Базовый уровень задание 19 и 20. Примеры заданий ЕГЭ

Среднее общее образование

Линия УМК Мерзляка. Алгебра и начала анализа (10-11) (У)

Линия УМК А. Г. Мерзляка. Алгебра и начала анализа (10-11) (Б)

Линия УМК Г. К. Муравина. Алгебра и начала математического анализа (10-11) (углуб.)

Линия УМК Г.К. Муравина, К.С. Муравина, О.В. Муравиной. Алгебра и начала математического анализа (10-11) (баз.)

ЕГЭ-2018 по математике, базовый уровень: задание 19

Вашему вниманию мы предлагаем разбор 19 задания ЕГЭ 2018 года по математике. Статья содержит подробный анализ задания, алгоритм решения и рекомендации актуальных пособий для подготовки к ЕГЭ, а также подборку материалов по математике, опубликованных ранее.

Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 11 класс. Базовый уровень

Учебник входит в УМК по математике для 10-11 классов, изучающих предмет на базовом уровне. Теоретический материал разделен на обязательный и дополнительный, система заданий дифференцирована по уровню сложности, каждый пункт главы завершается контрольными вопросами и заданиями, а каждая глава - домашней контрольной работой. В учебник включены темы проектов и сделаны ссылки на интернет-ресурсы.

Задание 19

На доске написано более 40, но менее 48 целых чисел. Среднее арифметическое этих чисел равно –3, среднее арифметическое всех положительных из них равно 4, а среднее арифметическое всех отрицательных из них равно –8.

а) Сколько чисел написано на доске?

б) Каких чисел написано больше: положительных или отрицательных?

в) Какое наибольшее количество положительных чисел может быть среди них?

Решение

А) Пусть среди написанных чисел

x – положительных

y – отрицательных

z – нулей

Тогда имеем, что

  • сумма положительных чисел равна 4x
  • сумма отрицательных чисел равна –8y
  • сумма всех чисел ряда 4x + (–8y ) + 0z = –3(x + y + z )

4(x – 2y + 0z ) = –3(x + y + z )

Т.к. левая часть равенства кратна 4, то и правая часть равенства должна быть кратна 4, значит

x + y + z (количество чисел) кратно 4.

40 < x + y + z < 48,

x + y + z = 44

Значит на доске написано 44 числа.

Б) Рассмотрим равенство 4x + (–8y ) + 0z = –3(x + y + z )

4x – 8y = – 3x – 3y – 3z

4x + 3x + 3z = 8y – 3y

7x + 3z = 5y

Отсюда получаем, т.к. z ≥ 0 (количество нулей в ряду)

7x < 5y

x < y

Значит положительных чисел меньше, чем отрицательных.

В) Т.к. x + y + z = 44,подставим это значение в равенство 4x + (–8y ) + 0z = –3(x + y + z ),

4x – 8y = (–3 · 44)/4

x – 2y = –33

x = 2y – 33

Учитывая, что x + y + z = 44, имеем x + y ≤ 44, подставим x = 2y – 33 в данное неравенство

2y – 33 +y ≤ 44

3y ≤ 77

y ≤ 25 2
3

y ≤ 25, учитывая, что x = 2y – 33 получаем x ≤ 17.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Приведите пример трёхзначного числа, сумма цифр которого равна 20, а сумма квадратов цифр делится на 3, но не делится на 9. Разложим число 20 на слагаемые различными способами: 1) 20 = 9 + 9 + 2 2) 20 = 9 + 8 + 3 3) 20 = 9 + 7 + 4 4) 20 = 9 + 6 + 5 5) 20 = 8 + 8 + 4 6) 20 = 8 + 7 + 5. Находим сумму квадратов в каждом разложении и проверяем, делится ли она на 3 и не делится на 9. При разложении способами (1)−(4) суммы квадратов чисел не делятся на 3. При разложении способом (5) сумма квадратов делится на 3 и на 9. Разложение способом (6) удовлетворяет условиям задачи. Ответ: например, числа 578 или 587 или 785 и т.д.

3 слайд

Описание слайда:

№ 2. Приведите пример трехзначного натурального числа, большего 600, которое при делении на 3, на 4 и на 5 даёт в остатке 1 и цифры которого расположены в порядке убывания слева направо. В ответе укажите ровно одно такое число. 600 делится на 3, 4 и 5. Число 601 дает в остатке 1 при делении на эти числа, но цифры в 601 не убывают. НОК=3*4*5=60 - делится на 3, 4 и 5. Проверяем число 600+60 =660. Оно делится на 3, 4 и 5, число с остатком 1 это 661, но цифры не убывают. Проверяем следующее 660+60= 720, оно делится на 3, 4 и 5. Число 721 дает в остатке 1 и цифры убывают. Ответ: 721.

4 слайд

Описание слайда:

№ 3. Приведите пример пятизначного числа, кратного 12, произведение цифр которого равно 40. В ответе укажите ровно одно такое число. Разложим 40 на 5 множителей: 40=5*2*2*2*1. Например, 51222. Т.к. число должно быть кратно 12, то оно должно делиться на 3 и 4. Сумма цифр равна 12, значит, оно делится на 3. Чтобы число делилось на 4, надо чтобы две последние цифры составили число, которое делится на 4. 22 не делится на 4, а 12 делится. Значит, в конце стоят цифры 1, 2. Варианты ответа: 52212, 25212, 22512.

5 слайд

Описание слайда:

№ 4. Вычеркните в числе 53164018 три цифры так, чтобы получившееся число делилось на 15. В ответе укажите ровно одно получившееся число 5 3 1 6 4 0 1 8 - цифры числа. Чтобы число делилось на 15, надо, чтобы оно делилось на 3 и на 5. Чтобы число делилось на 5, надо, чтобы оно оканчивалось на 0 или на 5. Вычеркнем 2 последние цифры. 5+3+1+6+4+0 = 19, значит надо вычеркнуть цифру 1 (сумма цифр будет 18), или 4 (сумма цифр будет 15). Варианты ответа: 53640 или 53160.

6 слайд

Описание слайда:

№ 5. Найдите трехзначное число большее 500 которое при делении на 4 на 5 и на 6 дает в остатке 2 и в записи которого есть только две различные цифры. В ответе укажите какое-нибудь одно такое число. Число которое делится на 4, 5 и 6 равно 60. Число больше 500 и кратное 60 это 540, 600, 660, 720, 780, 840, 900, 960. Чтобы при делении на 60 в остатке получить 2, надо к любому из этих чисел прибавить 2. Это может быть 662 или 722.

7 слайд

№ 7. Найдите трехзначное натуральное число, большее 400, но меньшее 650, которое делится на каждую свою цифру и все цифры которого различны и не равны нулю. В ответе укажите какое-нибудь одно такое число. Число начинается с цифры 4 (больше 400), значит оно должно делиться на 4. Второе число - 416. Оно делится и на 4. но не делиться на 6. Первое число - 412. Оно делится и на 4 и на 2 (четное число) Число делится на 4, если оканчивается на 00, или число, составленное из двух последних цифр данного числа, делится на 4. Еще число - 432. Оно делится и на 4, и на 3, и на 2. Варианты ответа: 412 или 432.

ЕГЭ по математике профильный уровень

Работа состоит из 19 заданий.
Часть 1:
8 заданий с кратким ответом базового уровня сложности.
Часть 2:
4 задания с кратким ответом
7 заданий с развернутым ответом высокого уровня сложности.

Время выполнения - 3 часа 55 минут.

Примеры заданий ЕГЭ

Решение заданий ЕГЭ по математике.

Для самостоятельного решения:

1 киловатт-час электроэнергии стоит 1 рубль 80 копеек.
Счетчик электроэнергии 1 ноября показывал 12625 киловатт-часов, а 1 декабря показывал 12802 киловатт-часа.
Какую сумму нужно заплатить за электроэнергию за ноябрь?
Ответ дайте в рублях.

В обменном пункте 1 гривна стоит 3 рубля 70 копеек.
Отдыхающие обменяли рубли на гривны и купили 3 кг помидоров по цене 4 гривны за 1 кг.
Во сколько рублей обошлась им эта покупка? Ответ округлите до целого числа.

Маша отправила SMS-сообщения с новогодними поздравлениями своим 16 друзьям.
Стоимость одного SMS-сообщения 1 рубль 30 копеек. Перед отправкой сообщения на счету у Маши было 30 рублей.
Сколько рублей останется у Маши после отправки всех сообщений?

В школе есть трехместные туристические палатки.
Какое наименьшее число палаток нужно взять в поход, в котором участвует 20 человек?

Поезд Новосибирск-Красноярск отправляется в 15:20, а прибывает в 4:20 на следующий день (время московское).
Сколько часов поезд находится в пути?


Решите уравнение:

1/cos 2 x + 3tgx - 5 = 0

Укажите корни,
принадлежащие отрезку (-п; п/2).

Решение:

1) Запишем уравнение так:

(tg 2 x +1) + 3tgx - 5 = 0

Tg 2 x + 3tgx - 4 = 0

tgx = 1 или tgx = -4.

Следовательно:

X = п/4 + пk или x = -arctg4 + пk.

Отрезку (-п; п/2)

Принадлежат корни -3п/4, -arctg4, п/4.

Ответ: -3п/4, -arctg4, п/4.

А знаете ли вы, что?

Если умножить ваш возраст на 7, затем умножить на 1443, то результатом будет ваш возраст написанный три раза подряд.

Мы считаем отрицательные числа чем-то естественным, но так было далеко не всегда. Впервые отрицательные числа были узаконены в Китае в III веке, но использовались лишь для исключительных случаев, так как считались, в общем, бесмыссленными. Чуть позднее отрицательные числа стали использоваться в Индии для обозначения долгов, но западнее они не прижились – знаменитый Диофант Александрийский утверждал, что уравнение 4x+20=0 – абсурдно.

Американский математик Джордж Данциг, будучи аспирантом университета, однажды опоздал на урок и принял написанные на доске уравнения за домашнее задание. Оно показалось ему сложнее обычного, но через несколько дней он смог его выполнить. Оказалось, что он решил две «нерешаемые» проблемы в статистике, над которыми бились многие учёные.

В русской математической литературе ноль не является натуральным числом, а в западной, наоборот, принадлежит ко множеству натуральных чисел.

Используемая нами десятичная система счисления возникла по причине того, что у человека на руках 10 пальцев. Способность к абстрактному счёту появилась у людей не сразу, а использовать для счёта именно пальцы оказалось удобнее всего. Цивилизация майя и независимо от них чукчи исторически использовали двадцатичную систему счисления, применяя пальцы не только рук, но и ног. В основе распространённых в древних Шумере и Вавилоне двенадцатеричной и шестидесятиричной систем тоже было использование рук: большим пальцем отсчитывались фаланги других пальцев ладони, число которых равно 12.

Одна знакомая дама просила Эйнштейна позвонить ей, но предупредила, что номер ее телефона очень сложно запомнить: - 24-361. Запомнили? Повторите! Удивленный Эйнштейн ответил: - Конечно, запомнил! Две дюжины и 19 в квадрате.

Стивен Хокинг - один из крупнейших физиков-теоретиков и популяризатор науки. В рассказе о себе Хокинг упомянул, что стал профессором математики, не получая никакого математического образования со времён средней школы. Когда Хокинг начал преподавать математику в Оксфорде, он читал учебник, опережая собственных студентов на две недели.

Максимальное число, которое можно записать римскими цифрами, не нарушая правил Шварцмана (правил записи римских цифр) - 3999 (MMMCMXCIX) - больше трех цифр подряд писать нельзя.

Известно много притч о том, как один человек предлагает другому расплатиться с ним за некоторую услугу следующим образом: на первую клетку шахматной доски тот положит одно рисовое зёрнышко, на вторую - два и так далее: на каждую следующую клетку вдвое больше, чем на предыдущую. В результате тот, кто расплачивается таким образом, непременно разоряется. Это неудивительно: подсчитано, что общий вес риса составит более 460 миллиардов тонн.

Во многих источниках, зачастую с целью ободрения плохо успевающих учеников, встречается утверждение, что Эйнштейн завалил в школе математику или, более того, вообще учился из рук вон плохо по всем предметам. На самом деле всё обстояло не так: Альберт ещё в раннем возрасте начал проявлять талант в математике и знал её далеко за пределами школьной программы.


ЕГЭ 2020 по математике задание 19 с решением

Демонстрационный вариант ЕГЭ 2020 по математике

ЕГЭ по математике 2020 в формате pdf Базовый уровень | Профильный уровень

Задания для подготовки к ЕГЭ по математике: базовый и профильный уровень с ответами и решением.

Математика: базовый | профильный 1-12 | | | | | | | | Главная

ЕГЭ 2020 по математике задание 19

ЕГЭ 2020 по математике профильный уровень задание 19 с решением



ЕГЭ по математике

Число P равно произведению 11 различных натуральных чисел, больших 1.
Какое наименьшее число натуральных делителей (включая единицу и само число) может иметь число P.

Любое натуральное число N представимо в виде произведения:

N = (p1 x k1) (p2 x k2) ... и т.д.,

Где p1, p2 и т.д. - простые числа,

А k1, k2 и т.д. - целые неотрицательные числа.

Например:

15 = (3 1) (5 1)

72 = 8 х 9 = (2 x 3) (3 2)

Так вот, общее количество натуральных делителей числа N равно

(k1 + 1) (k2 + 1) ...

Итак, по условию, P = N1 N2 ... N11, где
N1 = (p1 x k) (p2 x k) ...
N2 = (p1 x k) (p2 x k) ...
...,
а это значит, что
P = (p1 x (k + k + ... + k)) (p2 x (k + k + ... + k)) ...,

И общее количество натуральных делителей числа P равно

(k + k + ... + k + 1) (k + k + ... + k + 1) ...

Это выражение принимает минимальное значение, если все числа N1...N11 являются последовательными натуральными степенями одного и того же простого числа, начиная с 1: N1 = p, N2 = p 2 , ... N11 = p 1 1.

То есть, например,
N1 = 2 1 = 2,
N2 = 2 2 = 4,
N3 = 2 3 = 8,
...
N11 = 2 1 1 = 2048.

Тогда количество натуральных делителей числа P равно
1 + (1 + 2 + 3 + ... + 11) = 67.


ЕГЭ по математике

Найдите все натуральные числа,
не представимые в виде суммы двух взаимно простых чисел, отличных от 1.

Решение:

Каждое натуральное число может быть либо четным (2 k), либо нечетным (2 k+1).

1. Если число нечетное:
n = 2 k+1 = (k)+(k+1). Числа k и k+1 всегда взаимно простые

(если есть некоторое число d, являющееся делителем x и y, то число |x-y| тоже должно делиться на d. (k+1)-(k) = 1, то есть 1 должно делиться на d, то есть d=1, а это и есть доказательство взаимной простоты)

То есть мы доказали, что все нечетные числа могут быть представлены в виде суммы двух взаимно простых.
Исключением по условию будут являться числа 1 и 3, поскольку 1 вообще нельзя представить в виде суммы натуральных, а 3 = 2+1 и никак иначе, а единица в качестве слагаемого не подходит по условию.

2. Если число четное:
n = 2 k
Тут придется рассмотреть два случая:

2.1. k - четное, т.е. представимое в виде k = 2 m.
Тогда n = 4 m = (2 m+1)+(2 m-1).
Числа (2 m+1) и (2 m-1) могут иметь общий делитель только такой (см. выше), на который делится число (2 m+1)-(2 m-1) = 2. 2 делится на 1 и 2.
Но если делитель равен 2, то получается, что нечетное число 2 m+1 должно делиться на 2. Этого не может быть, поэтому остается только 1.

Так мы доказали, что все числа вида 4 m (то есть кратные 4) тоже могут быть представлены в виде суммы двух взаимно простых.
Тут исключение - число 4 (m=1), которое хотя и может быть представлено в виде 1+3, но единица в качестве слагаемого нам по-прежнему не подходит.

2.1. k - нечетное, т.е. представимое в виде k = 2 m-1.
Тогда n = 2 (2 m-1) = 4 m-2 = (2 m-3)+(2 m+1)
Числа (2 m-3) и (2 m+1) могут иметь общий делитель, на который делится число 4. То есть либо 1, либо 2, либо 4. Но ни 2, ни 4 не годятся, поскольку (2 m+1) - число нечетное, и ни на 2, ни на 4 делиться не может.

Так мы доказали, что все числа вида 4 m-2 (то есть все кратные 2, но не кратные 4) тоже могут быть представлены в виде суммы двух взаимно простых.
Тут исключения - числа 2 (m=1) и 6 (m=2), у которых одно из слагаемых в разложении на пару взаимно простых равно единице.

Задание №19 из базового ЕГЭ по математикеmathvideourok.moy.su

Признаки делимости на 2 и 4:

Число делится на 2, если оно заканчивается четной
цифрой или нулём.
Числа 2346 и 3650 - делятся на 2. Число 4521 - не
делится на 2.
Число делится на 4, если две последние его
цифры нули или образуют число, делящееся на 4. В

Числа 31700 и 16608 -делятся на 4. 215634 – не
делится на 4.

Признаки делимости на 3 и 9:

На 3 делятся только те числа, у которых сумма
цифр делится на 3.
Числа 17835 и 5472 – делятся на 3. Число 105499 – не
делится на 3.
На 9 делятся только те числа, у которых сумма
цифр делится на 9.
Числа 2376 и 342000 – делятся на 9. Число 106499 – не
делится на 9.

Признаки делимости на 8 и 6:

Число делится на 8, если три последние цифры его
нули или образуют число, делящееся на 8. В
остальных случаях - не делится.
Числа 125000 и 111120 – делятся на 8. Числа 170004 и
124300 – не делятся на 8.
Число делится на 6, если оно делится одновременно
на 2 и на 3. В противном случае - не делится.
Числа 126 и 254610 – делятся на 6. Числа 3585 и 6574 не делятся на 6.

Признаки делимости на 5 и 25:

На 5 делятся числа, последняя цифра которых 0
или 5. Другие - не делятся.
Числа 245 и 56780 – делятся на 5. Числа 451 и 678 – не
делятся на 5.
На 25 делятся числа, две последние цифры которых
нули или образуют число, делящееся на 25 (т. е.
числа, оканчивающиеся на 00, 25, 50 или 75). Другие
не делятся.
Числа 7150 и 345600 – делятся на 25. Число 56755 – не
делится на 25.

Признаки делимости на 10, 100 и 1000:

На 10 делятся только те числа, последняя цифра
которых нуль, на 100 - только те числа, у которых
две последние цифры нули, на 1000 - только те, у
которых три последние цифры нули.
Число 34680 – делится на 10. Число 56700 – делится на
100 и на 10. Число 87549000 - делится на 10, 100 и 1000.
Числа 75864, 7776539 и 9864032 – не делятся на 10, 100 и
1000.

Признак делимости на 11:

На 11 делятся только те числа, у которых сумма цифр,
занимающих нечетные места, либо равна сумме цифр,
занимающих четные места, либо разнится от нее на число,
делящееся на 11.
Число 103785 делится на 11, так как сумма цифр, занимающих
нечетные места, 1+3+8=12 равна сумме цифр, занимающих четные
места 0+7+5=12.
Число 9163627 делится на 11, так как сумма цифр, занимающих
нечетные места, есть 9 + 6 + 6 + 7 = 28, а сумма цифр, занимающих
четные места, есть 1 + 3 +2 =6; разность между числами 28 и 6 есть
22, а это число делится на 11.
Число 461025 не делится на 11, так как числа 4+ 1 + 2 = 7 и б +0 +
5=11 не равны друг другу, а их разность 11 -7 = 4 на 11 не делится.