятия электротока:

  1. Принятое в школьном учебнике определение, что электрический ток - это движение частиц, имеющих заряд за счет воздействия на них электрического поля. Частицами являются: протоны, дырки, электроны, ионы.
  2. В электрической литературе высших учебных заведений пишется, что электрический ток это - скорость, с которой заряд изменяется с течением времени. Принимается отрицательный заряд электронов, положительный у протонов и нейтральный у нейтронов.

В электротехнике специалисты отмечают значение такого понятия, как сила тока - это количество частиц, имеющих заряд, которые проходят через сечение проводника с течением времени. Движение тока в проводнике можно описать следующим образом: «…Все токопроводящие материалы имеют внутреннее строение (молекулы, атомы, ядра с вращающимися электронами), когда на материал воздействует химическая реакция, электроны от одного атома перебегают к другому. Создается ситуация, при которой одни атомы испытывают недостаток в электронах, а другие - их избыток, что показывает противоположность заряда. Электроны стремятся к переходу из одного вещества в другое, это движение и есть электрический ток».

Специалисты акцентируют внимание на том, что в этом случае ток течет только до того момента, пока не произойдет уравнивание зарядов в двух веществах.

Для понимания движения тока важно знать определение напряжения - это разность потенциалов, которые берутся в двух точках электрического поля, измеряются в вольтах.

Электрическая энергия

В разных регионах, в частности, и в Украине простой обыватель интересуется: «Що таке електричний струм?», с какой целью он применяется, из чего происходит. Повседневно мы пользуемся электрической энергией, которая представлена переменным током в электрических сетях.

Переменный ток в проводнике - это когда частицы, имеющие заряд за определенный промежуток времени, меняют его по направлению, а также по величине. Графически переменный ток представляется синусоидой. Создается он генераторами, в которых вращаются катушки с проводами и в процессе вращения пересекают магнитное поле. В период вращения катушки могут открываться и закрываться по отношению к магнитному полю, что создает электрический ток, который меняется в проводниках по направлению, а полный цикл проходит за одну минуту.

Вращение генераторов происходит от паровых турбин, имеющих разные источники питания: уголь, газ, атомный реактор, нефть. Далее через систему трансформаторов повышается напряжение тока, через проводники нужного диаметра он переносится без потерь на длительное расстояние. Диаметр провода, по которому проходит ток, определяет его силу и величину, горячими линиями в энергетике называются магистральные линии передачи энергии, есть и заземленные варианты, когда передача электроэнергии происходит под землей.

Где применяется электрический ток?

Именно ток значительно облегчает нам жизнь, создавая комфорт в доме. Он применяется для освещения помещений, улицы, для просушки вещей, в нагревательных элементах электроплиты, в других бытовых приборах и устройствах, выполняет работу подъема гаражных дверей и т.д.

Условия, необходимые для получения электротока

Для существования электротока нужны следующие условия: наличие частиц, имеющих заряд, электропроводный материал, по которому будут двигаться частицы, источник напряжения. Важным условием получения электротока является наличие напряжения, которое определяется разностью потенциалов. Иными словами, сила, создаваемая заряженными частицами отталкивания, в одной точке больше, чем в другой.

Природных источников напряжения не существует, по этой причине вокруг нас равномерно распределяются электроны, но такие изобретения, как батарейки дали возможность накапливать в них электрическую энергию.

Другим важным условием является электрическое сопротивление, или проводник, по которому будут двигаться частицы, имеющие заряд. Материалы, в которых это действие возможно, называются электропроводными, а те, в которых нет свободного движения электронов, - изоляторами. Обыкновенный провод имеет проводящую металлическую жилу и изолирующую оболочку.

Электроток в проводниках

В любом проводнике есть носители электрического заряда, которые приходят в движение под воздействием силы поля, создаваемого электрической машиной.

Металлические проводники переносят заряд при помощи электронов. Чем выше температура проводника и нагрев провода, тем хуже протекает ток, так как в нем начинается хаотическое движение атомов от теплового воздействия, увеличивается сопротивление проводящего материала. Чем ниже температура проводника (в идеале - стремление к нулю), тем меньше его сопротивление.

Жидкости могут проводить электроток при помощи ионов (электролиты). Перемещение происходит к электроду, имеющему противоположный с ионом знак, и, оседая на нем, ионы осуществляют процесс электролиза. Анионы - положительно заряженные ионы, двигающиеся к катоду. Катионы - ионы, имеющие отрицательный заряд, двигаются к аноду. В процессе нагревания электролита уменьшается его сопротивление.

Газ также имеет проводимость, электроток в нем - плазма. Движение происходит при помощи заряженных ионов или свободных электронов, которые получаются в процессе излучения.

Электронно-лучевая трубка - это пример электротока в вакууме от стержня катода к стержню анода.

Электроток в полупроводниках

Для понимания прохождения тока в этом материале дадим ему определение. Полупроводник - промежуточный материал между проводником и изолятором, зависит от удельной проводимости, наличия в нем примесей, температурного состояния и воздействующего на него излучения. Чем ниже температура, тем больше сопротивление полупроводника, свойства его влияют на измерения характеристик. Электроток в полупроводнике - это сумма электронного и дырочного тока.

Когда повышается температура полупроводника, происходит разрыв ковалентных связей от действия тепловой энергии на валентные электроны, образуются свободные электроны, в точке разрыва получается дырка. Она занимается валентным электроном другой пары, а сама перемещается далее в кристалле. Когда свободный электрон встречается с дыркой, между ними происходит рекомбинация, восстановление электронных связей. Когда на полупроводник воздействуют энергией электромагнитного излучения, появляются в нем электронно-дырочные пары.

Законы электрического тока

В электротехнике применяются основные законы, которые дают определение электрического тока. Один из главнейших - закон Ома, особенностью которого является быстрота передачи энергии без изменения ее формы из одной точки в другую.

Этот закон показывает связь между напряжением и силой тока, а также сопротивлением проводника или участка цепи. Сопротивление измеряется в омах.

Работу электротока определяют законом Джоуля-Ленца, который говорит о том, что в любой точке цепи ток выполняет работу.

Фарадей открыл магнитную индукцию, а также опытным способом установил, что при пересечении линии магнитной индукции поверхностью замкнутого проводника в нем появляется электроток. Он вывел закон электромагнитной индукции:

Не замкнутые проводники, пересекающие линии магнитного поля, получают на концах напряжение, что говорит о появлении ЭДС индукции. Если магнитный поток неизменен и пересекает замкнутый контур, то в нем не возникает электротока. ЭДС индукции замкнутого контура, когда меняется магнитный поток, равен модулю его скорости изменения.

Вывод

Когда по проводнику протекает электрический ток, он его нагревает, по этой причине необходимо соблюдать меры безопасности, работая с электрическими приборами и устройствами. Нельзя допускать перегрузки линии передачи энергии, она может нагреться, и возникнет пожар. Электроток всегда движется по пути наименьшего сопротивления.

В момент появления КЗ (короткого замыкания) ток в разы возрастает, происходит моментальное выделение огромного теплового значения, которое плавит металл. Электрический ток может вызвать ожоги на теле человека или животного, но применяется в реанимационных установках, для депрессивных решений и лечения заболеваний.

По правилам электробезопасности ощутимый человеком ток наступает с величины один миллиампер, а опасным для здоровья считается ток с 0,01 ампера, смертельной величиной определена сила тока в 0,1 ампера. Безопасное напряжение для человека - 12-24-32-42 вольта.

Электрический ток

В первую очередь, стоит выяснить, что представляет собой электрический ток. Электрический ток - это упорядоченное движение заряженных частиц в проводнике. Чтобы он возник, следует предварительно создать электрическое поле, под действием которого вышеупомянутые заряженные частицы придут в движение.

Первые сведения об электричестве, появившиеся много столетий назад, относились к электрическим «зарядам», полученным посредством трения. Уже в глубокой древности люди знали, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Но только в конце XVI века английский врач Джильберт подробно исследовал это явление и выяснил, что точно такими же свойствами обладают и многие другие вещества. Тела, способные, подобно янтарю, после натирания притягивать легкие предметы, он назвал наэлектризованными. Это слово образовано от греческого электрон - «янтарь». В настоящее время мы говорим, что на телах в таком состоянии имеются электрические заряды, а сами тела называются «заряженными».

Электрические заряды всегда возникают при тесном контакте различных веществ. Если тела твердые, то их тесному соприкосновению препятствуют микроскопические выступы и неровности, которые имеются на их поверхности. Сдавливая такие тела и притирая их друг к другу, мы сближаем их поверхности, которые без нажима соприкасались бы только в нескольких точках. В некоторых телах электрические заряды могут свободно перемещаться между различными частями, в других же это невозможно. В первом случае тела называют «проводники», а во втором - «диэлектрики, или изоляторы». Проводниками являются все металлы, водные растворы солей и кислот и др. Примерами изоляторов могут служить янтарь, кварц, эбонит и все газы, находящиеся в нормальных условиях.

Тем не менее нужно отметить, что деление тел на проводники и диэлектрики весьма условно. Все вещества в большей или меньшей степени проводят электричество. Электрические заряды бывают положительными и отрицательными. Такого рода ток просуществует недолго, потому что в наэлектризованном теле кончится заряд. Для продолжительного существования электрического тока в проводнике необходимо поддерживать электрическое поле. Для этих целей используются источники электротока. Самый простой случай возникновения электрического тока - это когда один конец провода соединен с наэлектризованным телом, а другой - с землей.

Электрические цепи, подводящие ток к осветительным лампочкам и электромоторам, появились лишь после изобретения батарей, которое датируется примерно 1800 годом. После этого развитие учения об электричестве пошло так быстро, что менее чем за столетие оно стало не просто частью физики, но легло в основу новой электрической цивилизации.

Основные величины электрического тока

Количество электричества и сила тока . Действия электрического тока могут быть сильными или слабыми. Сила действия электрического тока зависит от величины заряда, который протекает по цепи за определенную единицу времени. Чем больше электронов переместилось от одного полюса источника к другому, тем больше общий заряд, перенесенный электронами. Такой общий заряд называется количество электричества, проходящее сквозь проводник.

От количества электричества зависит, в частности, химическое действие электрического тока, т. е. чем больший заряд прошел через раствор электролита, тем больше вещества осядет на катоде и аноде. В связи с этим количество электричества можно подсчитать, взвесив массу отложившегося на электроде вещества и зная массу и заряд одного иона этого вещества.

Силой тока называется величина, которая равна отношению электрического заряда, прошедшего через поперечное сечение проводника, к времени его протекания. Единицей измерения заряда является кулон (Кл), время измеряется в секундах (с). В этом случае единица силы тока выражается в Кл/с. Такую единицу называют ампером (А). Для того чтобы измерить силу тока в цепи, применяют электроизмерительный прибор, называемый амперметром. Для включения в цепь амперметр снабжен двумя клеммами. В цепь его включают последовательно.

Электрическое напряжение . Мы уже знаем, что электрический ток представляет собой упорядоченное движение заряженных частиц - электронов. Это движение создается при помощи электрического поля, которое совершает при этом определенную работу. Это явление называется работой электрического тока. Для того чтобы переместить больший заряд по электрической цепи за 1 с, электрическое поле должно выполнить большую работу. Исходя из этого, выясняется, что работа электрического тока должна зависеть от силы тока. Но существует и еще одно значение, от которого зависит работа тока. Эту величину называют напряжением.

Напряжение - это отношение работы тока на определенном участке электрической цепи к заряду, протекающему по этому же участку цепи. Работа тока измеряется в джоулях (Дж), заряд - в кулонах (Кл). В связи с этим единицей измерения напряжения станет 1 Дж/Кл. Данную единицу назвали вольтом (В).

Для того чтобы в электрической цепи возникло напряжение, нужен источник тока. При разомкнутой цепи напряжение имеется только на клеммах источника тока. Если этот источник тока включить в цепь, напряжение возникнет и на отдельных участках цепи. В связи с этим появится и ток в цепи. То есть коротко можно сказать следующее: если в цепи нет напряжения, нет и тока. Для того чтобы измерить напряжение, применяют электроизмерительный прибор, называемый вольтметром. Своим внешним видом он напоминает ранее упоминавшийся амперметр, с той лишь разницей, что на шкале вольтметра стоит буква V (вместо А на амперметре). Вольтметр имеет две клеммы, с помощью которых он параллельно включается в электрическую цепь.

Электрическое сопротивление . После подключения в электрическую цепь всевозможных проводников и амперметра можно заметить, что при использовании разных проводников амперметр выдает разные показания, т. е. в этом случае сила тока, имеющаяся в электрической цепи, разная. Это явление можно объяснить тем, что разные проводники имеют разное электрическое сопротивление, которое представляет собой физическую величину. В честь немецкого физика ее назвали Омом. Как правило, в физике применяются более крупные единицы: килоом, мегаом и пр. Сопротивление проводника обычно обозначается буквой R, длина проводника - L, площадь поперечного сечения - S. В этом случае можно сопротивление записать в виде формулы:

где коэффициент р называется удельным сопротивлением. Данный коэффициент выражает сопротивление проводника длиною в 1 м при площади поперечного сечения, равной 1 м2. Удельное сопротивление выражается в Ом х м. Поскольку провода, как правило, имеют довольно малое сечение, то обычно их площади выражают в квадратных миллиметрах. В этом случае единицей удельного сопротивления станет Ом х мм2/м. В нижеприведенной табл. 1 показаны удельные сопротивления некоторых материалов.

Таблица 1. Удельное электрическое сопротивление некоторых материалов

Материал

р, Ом х м2/м

Материал

р, Ом х м2/м

Платино-иридиевый сплав

Металл или сплав

Манганин (сплав)

Алюминий

Константан (сплав)

Вольфрам

Нихром (сплав)

Никелин (сплав)

Фехраль (сплав)

Хромель (сплав)

По данным табл. 1 становится понятно, что самое малое удельное электрическое сопротивление имеет медь, самое большое - сплав металлов. Кроме этого, большим удельным сопротивлением обладают диэлектрики (изоляторы).

Электрическая емкость . Мы уже знаем, что два изолированных друг от друга проводника могут накапливать электрические заряды. Это явление характеризуется физической величиной, которую назвали электрической емкостью. Электрическая емкость двух проводников - не что иное, как отношение заряда одного из них к разности потенциалов между этим проводником и соседним. Чем меньше будет напряжение при получении заряда проводниками, тем больше их емкость. За единицу электрической емкости принимают фарад (Ф). На практике используются доли данной единицы: микрофарад (мкФ) и пикофарад (пФ).

Яндекс.ДиректВсе объявления Квартиры посуточно Казань! Квартиры от 1000 руб. посуточно. Мини-гостиницы. Отчетные документы16.forguest.ru Квартиры посуточно в Казани Уютные квартиры во всех районах Казани. Быстрая аренда квартир посуточно.fatyr.ru Новый Яндекс.Браузер! Удобные закладки и надежная защита. Браузер для приятных прогулок по сети!browser.yandex.ru 0+

Если взять два изолированных друг от друга проводника, разместить их на небольшом расстоянии один от другого, то получится конденсатор. Емкость конденсатора зависит от толщины его пластин и толщины диэлектрика и его проницаемости. Уменьшая толщину диэлектрика между пластинами конденсатора, можно намного увеличить емкость последнего. На всех конденсаторах, помимо их емкости, обязательно указывается напряжение, на которое рассчитаны эти устройства.

Работа и мощность электрического тока . Из вышесказанного понятно, что электрический ток совершает определенную работу. При подключении электродвигателей электроток заставляет работать всевозможное оборудование, двигает по рельсам поезда, освещает улицы, обогревает жилище, а также производит химическое воздействие, т. е. позволяет выполнять электролиз и т. д. Можно сказать, что работа тока на определенном участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа. Работа измеряется в джоулях, напряжение - в вольтах, сила тока - амперах, время - в секундах. В связи с этим 1 Дж = 1В х 1А х 1с. Из этого получается, для того чтобы измерить работу электрического тока, следует задействовать сразу три прибора: амперметр, вольтметр и часы. Но это громоздко и малоэффективно. Поэтому, обычно, работу электрического тока замеряют электрическими счетчиками. В устройстве данного прибора имеются все вышеназванные приборы.

Мощность электрического тока равна отношению работы тока к времени, в течение которого она совершалась. Мощность обозначается буквой «Р» и выражается в ваттах (Вт). На практике используют киловатты, мегаватты, гектоватты и пр. Для того чтобы замерить мощность цепи, нужно взять ваттметр. Электротехники работу тока выражают в киловатт-часах (кВтч).

Основные законы электрического тока

Закон Ома . Напряжение и ток считаются наиболее удобными характеристиками электрических цепей. Одной из главных особенностей применения электричества является быстрая транспортировка энергии из одного места в другое и передача ее потребителю в нужной форме. Произведение разности потенциалов на силу тока дает мощность, т. е. количество энергии, отдаваемой в цепи на единицу времени. Как было сказано выше, чтобы замерить мощность в электрической цепи, понадобилось бы 3 прибора. А нельзя ли обойтись одним и вычислить мощность по его показаниям и какой-либо характеристике цепи, вроде ее сопротивления? Многим эта идея понравилась, они посчитали ее плодотворной.

Итак, что же такое сопротивление провода или цепи в целом? Обладает ли проволока, подобно водопроводным трубам или трубам вакуумной системы, постоянным свойством, которое можно было бы назвать сопротивлением? К примеру, в трубах отношение разности давления, создающей поток, деленное на расход, обычно является постоянной характеристикой трубы. Точно так же тепловой поток в проволоке подчиняется простому соотношению, в которое входит разность температур, площадь поперечного сечения проволоки и ее длина. Открытие такого соотношения для электрических цепей стало итогом успешных поисков.

В 1820-х годах немецкий школьный учитель Георг Ом первым приступил к поискам вышеназванного соотношения. В первую очередь, он стремился к славе и известности, которые бы позволили ему преподавать в университете. Только поэтому он выбрал такую область исследований, которая сулила особые преимущества.

Ом был сыном слесаря, поэтому знал, как вытягивать металлическую проволоку разной толщины, нужную ему для опытов. Поскольку в те времена нельзя было купить пригодную проволоку, Ом изготавливал ее собственноручно. Во время опытов он пробовал разные длины, разные толщины, разные металлы и даже разные температуры. Все эти факторы он варьировал поочередно. Во времена Ома батареи были еще слабые, давали ток непостоянной величины. В связи с этим исследователь в качестве генератора применил термопару, горячий спай которой был помещен в пламя. Кроме этого, он использовал грубый магнитный амперметр, а разности потенциалов (Ом называл их «напряжениями») замерял путем изменения температуры или числа термоспаев.

Учение об электрических цепях только-только получило свое развитие. После того как, примерно, в 1800 году изобрели батареи, оно стало развиваться намного быстрее. Проектировались и изготовлялись (довольно часто вручную) различные приборы, открывались новые законы, появлялись понятия и термины и т. д. Все это привело к более глубокому пониманию электрических явлений и факторов.

Обновление знаний об электричестве, с одной стороны, стало причиной появления новой области физики, с другой стороны, явилось основой для бурного развития электротехники, т. е. были изобретены батареи, генераторы, системы электроснабжения для освещения и электрического привода, электропечи, электромоторы и прочее, прочее.

Открытия Ома имели огромное значение как для развития учения об электричестве, так и для развития прикладной электротехники. Они позволили легко предсказывать свойства электрических цепей для постоянного тока, а впоследствии - для переменного. В 1826 году Ом опубликовал книгу, в которой изложил теоретические выводы и экспериментальные результаты. Но его надежды не оправдались, книгу встретили насмешками. Это произошло потому, что метод грубого экспериментирования казался мало привлекательным в эпоху, когда многие увлекались философией.

Ому не оставалось ничего другого, как оставить занимаемую должность преподавателя. Назначения в университет он не добился по этой же причине. В течение 6 лет ученый жил в нищете, без уверенности в будущем, испытывая чувство горького разочарования.

Но постепенно его труды получили известность сначала за пределами Германии. Ома уважали за границей, пользовались его изысканиями. В связи с этим соотечественники вынуждены были признать его на родине. В 1849 году он получил должность профессора Мюнхенского университета.

Ом открыл простой закон, устанавливающий связь между силой тока и напряжением для отрезка проволоки (для части цепи, для всей цепи). Кроме этого, он составил правила, которые позволяют определить, что изменится, если взять проволоку другого размера. Закон Ома формулируется следующим образом: сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка.

Закон Джоуля-Ленца . Электрический ток в любом участке цепи выполняет определенную работу. Для примера возьмем какой-либо участок цепи, между концами которого имеется напряжение (U). По определению электрического напряжения, работа, совершаемая при перемещении единицы заряда между двумя точками, равна U. Если сила тока на данном участке цепи равна i, то за время t пройдет заряд it, и поэтому работа электрического тока в этом участке будет:

Это выражение справедливо для постоянного тока в любом случае, для какого угодно участка цепи, который может содержать проводники, электромоторы и пр. Мощность тока, т. е. работа в единицу времени, равна:

Эту формулу применяют в системе СИ для определения единицы напряжения.

Предположим, что участок цепи представляет собой неподвижный проводник. В этом случае вся работа превратится в тепло, которое выделится в этом проводнике. Если проводник однородный и подчиняется закону Ома (сюда относятся все металлы и электролиты), то:

где r - сопротивление проводника. В таком случае:

Этот закон впервые опытным путем вывел Э. Ленц и, независимо от него, Джоуль.

Следует отметить, что нагревание проводников находит многочисленное применение в технике. Самое распространенное и важное среди них - осветительные лампы накаливания.

Закон электромагнитной индукции . В первой половине XIX века английский физик М. Фарадей открыл явление магнитной индукции. Этот факт, став достоянием многих исследователей, дал мощный толчок развитию электро- и радиотехники.

В ходе опытов Фарадей выяснил, что при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную замкнутым контуром, в нем возникает электрический ток. Это и является основой, пожалуй, самого важного закона физики - закона электромагнитной индукции. Ток, который возникает в контуре, назвали индукционным. В связи с тем что электроток возникает в цепи только в случае воздействия на свободные заряды сторонних сил, то при изменяющемся магнитном потоке, проходящем по поверхности замкнутого контура, в нем появляются эти самые сторонние силы. Действие сторонних сил в физике называется электродвижущей силой или ЭДС индукции.

Электромагнитная индукция появляется также в незамкнутых проводниках. В том случае когда проводник пересекает магнитные силовые линии, на его концах возникает напряжение. Причиной появления такого напряжения становится ЭДС индукции. Если магнитный поток, проходящий сквозь замкнутый контур, не меняется, индукционный ток не появляется.

При помощи понятия «ЭДС индукции» можно рассказать о законе электромагнитной индукции, т. е. ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Правило Ленца . Как мы уже знаем, в проводнике возникает индукционный ток. В зависимости от условий своего появления он имеет разное направление. По этому поводу русский физик Ленц сформулировал следующее правило: индукционный ток, возникающий в замкнутом контуре, всегда имеет такое направление, что создаваемое им магнитное поле не дает магнитному потоку изменяться. Все это вызывает возникновение индукционного тока.

Индукционный ток, так же как и любой другой, имеет энергию. Значит, в случае возникновения индукционного тока появляется электрическая энергия. Согласно закону сохранения и превращения энергии, вышеназванная энергия может возникнуть только за счет количества энергии какого-либо другого вида энергии. Таким образом, правило Ленца полностью соответствует закону сохранения и превращения энергии.

Помимо индукции, в катушке может появляться так называемая самоиндукция. Ее суть заключается в следующем. Если в катушке возникает ток или его сила изменяется, то появляется изменяющееся магнитное поле. А если изменяется магнитный поток, проходящий через катушку, то в ней возникает электродвижущая сила, которая называется ЭДС самоиндукции.

Согласно правилу Ленца, ЭДС самоиндукции при замыкании цепи создает помехи силе тока и не дает ей возрастать. При выключении цепи ЭДС самоиндукции снижает силу тока. В том случае, когда сила тока в катушке достигает определенного значения, магнитное поле перестает изменяться и ЭДС самоиндукции приобретает нулевое значение.

Электрическим током называют упорядоченное движение электрических зарядов. Направленное движение электрических зарядов в проводнике под действием сил электрического поля называют током проводимости . Для появления и существова- ния тока проводимости необходимы два условия:

1. Наличие в данной среде электрических зарядов. В металлах ими являются электроны проводимости; в жидких проводниках (электролитах) – положительные и отрицатель- ные ионы; в газах – положительные ионы и электроны.

2. Наличие электрического поля, энергия которого затрачивалась бы на перемещение электрических зарядов.

За направление электрического тока условно принима- ют направление движения положительных зарядов. Количест- венной характеристикой электрического тока является сила тока – заряд, протекающий через поперечное сечение проводника в единицу времени:

Силу тока можно связать со средней скоростью υ упорядоченного движения зарядов. За время dt через попереч- ное сечение проводника площадью dS протечет заряд dq , заключенный в объеме проводника длиной dl= υ . dt , (рис.5.1)

dq=q 0 . n . dS . dl,

где q 0 – заряд каждой частицы, n – концентрация частиц.

Тогда сила тока

. (5.2)

Плотность тока j – векторная физическая величина, численно равная силе тока, проходящего через единицу площади сечения проводника, проведенного перпендикулярно к направлению тока, и совпадающая с направлением тока

Для того, чтобы ток был длительным, необходимо устройство, в котором какой-либо вид энергии непрерывно преобразовывался бы в энергию электрического поля. Такое устройство называется источником тока . В источнике тока перемещение носителей происходит против сил поля, а это возможно лишь благодаря силам неэлектростатического происхождения, называемых сторонними силами.

Величина, равная работе сторонних сил по перемеще- нию единичного положительного заряда по замкнутой цепи называется электродвижущей силой (ЭДС) x ,

Стороннюю силу, действующую на заряд, можно предста- вить через напряжённость поля сторонних сил

тогда ЭДС для замкнутой цепи определяется выражением

Следовательно, ЭДС, действующая в замкнутой цепи, равна циркуляции вектора напряжённости поля сторонних сил.

Величина, численно равная работе, совершаемой электри- ческими и сторонними силами при перемещении единичного положительногоз аряда на данном участке цепи, называетсянапряжением:


dS tga=1/R

Рис.5.1 Рис.5.2

5.2 Обобщённый закон Ома. Дифференциальная форма закона Ома

Для каждого проводника – твердого, жидкого и газо-образного – существует определенная зависимость силы тока от приложенного напряжения – вольт - амперная характе-ристика (ВАХ). Наиболее простой вид она имеет у металли- ческих проводников и растворов электролитов (рис.5.2) и определяется законом Ома.

Согласно законуОма для однородного (не содержащего сторонних сил) участка цепи, сила тока прямо пропорцио- нальна приложенному напряжению U и обратно пропорцио- нальна сопротивлению проводника R

Единицей сопротивления является Ом ([R ] = 1 Ом ). Ом – сопротивление такого проводника, в котором при напряже- нии 1В течет ток 1А .

Сопротивление зависит от свойств проводника, формы и его геометрических размеров. Для однородного цилиндриче- ского проводника

где l – длина проводника, S – площадь поперечного сечения,

r - удельное сопротивление (сопротивление проводника длиной 1м и площадью поперечного сечения 1м 2 )зависит от природы проводника и температуры ([r ] = Ом. м ).

Величина, обратная удельному сопротивлению, называет- ся удельной электропроводностью : s = 1/r.

Для неоднородного участка цепи, т.е. участка, содержа- щего ЭДС (рис.5.3), с учётом (5.7) и (5.8) получим

. (5.10)

Данное выражение получило название обобщённого закона Ома в интегральной форме.

Получим закон Ома для однородного участка цепи в дифференциальной форме. Для этого выделим в окрестности некоторой точки внутри проводника элементарный цилиндри- ческий объем с образующими, параллельными вектору плотности тока j в данной точке (рис. 5.4).


- + dS

R x 12 J

Рис. 5.3 Рис. 5.4

Через поперечное сечение цилиндра течет ток силой I=jdS . Напряжение, приложенное к цилиндру, равно

где E – напряженность поля в данной точке.

Сопротивление цилиндра . Подставляя I, U и R

в формулу (5.8) и учитывая, что направления векторов совпадают, получим закон Ома для однородного участка цепи в дифференциальной форме

. (5.11)

Закон Ома для неоднородного участка цепи в дифференциальной форме запишется следующим образом:

, (5.12)

где - напряженность поля сторонних сил.

Проводники и источники тока в электрических цепях могут соединяться последовательно и параллельно.

Последовательным называется такое соединение проводников, когда конец одного проводника соединяется с началом другого (рис.5.5). При этом выполняются соотноше- ния:

I=const;

U=U 1 +U 2 +…+U n ;

R=R 1 +R 2 +…+R n . (5.13)

Параллельным называется такое соединение, когда одни концы проводников соединяются в один узел, а другие концы - – в другой (рис.5.6). При этом выполняются соотношения:

I=I 1 +I 2 +…+I n ;

U=const;

. (5.14)

U

R 1 I 1

I U 1 U 2 U 3 I R 2 I 2 I

R 1 R 2 R 3

Рис. 5.5 Рис. 5.6

При последовательном соединении нескольких одинако- вых источников тока (рис.5.7) полная ЭДС батареи равна алгебраической сумме ЭДС всех источников, а суммарное сопротивление равно сумме внутренних сопротивлений:

x б = x 1 + x 2 +…+ x n , r б = r 1 + r 2 +…+r n .

При параллельном подключении n источниковс одинаковыми ЭДС - x и внутренними сопротивлениями – r (рис.5.8) ЭДС батареи равна ЭДС одного источника (x б = x), а внутреннее сопротивление батареи r б = r/n .