Централизованные и децентрализованные системы теплоснабжения. Централизованное теплоснабжение

Вопросы темы:

1. Понятие системы центрального теплоснабжения.

2. Классификация систем центрального теплоснабжения.

3. Устройство систем центрального теплоснабжения.

Централизованное теплоснабжение обеспечивает подачу теплоты многим потребителям, расположенным вне места его выработки.

Система централизованного теплоснабжения состоит из источника тепловой энергии, тепловой сети центрального теплового пункта (ЦТП) или абонентских вводов и местных систем потребителей теплоты.

По виду теплоносителя системы теплоснабжения подразделяются на: водяные и паровые .

Для теплоснабжения жилых, общественных и промышленных зданий в качестве теплоносителя используется преимущественно подогретая вода. Пар в качестве теплоносителя используется в системах отопления, горячего водоснабжения промышленных цехов для нужд технологических процессов.

Вода, как теплоноситель, имеет большую теплоемкость, легкую подвижность, благодаря чему транспортируется на большее расстояние. При использовании воды в качестве теплоносителя упрощается присоединение систем отопления и горячего водоснабжения, создается возможность эффективного регулирования. Кроме этого, вода отвечает повышенным требованиям санитарно-гигиенических норм. Недостатки: значительный расход энергии на перекачку при транспортировании. Большая плотность, большое гидростатическое давление при подъеме на высоту, большие утечки при авариях.

Пар , как теплоноситель, имеет высокий энергетически потенциал и значительно большее, чем у воды, теплосодержание и теплоотдачу. Это позволяет уменьшить размеры оборудования и диаметры коммуникаций. Транспортирование пара осуществляется за счет его внутренней энергии, электроэнергия требуется для перекачки конденсата. При теплоносителе паре проще выявить и ликвидировать аварии. Кроме этого, пар имеет небольшую плотность, и при подаче пара на значительную высоту столб пара оказывает незначительное гидростатическое давление.

Отсутствие возможности качественного регулирования и сложность схем присоединения систем водяного отопления к паровым тепловым сетям являются недостатками пара как теплоносителя и ограничивают его применение.

По способу присоединения систем горячего водоснабжения к тепловым сетям системы теплоснабжения подразделяются на закрытые и открытые .

Закрытые системы теплоснабжения присоединяются к тепловым сетям через водонагреватели, и вся сетевая вода из системы возвращается к источнику теплоснабжения.

В открытых системах теплоснабжения производится непосредственный отбор горячей воды из тепловой сети (рисунок).

По количеству теплопроводов различают одно-, многотрубные (чаще двухтрубные) системы теплоснабжения.


По способу обеспечения потребителей тепловой энергией различают одно- и многоступенчатые системы теплоснабжения.

В одноступенчатых системах потребители теплоты присоединяются непосредственно к тепловым сетям. В узлах присоединения потребителей теплоты к тепловым сетям, называемых абонентскими вводами, устанавливают подогреватели горячего водоснабжения, элеваторы, насосы, запорно-регулирующую арматуру, контрольно-измерительные приборы для обслуживания местных отопительных и водоразборных приборов. Если абонентский ввод сооружается для какого-либо индивидуального здания или объекта, то его называют индивидуальным тепловым пунктом (ИТП).

В многоступенчатых системах между источником тепловой энергии и потребителями размещают центральные тепловые пункты (ЦТП), в которых параметры теплоносителя могут изменяться в зависимости от требований местных потребителей.

Для увеличения радиуса действия системы теплоснабжения и уменьшения количества транспортируемого теплоносителя и соответственно затрат электроэнергии на его перекачку, а также диаметров теплопроводов, для целей теплоснабжения используют высокотемпературную (до 180 0 С и более) воду. Циркуляцию теплоносителя по теплоизолированным теплопроводам диаметром до 1400 мм, которые прокладывают под землей в непроходных и полупроходных каналах, в проходных коллекторах и без каналов, а также над землей на опорах (мачтах), обеспечивает насосная станция источника тепловой энергии.

Вопросы для самоконтроля:

1. Что называется системой центрального теплоснабжения?

2. Как классифицируются системы центрального теплоснабжения.

3. Охарактеризуйте теплоносители, используемые в системах теплоснабжения.

4. Объясните схему открытой системы теплоснабжения

5. Охарактеризуйте закрытые системы теплоснабжения.

Список литературы:

1. Н.К. Громова «Водяные тепловые сети», с. 280-287.

С началом нового отопительного сезона в прессе как обычно разгорается дискуссия: что предпочтительнее для нашей обширной и холодной страны - традиционные сети центрального отопления или новомодные индивидуальные котельные? Казалось бы, в пользу последних свидетельствуют солидные экономические выкладки, обширный опыт, накопленный западными странами, несколько успешных российских проб и общая тенденция развития многострадального отечественного ЖКХ. Но, разрабатывая концепции и давая безапелляционные рекомендации, не слишком ли мы увлекаемся? Так ли уж устарела и отстала от сегодняшних реалий централизованная система отопления, и нет ли возможности и способов сделать ее более эффективной? Попробуем разобраться в этом непростом вопросе.
Обращаясь к истории, можно увидеть, что успешные попытки организации центрального отопления городских кварталов предпринимались еще в XIX в. Вызваны они были как насущной необходимостью, так и техническим прогрессом. Все разумно: проще обслуживать один большой нагревательный котел, делать один дымоход, подвозить топливо и т.п. Как только появились электрические сети и достаточно мощные надежные насосы, чтобы перекачивать значительные объемы горячей воды, возникли и крупные сети централизованного теплоснабжения.
По многим причинам, как объективного, так и субъективного характера, широкое развитие централизованных систем отопления в Советском Союзе началось в 20-х годах XX в. Объективными причинами стали экономические и технические доводы, а субъективными - стремление к коллективизму даже в такой сугубо бытовой области. Развитие теплосетей было связано с осуществлением плана ГОЭЛРО, который и по сегодняшний день считают выдающимся инженерно-экономическим проектом современности. Работа по прокладке коммуникаций не прерывалась даже во время Великой Отечественной войны.
В результате этих титанических усилий к концу XX в. (а заодно к закату существования СССР) в стране насчитывалось около 200 тыс. км тепловых сетей, худо-бедно обогревавших большинство крупных, средних и даже мелких городов и поселков. Вся эта инфраструктура довольно успешно управлялась, чинилась и поддерживалась на работоспособном уровне. Обратной же стороной по-своему уникальной и достаточно эффективной системы стали чрезвычайно высокие тепло- и энергопотери (в основном, за счет недостаточной теплоизоляции труб и энергоемких насосных подстанций). Этому не придавалось большого значения - богатейшая энергоресурсами страна не считала затрат на теплоносители, и исходящие паром траншеи с зеленеющей травой были привычным зимним пейзажем по всему Советскому Союзу.
Все изменилось в начале 90-х годов. Гигант рухнул и помимо прочего погреб под руинами и жилищно-коммунальный комплекс, включающий в себя коммуникации центрального теплоснабжения. За 10 лет, прошедших с начала распада державы, сети, которые ремонтировались от случая к случаю, практически пришли в негодность. В результате, с начала нового тысячелетия на Россию обрушился целый ряд техногенных катастроф. Дальний Восток, Сибирь, Карелия, Ростов-на-Дону - география размороженных отопительных систем обширна. В отопительный сезон 2003-2004 гг. по самым скромным подсчетам без отопления в разгар зимы оказались более 300 тыс. человек. Фатальность ситуации в том, что количество аварий на теплоцентралях из-за прорыва труб, отказа изношенного до крайности и малоэффективного оборудования растет экспоненциально. Теплопотери на еще функционирующих теплопроводах составляют до 60%. Стоит учесть, что стоимость прокладки 1 км теплотрассы составляет около $300 тыс., при этом для того, чтобы ликвидировать существующий критический износ теплосетей, нужно заменить более 120 тыс. км трубопроводов!
В сложившейся ситуации стало ясно, что для выхода из этой чрезвычайно сложной ситуации потребуются системные решения, связанные не только с прямым вложением денег в «точечный» ремонт теплотрасс, но и с кардинальным пересмотром всей политики в отношении ЖКК в общем и централизованного отопления - в частности. Именно поэтому и возникли проекты по переходу коммунальной отрасли на системы индивидуальных котельных. Действительно, западный опыт (Италия, Германия) свидетельствовал, что организация таких мини-котельных снижает теплопотери и уменьшает энергозатраты. При этом, впрочем, игнорировался тот факт, что страны, где наиболее развиты такие системы отопления, обладают довольно мягким климатом, да и применяются такие системы в домах, прошедших дополнительное (и весьма недешевое!) переоборудование. Пока в России отсутствует конкретная целевая программа санации жилья, массовый переход на автономные источники теплоснабжения выглядит, по меньшей мере, утопично. Однако, надо признать, что в ряде случаев они могут стать весьма удачным решением: например при строительстве новых районов, удаленных от общих городских коммуникаций, при невозможности крупных земляных работ или на Крайнем Севере, в условиях вечной мерзлоты, где прокладка теплоцентралей нежелательна по целому ряду причин. Но для крупных городов автономные котельные не являются реальной альтернативой центральному отоплению и, по мнению специалистов, их доля при самых радужных перспективах не превысит 10-15% от общего теплопотребления.
В то время как в Центральной Европе активно лоббируют идею автономного теплоснабжения, в странах Северной Европы (где климат близок к нашему) централизованное теплоснабжение, наоборот, весьма развито. Причем, что интересно, во многом благодаря советскому опыту.
В крупных городах, таких как Хельсинки и Копенгаген, доля центрального отопления приближается к 90%. Может возникнуть вполне резонный вопрос: почему в России теплоцентрали - это головная боль коммунальщиков и населения и черная дыра, поглощающая деньги, а в развитых европейских странах - способ дешево и эффективно доставить тепло туда, где это необходимо?
Ответ на этот вопрос сложен и включает в себя много аспектов. Обобщая, можно сказать, следуя известной поговорке: дьявол сидит в деталях. А детали эти довольно просты: используя современное оборудование, можно добиться того, что теплопотери в центральных сетях сведутся к минимуму, а поскольку накладных расходов у большой ТЭЦ в пересчете на отапливаемую площадь меньше, то и стоимость тепловой единицы тоже ниже, чем у автономного пункта. Кроме того, крупная, хорошо оснащенная ТЭЦ создает меньше экологических проблем, чем несколько мелких, дающих суммарно то же количество тепла. Есть и еще один аспект: теплотехники знают, что только в крупных установках возможна реализация наиболее результативных термодинамических циклов для когенерации (совместного производства тепловой и электрической энергии), что является на сегодня наиболее передовой технологией. Все это и привело скандинавов к выбору в пользу централизованного теплоснабжения. Особенно интересен в этом контексте опыт самой энергоэффективной страны Европы - Дании.
К началу 90-х годов произошло смещение интересов государства и общества с вопросов энергонезависимости к социальным и экологическим аспектам. При этом приоритетом государственной политики стало правило «3Е», т.е. соблюдение баланса между экономическим развитием, энергетической безопасностью и экологической корректностью (Economic Development, Energy security, Environmental protection). Надо сказать, что Дания, наверное, единственная страна в мире, в которой за энергетику и экологическую обстановку отвечает одно ведомство - Министерство охраны окружающей среды и энергетики. В 1990 г. датский парламент принял план «Энергия 2000», предлагающий к 2005 г. снижение эмиссии СО2 в атмосферу на 20% (по сравнению с уровнем 1998 г.). Стоит сказать, что этот показатель был достигнут уже к 2000 г. во много благодаря последовательной политике, направленной на модернизацию и укрупнение существующих теплосетей. Уже к середине 90-х годов доля систем централизованного теплоснабжения составляла около 60% от общего потребления тепла (в крупных городах до 90%). К системе централизованного теплоснабжения подключено более 500 тыс. установок, обеспечивающих теплом более 1 млн зданий и промышленных сооружений. При этом потребление энергоресурсов на 1 м2 только за десятилетие с начала реформы 1973 г. (см. справку на полях «Опыт Дании») сократилось в 2 раза.
Экономичность датских сетей центрального теплоснабжения обуславливается низкими потерями в трубопроводах благодаря введению новых материалов и технологий: труб из полимеров (к примеру, разработки UPONOR), эффективной теплоизоляции и современного насосного оборудования. Дело в том, что в отличие от большинства стран в Дании работа систем централизованного теплоснабжения регулируется не изменением температуры теплоносителя, а изменением скорости циркуляции, автоматически подстраивающейся под спрос потребителей. При этом широко распространено применение насосов с частотным регулированием, позволяющих значительно снизить энергопотребление. В этой нише лидирующее положение занимает насосное оборудование концерна GRUNDFOS: его использование позволяет сэкономить до 50% потребляемого насосами электричества.
Благодаря перечисленному комплексу инноваций, теплопотери магистральных и распределительных трубопроводов Дании составляют всего около 4%, при этом КПД ТЭЦ достигает 90%. На сегодня в стране осталось 170 тыс. зданий (из общего количества в 2,5 млн), не подключенных к централизованному теплоснабжению. Большая их часть должна в ближайшее время перейти на централизованное теплоснабжение.
В Дании законодательно закреплено, что местные власти несут ответственность за выполнение программ тепло- и энергосбережения и гарантируют экологическую и экономическую их корректность. Это в целом по стране привело к тому, что почти все новые здания проектируются с учетом подключения к централизованному теплоснабжению. Системы централизованного теплоснабжения используются повсеместно в районах плотной застройки, причем ТЭЦ, использующие когенерацию энергии, составляют большинство среди энергопроизводящих предприятий.
В результате этих реформ за 30 лет Дания стала самой энергоэффективной страной Европы, где тарифы на тепло и электроэнергию не только не растут, но часто снижаются. При этом экологическая обстановка в целом по стране явно улучшилась.
На этом убедительном примере отчетливо видно, что централизованное теплоснабжение отнюдь не является фактором, сдерживающим развитие ЖКК. Более того, централизованное теплоснабжение стало причиной значительной экономии энергии и тепла и улучшения как качества жизни, так и экологической обстановки.
Можно возразить, что опыт Дании неприменим в нашей обремененной множеством проблем стране. Однако начавшаяся реформа коммунального комплекса должна способствовать привлечению инвестиций в эту сферу хозяйственной деятельности и этими вливаниями надо распорядиться по возможности разумно. Тем более, что и в России уже существует положительный опыт реконструкции центрального теплоснабжения, использующий в т.ч. и опыт Дании в этой области. К примеру, в Ижевске на средства кредита Международного Банка Реконструкции и Развития в рамках оздоровления коммунального хозяйства была проведена санация изношенных теплосетей. Проект включал в себя в том числе и модернизацию нескольких десятков квартальных ИТП и внутриквартальных сетей тепло- и водоснабжения. При этом была произведена полная замена теплообменников на современные пластинчатые модели, КПД которых около 98%, высокоэффективное регулирующее и насосное оборудование. В обновляемых системах были установлены новые сетевые насосы GRUNDFOS серии ТР, циркуляционные насосы систем отопления и насосы CRE с частотно-регулируемым электроприводом для системы горячего водоснабжения. Надо сказать, что благодаря экономии электроэнергии это оборудование окупило себя уже через 2 года эксплуатации, при этом система была полностью автоматизирована. Одновременно проводилась модернизация теплосетей с применением современных пластиковых предизолированных труб и эффективной теплоизоляции, что позволило снизить теплопотери в трубопроводах в 2-3 раза и увеличить срок службы труб за счет многократного замедления коррозии.
В результате была получена обновленная эффективная система централизованного отопления и ГВС, при этом выплаты по кредиту не легли тяжким бременем на бюджет, поскольку экономия тепла и энергии оказалась столь значительной, что с лихвой окупала эти издержки.
Таким образом, дискуссии о целесообразности модернизации и развития существующих систем центрального теплоснабжения или тотальной замены их на автономные тепловые пункты, крышные котельные и поквартирное отопление стоит отвлечься от политических аспектов и обратить внимание на опыт развитых и успешных стран. А он показывает, что в сложном комплексе жилищно-коммунального хозяйства не существует единых решений на все случаи жизни, и не стоит отказываться от давно проверенных временем и практикой схем, подчиняясь только веяниям моды. Зарубежный опыт показал, что при использовании современного оборудования и материалов реконструированное централизованное отопление в комплексе с другими техническими решениями (в т.ч. и индивидуальными системами теплоснабжения) может стать ключом к развитию новых энергосберегающих технологий и обновлению всего ЖКК.

по материалам журнала Еврострой.

Основное назначение любой системы теплоснабжения состоит в обеспечении потребителей необходимым количеством теплоты требуемого качества (т.е. теплоносителем требуемых параметров).

В зависимости от размещения источника теплоты по отношению к потребителям системы теплоснабжения разделяются на децентрализованные и централизованные.

Децентрализованные системы

В децентрализованных системах источник теплоты и теплоприемники потребителей либо совмещены в одном агрегате, либо размещены столь близко, что передача теплоты от источника до теплоприемников может осуществляться практически без промежуточного звена – тепловой сети.

Системы децентрализованного теплоснабжения разделяются на индивидуальные и местные.

В индивидуальных системах теплоснабжение каждого помещения (участка цеха, комнаты, квартиры) обеспечивается от отдельного источника. К таким системам, в частности, относятся печное и поквартирное отопление. В местных системах теплоснабжение каждого здания обеспечивается от отдельного источника теплоты, обычно от местной или индивидуальной котельной. К этой системе, в частности, относится так называемое центральное отопление зданий.

Централизованные системы

В системах централизованного теплоснабжения источник теплоты и теплоприемники потребителей размещены раздельно, часто на значительном расстоянии, поэтому теплота от источника до потребителей передается по тепловым сетям.

В зависимости от степени централизации системы централизованного теплоснабжения можно разделить на следующие четыре группы:

  • групповое – теплоснабжение от одного источника группы зданий;
  • районное – теплоснабжение от одного источника нескольких групп зданий (района);
  • городское – теплоснабжение от одного источника нескольких районов;
  • межгородское – теплоснабжение от одного источника нескольких городов.

Процесс централизованного теплоснабжения состоит из трех последовательных операций: подготовки теплоносителя, транспортировки теплоносителя и использования теплоносителя.

Транспортируется теплоноситель по тепловым сетям. Используется теплоноситель в теплоприемниках потребителей. Комплекс установок, предназначенных для подготовки, транспортировки и использования теплоносителя, составляет систему централизованного теплоснабжения. Для транспорта теплоты применяются, как правило, два теплоносителя: вода и водяной пар. Для удовлетворения сезонной нагрузки и нагрузки горячего водоснабжения в качестве теплоносителя используется обычно вода, для промышленной технологической нагрузки – пар.

Выбор системы теплоснабжения объекта производится на основании утвержденной в установленном порядке схемы теплоснабжения.

Водяные системы

Водяные системы теплоснабжения применяются двух типов: закрытые (замкнутые) и открытые (разомкнутые). В закрытых системах сетевая вода, циркулирующая в тепловой сети, используется только как теплоноситель, но из сети не отбирается.

В открытых системах сетевая вода частично (редко полностью) разбирается у абонентов для горячего водоснабжения.

В зависимости от числа трубопроводов, используемых для теплоснабжения данной группы потребителей, водяные системы делятся на одно-, двух-, трех- и многотрубные. Минимальное число трубопроводов для открытой системы один, а для закрытой системы - два.

Наиболее простой и перспективной для транспорта на большие расстояния является однотрубная бессливная система теплоснабжения. Ее можно применить в том случае, когда обеспечивается равенство расходов сетевой воды, требуемых для удовлетворения отопительно-вентиляционной нагрузки и для горячего водоснабжения абонентов данного города или района.

Для теплоснабжения городов в большинстве случаев применяются двухтрубные водяные системы, в которых тепловая сеть состоит из двух трубопроводов: подающего и обратного. По подающему трубопроводу горячая вода подводится от станции к абонентам, по обратному трубопроводу охлажденная вода возвращается на станцию.

Преимущественное применение в городах двухтрубных систем объясняется тем, что эти системы по сравнению с многотрубными требуют меньших начальных вложений и дешевле в эксплуатации. Двухтрубные системы применимы в тех случаях, когда всем потребителям района требуется теплота примерно одного потенциала. Такие условия обычно имеют место в городах, где вся тепловая нагрузка (отопление, вентиляция и горячее водоснабжение) может быть удовлетворена в основном теплотой низкого потенциала.

В промышленных районах, где имеется технологическая тепловая нагрузка повышенного потенциала, могут применяться трехтрубные системы, в которых два трубопровода используются как подающие, а третий трубопровод является обратным. К каждому подающему трубопроводу присоединяются однородные по потенциалу и режиму тепловые нагрузки. В промышленных районах обычно к одному подающему.

Число параллельных трубопроводов в закрытой системе должно быть не меньше двух, так как после отдачи теплоты в абонентских установках теплоноситель должен быть возвращен на станцию. В зависимости от характера тепловых нагрузок абонента и режима работы тепловой сети выбираются схемы присоединения абонентских установок к тепловой сети.

В закрытых системах теплоснабжения установки горячего водоснабжения присоединяются к тепловой сети только через водо-водяные подогреватели, т.е. по независимой схеме. При зависимых схемах присоединения давление в абонентской установке зависит от давления в тепловой сети. При независимых схемах присоединения давление в местной системе не зависит от давления в тепловой сети.

Оборудование абонентского ввода при зависимой схеме присоединения проще и дешевле, чем при независимой, при этом может быть получен несколько больший перепад температур сетевой воды в абонентской установке. Увеличение перепада температур воды уменьшает расход теплоносителя в сети, что может привести к снижению диаметров сети и экономии на начальной стоимости тепловой сети и на эксплуатационных расходах.

Основным недостатком зависимой схемы присоединения является жесткая гидравлическая связь тепловой сети с нагревательными приборами абонентских установок, имеющими, как правило, пониженную механическую прочность, что ограничивает пределы допускаемых режимов работы системы централизованного теплоснабжения. Так, в широко применявшихся в отопительной технике чугунных нагревательных приборах (радиаторах) допустимое давление не превышает 0.6 МПа; превышение указанного предела может привести к авариям в отопительных установках. Это существенно снижает надежность и усложняет эксплуатацию систем теплоснабжения крупных городов, Так как при большой протяженности тепловых сетей и большом числе присоединенных абонентских установок с разнородной тепловой нагрузкой расходы воды в сети и связанные с ними потери давления могут изменяться в широких пределах. При этом уровень давлений в сети может превысить предел, допустимый для абонентских установок.

В тех случаях, когда разность между допустимым давлением в теплопотребляющих приборах абонентов и расчетным давлением в тепловой сети невелика, даже небольшие повышения давления в тепловой сети, вызванные, например, аварийным отключением насоса на подстанции или непроизвольным перекрытием клапана в сети, могут привести к разрыву приборов в отопительных установках абонентов. Кроме того, при независимой схеме снижаются утечки сетевой воды и легче обнаружить возникающие в процессе эксплуатации повреждения в системе теплоснабжения. Поэтому по условиям надежности работы систем теплоснабжения крупных городов независимая схема присоединения более предпочтительна. В тех же случаях, когда давление в тепловой сети в статических условиях превышает допустимый уровень давлений в абонентских установках, применение независимой схемы присоединения является обязательным независимо от размеров системы централизованного теплоснабжения.

Непосредственный водоразбор сетевой воды у потребителей в закрытых системах теплоснабжения не допускается.

В открытых системах теплоснабжения подключение части потребителей горячего водоснабжения через водо-водяные теплообменники на тепловых пунктах абонентов (по закрытой системе) допускается как временное при условии обеспечения (сохранения) качества сетевой воды согласно требованиям действующих нормативных документов.

Паровые системы

Паровые системы сооружаются двух типов: с возвратом конденсата, без возврата конденсата. В практике промышленной теплофикации широко применяется однотрубная паровая система с возвратом конденсата. Пар из отбора турбины поступает в однотрубную паровую сеть и транспортируется по ней к тепловым потребителям. Конденсат возвращается от потребителей на станцию по конденсатопроводу. На случай остановки турбины или недостаточной мощности отбора предусмптривается резервная подача пара в сеть через редукционно-охладительную установку.

Схемы присоединений абонентских установок к паровой сети зависят от конструкции этих установок. Если пар может быть пущен непосредственно в установку абонента, то присоединение производится по зависимой схеме. Сбор конденсата от теплопотребляющих установок и возврат его к источнику теплоты имеют важное значение не только для надежности работы котельных установок современных теплоэлектроцентралей, но и для экономии теплоты и общей экономичности системы теплоснабжения в целом. Возврат конденсата особенно важен для ТЭЦ с высокими и сверхкритическими начальными параметрами (13 МПа и выше).

Несколько сотен лет назад возможность организовать центральное отопление было бы оценена как небывалая по комфорту инновация. Сейчас трудно представить себе все неудобства, связанные с необходимостью растапливать дровяные и угольные очаги в каждой комнате для того, чтобы содержать большие здания тёплыми.

Современную жизнь трудно представить без системы централизованного отопления

История и эволюция

Самой древней системой отопления был очаг с открытым огнём. Такой источник тепла вместе с каминами, печами и современными инфракрасными обогревателями относится к устройствам прямого нагрева, так как преобразование энергии происходит непосредственно на отапливаемом участке.

До древних греков и римлян большинство культур полагались именно на местные системы обогрева. Дымоходы, первоначально представлявшие собой простое отверстие в трубе, эволюционировали в дымовые трубы. Это позволило создать к XIII веку камин - одно из самых совершенных отопительных приспособлений с использованием открытого огня. Первые замкнутые печи около 600 лет до н.э. заменили собой очаги в Китае и оттуда распространились по России и в Северную Европу.

Центральное отопление было изобретено ещё в Древней Греции, а древние римляне создали гипокаусты - самые масштабные и совершенные теплотехнические сооружения античности.

Суть подобных систем отопления заключалась в устройстве полов с воздушными каналами, через которые направляли горячие газы от печи, расположенной за пределами обогреваемых помещений. Гипокаусты исчезли вместе с Римской Империей, и системы центрального отопления были забыты на полторы тысячи лет.

Ниже представлено занимательное видео о том, как подают центральное отопление в наше время:

К ним вернулись снова в начале XIX века, когда промышленная революция потребовала больших зданий для производств, а последующая урбанизация вызвала небывалый спрос на многоэтажные жилые и административные здания. Хронологическая шкала, иллюстрирующая эволюцию внутренних систем обогрева, выглядит так:

  1. 1900000 л назад - начало использования людьми огня.
  2. 23000 л назад- первое доказанное использование угля в качестве топлива.
  3. 7500-5700 л до н. э. - появление открытых очагов в домах.
  4. 2500 л до н. э. - в античной Греции появляются первые сооружения с дымоходами в грунте.
  5. I век до н. э. - усовершенствование древнегреческих систем обогрева до гипокаустов.
  6. 400-е гг. - вместе с падением Римской империи вернулись более примитивные способы отопления.
  7. 1400-1500 гг. - распространение в Европе кирпичной кладки дымоходов.
  8. 1741 г. - Бенджамин Франклин представил печь, значительно превышавшую по эффективности существующие до этого.
  9. 1855 г. - российский предприниматель Сан-Галли изобрёл радиатор отопления.
  10. 1919 г. - Элис Паркер патентует первую систему централизованного отопления.
  11. Конец 1940-х гг.- Роберт С. Уэббер создаёт геотермальный тепловой насос прямого обмена.
  12. 2000-е гг. - продвижение интеллектуальных технологий, позволяющих домовладельцам регулировать тепло удалённо с помощью электронных устройств.

Уголь с древних времен был основным источником тепла

Современные системы

Центральное отопление отличается от местного нагрева тем, что генерация тепла происходит в отдельном помещении или здании, а затем вместе с теплоносителем подаётся к точкам обогрева. Сейчас такие системы стали обычным явлением. И хотя сама инсталляция является одной из самых дорогих, при правильном использовании это весьма экономичный способ отопления с высоким тепловым комфортом. По масштабам и задачам можно выделить три вида систем:

  1. Индивидуальное отопление. Служит для одного собственника в отдельно стоящем здании или для локального обогрева небольшого количества помещений.
  2. Коллективное отопление. Обслуживает несколько пользователей, расположенных, как правило, в одном здании.
  3. . В этом случае котёл или группа котлов обеспечивает тепловую энергию для нескольких зданий или даже целых кварталов, населённых пунктов или районов.

Полезная информация о процедуре перехода на индивидуальное отопление:

Виды по теплоносителю

С конца XVIII века до начала XIX были разработаны и внедрены три основных метода передачи тепла от источника к потребителям, которые, непрерывно совершенствуясь, успешно применяются сейчас в качестве основных. Их смело можно назвать классическими.

Впервые было предложено в 1745 г. Уильямом Куком, а в 1784 г. Джеймс Уатт оборудовал такой системой свой дом.

Дальнейшее развитие состоялось после начала производства радиаторов. Суть его в том, что при конденсации водяного пара выделяется большое количество тепла. Котёл генерирует пар, подаваемый по линиям питания к радиаторам, в которых и происходит конденсация. Вода (конденсат) самотёком или при помощи насосов возвращается в котёл.

Сам по себе пар - хороший и эффективный теплоноситель. Но поскольку системы нуждаются в специфическом оборудовании и выполнении строгих требований при установке, их популярность невелика. В основном паровое отопление используют при высоких рисках замерзания водных систем или когда его применение оправдано наличием уже готового производства пара (прачечные, некоторые фабрики и заводы).


Установка систем парового отопления требует соблюдения строгих правил

Водяное циркуляционное

Наиболее распространённый тип. Температура циркулирующего теплоносителя в трубах - до 100°C (фактически 50-80°C). Нередко интегрируются с горячим водоснабжением. Первые системы были реализованы Петром 1 в России для обогрева Летнего Дворца. Принцип работы таков: котёл (или теплообменник) нагревает воду в системе, с помощью циркуляционного насоса распределяет её на радиаторы, в которых теплоноситель высвобождает тепло. Упрощённо системы водяного отопления представляют собой замкнутый контур, в котором, последовательно нагреваясь и охлаждаясь, циркулирует вода.

Во многих странах густонаселённые районы получают централизованное теплоснабжение на основе горячей воды. В этом случае циркулирующая вода может отбирать избыток тепла у крупных промышленных объектов - тепловых электростанций, установок для сжигания, химических и коксохимических заводов. Как правило, при такой схеме теплоснабжения потребители не имеют резервных способов обогрева зданий в связи с ожидаемо высокой доступностью тепла от систем центральногородского отопления.


Во многих странах наиболее распространен водяной тип отопления

Нагретым воздухом

Принудительное воздушное отопление использует воздух в качестве среды для теплопередачи. Основа этого способа - системы из воздуховодов, вентиляционных отверстий, клапанов, нагнетателей. Разница с обогревом при помощи кондиционеров заключается в том, что воздух забирается через обратные каналы и возвращается к центру его обработки для последующего нагрева. Основное различие между типами центрального воздушного отопления заключается в том, каким образом нагревается воздух. Но независимо от вида нагревательного оборудования, любая система состоит из следующих компонентов:

  • воздушного фильтра;
  • вентилятора;
  • теплообменника;
  • распределительных каналов;
  • элементов управления.

Принудительное воздушное отопление чаще встречается в Северной Америке. В России и странах Европы традиционным считается центральное отопление циркулирующей горячей водой.


В нашей стране центральное отопление горячей водой – традиционный тип отопления

Источники тепла

Применение того или иного первичного источника тепла обусловлено балансом затрат, удобства и эффективности, зависит от климата и доступности того или иного видов топлива. Стоимость энергии для отопления - один из основных расходов на эксплуатацию зданий в холодном климате. Некоторые отопительные установки имеют возможность смены видов топлива для экономии или из резервных соображений.


Одни из основных составляющих системы центрального теплоснабжения – трубы отопления

Печи с принудительным теплообменом

Большинство североамериканских домохозяйств использует печи для организации центрального отопления способом принудительного распределения тёплого воздуха. Внутри печи (газовой, на жидком или твёрдом топливе) пламя нагревает металлический теплообменник и передаёт тепло воздуху в нём. Последний выталкивается из теплообменника с помощью вентилятора, а затем нагнетается в помещения через подпотолочные воздуховоды.

Современные печи оснащаются оборудованием для рекуперации горячих сгоревших газов из дымохода путём возвращения их с помощью вентилятора в теплообменник. Это позволяет экономить до 30% топлива. Существуют также конденсационные печи, возвращающие бо́льшую часть тепла из несгоревших газов способом охлаждения паров воды до их конденсации.

Котельное оборудование

Котлов в системах центподготовленная вода. Распределительная система устраивается таким образом, чтобы нагретая жидкость проходила через линию радиаторов отопления , отдавая в них тепло, а затем, уже охлаждённой, стекала обратно в котёл. Как и в случае с печами, конденсационное и рекуперационное оборудование заметно повышает эффективность котлов.


Котельная – важнейший элемент системы центрального теплоснабжения

Тепловые насосы

Принципиально представляют собой двусторонние кондиционеры. В летнее время они работают, перемещая тепло из помещения в атмосферу, а в зимнее - наоборот. Есть два распространённых вида тепловых насосов: воздушные и геотермальные. Последние более эффективны - получают тепло из грунта, где даже на небольших глубинах температура более или менее постоянна в течение года.

Поскольку электричество в тепловых насосах используется для перемещения тепла, а не его генерации, эти устройства потребляют значительно меньше энергии, чем способны доставить. Полученное тепло распределяется от централизованного источника чаще всего по вентиляционным каналам вместе с нагретым воздухом. Подобные системы отопления актуальны для регионов с мягким климатом и незаменимы как нейтрально воздействующие на природу.


Тепловые насосы помогают доставлять тепло в отдаленные точки системы отопления

Текущее начало XXI века можно охарактеризовать как эпоху зелёных технологий и рационализации существующих ресурсов.

В этом смысле централизованное отопление по-прежнему актуально. Оно может предложить более безвредные для окружающей среды решения: гидротермальные системы, солнечные тепловые станции, экологически чистые комплексы газификации углеводородов.

Познавательная информация об устройте системы теплоснабжения изнутри представлена в видео:

, горячее водоснабжение) и технологических нужд потребителей. Различают местное и централизованное теплоснабжение. Местное теплоснабжение ориентировано на одно или несколько зданий, централизованое - на жилой или промышленный район. В России и Украине наибольшее значение приобрело централизованное теплоснабжение (в связи с этим термин «Теплоснабжение» чаще всего употребляется применительно к системам централизованного теплоснабжение). Его основные преимущества перед местным теплоснабжением - значительное снижение расхода топлива и эксплуатационных затрат (например, за счёт автоматизации котельных установок и повышения их КПД); возможность использования низкосортного топлива ; уменьшение степени загрязнения воздушного бассейна и улучшение санитарного состояния населённых мест.

Классификация теплоснабжения

Различают местное и централизованное теплоснабжение. Система местного теплоснабжения обслуживает одно или несколько зданий, система централизованного - жилой или промышленный район. Наибольшее значение приобрело централизованное теплоснабжение. Его основные преимущества перед местным теплоснабжением - значительное снижение расхода топлива и эксплуатационных затрат (например, за счёт автоматизации котельных установок и повышения их КПД); возможность использования низкосортного топлива; уменьшение степени загрязнения воздушного бассейна и улучшение санитарного состояния населённых мест.

В системах местного Теплоснабжение источниками тепла служат печи, водогрейные котлы, водонагреватели (в том числе солнечные) и т. п.

Система централизованного теплоснабжения

Система централизованного теплоснабжения включает источник тепла, тепловую сеть и теплопотребляющие установки, присоединяемые к сети через тепловые пункты. Источниками тепла при централизованном теплоснабжении могут быть теплоэлектроцентрали (ТЭЦ) , осуществляющие комбинированную выработку электрической и тепловой энергии ; котельные установки большой мощности, вырабатывающие только тепловую энергию; устройства для утилизации тепловых отходов промышленности; установки для использования тепла геотермальных источников. Теплоносителями в системах централизованного теплоснабжения обычно являются вода с температурой до 150 °С и пар под давлением 0,7-1,6 Мн/м 2 (7-16 ат). Вода служит в основном для покрытия коммунально-бытовых, а пар - технологических нагрузок. Выбор температуры и давления в системах теплоснабжения определяется требованиями потребителей и экономическими соображениями. С увеличением дальности транспортирования тепла возрастает экономически оправданное повышение параметров теплоносителя . Расстояние, на которое транспортируется тепло в современных системах централизованного теплоснабжения, достигает нескольких десятков км. Затраты условного топлива на единицу отпущенного потребителю тепла определяются в основном КПД источника теплоснабжения. Развитие систем теплоснабжения характеризуется повышением мощности источника тепла и единичных мощностей установленного оборудования. Тепловые мощности современных ТЭЦ достигают 2-4 Ткал/ч, районных котельных 300-500 Гкал/ч. В некоторых системах теплоснабжения осуществляется совместная работа нескольких источников тепла на общие тепловые сети, что повышает надёжность, манёвренность и экономичность теплоснабжения.

По схемам присоединения установок отопления

По схемам присоединения установок отопления различают зависимые и независимые системы теплоснабжения

В зависимых системах теплоноситель из тепловой сети поступает непосредственно в отопительные установки потребителей, в независимых - в промежуточный теплообменник, установленный в тепловом пункте, где он нагревает вторичный теплоноситель , циркулирующий в местной установке потребителя. В независимых системах установки потребителей гидравлически изолированы от тепловой сети. Такие системы применяются преимущественно в крупных городах - в целях повышения надёжности теплоснабжения, а также в тех случаях, когда режим давления в тепловой сети недопустим для тепло-потребляющих установок по условиям их прочности или же когда статическое давление , создаваемое последними, неприемлемо для тепловой сети (таковы, например, системы отопления высотных зданий).

По схемам присоединения установок горячего водоснабжения

В зависимости от схемы присоединения установок горячего водоснабжения различают закрытые и открытые системы теплоснабжения.

В закрытых системах на горячее водоснабжение поступает вода из водопровода , нагретая до требуемой температуры (обычно 0 °С) водой из тепловой сети в теплообменниках, установленных в тепловых пунктах. В открытых системах вода подаётся непосредственно из тепловой сети (непосредственный водоразбор). Утечка воды из-за неплотностей в системе, а также её расход на водоразбор компенсируются дополнительной подачей соответствующего количества воды в тепловую сеть. Для предотвращения коррозии и образования накипи на внутренней поверхности трубопровода вода, подаваемая в тепловую сеть, проходит водоподготовку и деаэрацию . В открытых системах вода должна также удовлетворять требованиям, предъявляемым к питьевой воде. Выбор системы определяется в основном наличием достаточного количества воды питьевого качества, её коррозионными и накипеобразующими свойствами.