Автоматика отключения насоса по уровню. Герконовые датчики уровня воды для автоматического управления насосом. Установка погружного насоса и подключение его к автоматике

Недавно наткнулся в интернете на один видеоролик, где воплотили мою детскую мечту в реальность На видео продемонстрировали, как можно собрать устройство автоматического наполнения емкости водой. Всю работу очень наглядно продемонстрировали, однако схему не показали.

Дело в том, что в детстве в летнее время мне часто приходилось поливать огород и у меня всегда появлялись идеи по автоматизации данного процесса, но воплотить в реальность свои мысли так и не получилось. Сегодня я исполню часть своей мечты, правда, пока только теоретически.

Представим такую ситуацию: у вас на даче или дома есть емкость с водой, для полива огорода или еще для каких-то целей. В эту емкость вы закачиваете воду с помощью насоса. Чтобы закачать воду, каждый раз приходится включать насос и следить пока емкость не заполнится водой. Заполнение емкости водой можно очень легко и достаточно дешево автоматизировать.

Ниже представлена структурная картинка нашего устройства.

Для автоматизации наполнения емкости водой нам придется немного доработать емкость. На верхней части бочки устанавливается стержень высотой не менее глубины емкости, на котором закрепляются два геркона. К стержню также крепится подвижный шток с поплавком, который перемещается в зависимости от уровня воды в емкости. На штоке закреплен постоянный магнит, для управления герконами.

На следующей картинке можно увидеть пример выполнения стержня и подвижного штока.

А сейчас самое интересное: схема автоматического наполнения емкости водой.

Для реализации данного устройства нам понадобится автоматический выключатель для защиты насоса, электромагнитный контактор для включения и отключения насоса и два геркона (контакт магнитоуправляемый герметизированный) для управления контактором.

Нижний геркон должен быть замыкающий, верхний – размыкающий. К примеру, нам вполне подойдет геркон МКС-27103, т.к. он имеет переключающий контакт. Для сигнализации нижнего уровня в схеме используется нормально разомкнутый контакт, для сигнализации верхнего уровня – нормально замкнутый контакт геркона. В момент когда уровень воды в емкости достигнет критического значения, магнит расположится в одном уровне с нижним герконом, который под действием магнитного поля переключит контакт и тем самым отправит сигнал на включение насоса. После этого поплавок начнет подниматься до верхнего уровня, где верхний геркон отключит насос.

В данной схеме не реализован ручной режим, хотя следовало бы предусмотреть на случай выхода из строя наших уровнемеров. Проще всего взять кнопку с фиксацией для ручного управления насосом. Я думаю, как включить кнопку в полученную схему, у вас не составит труда.

Разумеется можно купить готовые уровнемеры и не изобретать велосипед, тем боле что промышленностью они выпускаются. Однако, один такой уровнемер вам обойдется не менее 30$, а один геркон МКС-27103 стоит 2-3$.

Вот так можно сделать автоматическое наполнение емкости водой. Еще у меня идея была, чтобы с этой емкости вода уходила на полив (например помидоров, огурцов) через дренажные трубки. Возможно в теплицах так и делают.

Надеюсь и у меня когда-нибудь появится дача, где я смогу воплотить полностью свою мечту, не потому что я люблю в огороде копаться, просто я люблю, чтобы за меня другие работали, я имею ввиду устройства

Уверен, что многим нужен простой, надёжный и лёгкий в изготовлении блок управления водяным насосом . Предлагаю схему, которой в этом плане трудно найти равную, к тому же при самостоятельном изготовлении устройство обойдётся почти даром, так как не содержит дефицитных деталей, и все нужные детали обычно имеются в наличии. Магазинный же аналог данного блока «тянет» не на одну сотню рублей. Отмечу также, подобное устройство может работать и в системе водозабора, когда насос наполняет какую-либо емкость, и в дренажных системах при откачке воды из резервуара по мере его наполнения.

Простое устройство для управления водяным насосом - самодельный блок управления насосом

Схема устройства представлена на рис. 1. О деталях схемы мы поговорим ниже, а пока познакомимся с принципом действия датчиков уровня.


На рис. 2 приведена схема датчика для металлической емкости. Особенность ее состоит в том, что здесь один провод подключен непосредственно к баку, в результате уменьшается (на один) число необходимых проводов. Чувствительные элементы датчика - два штыря (электрода) из нержавеющей проволоки. У датчика для неметаллической емкости - две пары пластин (рис. З.), о конструкции которых будет рассказано ниже.

Принцип действия устройства для управления водяным насосом довольно прост. Рассмотрим случай водозабора в металлический бак, в котором установлен датчик из двух штырей (см. рис. 2). Для наглядности контакты К 1.3 реле К1, приведенного на схеме на рис. 1, нарисованы рядом с баком, на самом деле они, конечно, находятся внутри реле и подключены к датчикам проводами.

Пока воды нет, контакта между корпусом бака и электродом F1 не будет, следовательно, на управляющий электрод тиристора VS1 напряжение не подается, и он закрыт, реле К1 обесточено и его контакт К1.3 разомкнут, а контакты К1.1 и К1.2 замкнуты. Когда вода поднимается до штыря F1, то между ним и корпусом бака пойдёт ток, достаточный для того, чтобы открыть тиристор VS1. В результате сработает реле К, которое отключит насос, разомкнув контакты К1.1 и К1.2. Кроме этого, реле замкнет К1.3 и тем самым «удлинит» штырь F1, подключив к нему штырь F2, что обеспечит необходимый рабочий объём в баке, а значит, нормальную работу всей системы управления. Регулируемый объём воды, понятно, будет зависеть от разницы уровней нижних концов штырей F1 и F2. Этот объем желательно предусмотреть побольше, тогда насос станет реже включаться. Насос будет обесточен, пока вода не опустится ниже штыря F2, после чего насос снова включится и весь цикл заполнения бака повторится.

Для периодической откачки воды из резервуара (дренажа) потребуется у реле К1 заменить нормально замкнутые контакты К1.1 и К1.2 на нормально разомкнутые, как показано на рис. 4, при этом остальная часть схемы не изменяется.

Важное преимущество этой схемы состоит в том, что через контакты датчиков идёт переменный ток. Ведь при постоянном токе контакты корродируют, что приводит к нестабильной работе и даже полному отказу системы. На переменном же токе, как показывает практика, такие устройства работают безотказно.

Теперь о деталях. Трансформатор Т1 - сетевой, маломощный, подойдет и малогабаритный. Обмотка I - сетевая, на 220 В. Напряжение на вторичной обмотке II примерно вдвое больше знамения постоянного рабочего напряжения реле. Например, если обмотка реле рассчитана на постоянное напряжение 24 В, на вторичной обмотке II должно быть 48 В (на практике 40...50 В). Если реле греется, то последовательно с ним необходимо включать гасящий резистор, его сопротивление подбирается опытным путем. При этом напряжение как на обмотке II, так и на обмотке III не должно превышать безопасной границы в 70 В, так как в случае пробоя тиристора и диодов оно может оказаться на электродах.

Напряжение на вторичной обмотке III (5...30 В) определяется имеющейся у трансформатора обмоткой.

Если есть возможность, то попытайтесь отмотать часть витков от имеющейся второй вторичной обмотки или намотать новую (примерно 20...40 витков) из почти любого провода. Обязательно предусмотрите надежную изоляционную прокладку (из фторопласта, стеклоткани, ПВХ, ткани, пропитанной лаком), отделяющую вторичную обмотку от сетевой, чтобы на электроды не попало опасное напряжение 220 В.

Тиристор VS1 - типа КУ201 или КУ202 с буквенными индексами Д, Е, Ж, И, К и Л. При напряжении на вторичной обмотке III меньше 50 В подойдут также тиристоры с буквенный индексами В, Г, при напряжении менее 25 В - с индексами А и Б.

Резистор R1 ограничивает управляющий ток тиристора, обезопасивая его от сгорания при замыкании электродов датчиков. При напряжении на вторичной обмотке III менее 20 В резистор не нужен и его заменяют перемычкой, а вообще сопротивление резистора должно быть таким, чтобы при замыкании электродов датчиков ток, проходящий через управляющий электрод тиристора, был меньше предельно допустимого для этого тиристора. При увеличении напряжения на вторичной обмотке III сопротивление R1 пропорционально увеличивают по сравнению с номиналом, приведённым на схеме, при этом отклонение допустимо примерно на 40%.

Реле К1 подбирают в соответствии с напряжением на вторичной обмотке II (8...30 В), контакты реле должны быть рассчитаны на 220 В и ток вашего . Например, для центробежного насоса мощностью 500 Вт контакты обязаны выдерживать ток более 2 А.

В качестве реле К1 подойдут РЭС 22 (24 В), РП21 (24 В) и др. Если нет реле, имеющего нужные замкнутые и разомкнутые группы, разрешается применить два и даже три параллельно включенных реле. В этом случае подойдут РЭС6, разные автомобильные реле и др. с подходящими контактами. При использовании автомобильного реле, возможно, потребуется большая мощность трансформатора. Диодный мост VD1 - любая сборка, например КЦ401. Для этого места подойдут диоды Д226, Д7, КД105, Д522 и пр. (ток моста не превышает 20 мА).

Электроды - штыри (см. рис. 2) устанавливают на изоляторах. Электроды датчиков, приведенных на рис. 5, сделаны из бритвенных лезвий с хромовым покрытием, укрепленных на П-образной пластине из диэлектрика: полиэтилена, ПХВ, фторопласта, оргстекла. Лезвия крепят любым способом, провода к ним припаивают с кислотным флюсом, пайку желательно защитить лаком.

Датчики устанавливают в емкости на нужном уровне. Зазор между электродами зависит от свойств воды и может потребовать подгонки. Он должен быть таким, чтобы при погружении электродов в воду реле чётко срабатывало. Это относится и к штыревым электродам.

Если вы по финансовым соображениям или по каким-то другим не хотите приобретать готовое устройство управления насосом, то вам поможет набор "Мастер КИТ NF250", который позволяет собрать простое электронное устройство для поддержания в накопительном баке необходимого уровня воды.

Принцип работы "умного помощника" следующий. Когда уровень воды в душевом баке падает ниже определённого уровня "L", насос включается и начинает закачивать воду в ёмкость. Когда уровень воды достигает заданного уровня "Н", устройство отключает насос (рис. 1). Общий вид устройства показан на рис.2.

Рис. 1. Принцип работы устройства для управления дачным насосом.


Рис. 2. Общий вид устройства.


Рис. 3. Схема электрическая принципиальная.

Технические характеристики устройства
Напряжение питания, В - 12
Ток в режиме покоя, мА - 1
Ток в режиме срабатывания реле, мА Коммутируемая мощность, Вт - 1300
Размеры печатной платы, мм - 61x41
Схема электрическая принципиальная приведена на рис.3.

Принцип действия

Вода обладает электрической проводимостью. Пока в ёмкости нет воды, транзисторы Т1 и Т2 закрыты, на коллекторе транзистора Т1 присутствует высокое напряжение. Данное высокое напряжение, поступая через диод D1 на базу транзистора ТЗ, открывает его и транзистор Т4, что приводит к включению исполнительного реле, к силовым контактам которого подсоединён насос.

Насос начинает качать воду в ёмкость. Светодиод LED при этом включается, индицируя работу насоса. Когда уровень воды достигает датчика "L", транзистор Т1 открывается, напряжение на его коллекторе пропадает. Однако насос продолжает работать, потому что на базу транзистора ТЗ подается напряжение через резистор R8 и поддерживает ключ ТЗ-Т4 в открытом состоянии.

Когда уровень воды достигает датчика "Н", транзистор Т2 открывается и на базу транзистора ТЗ поступает низкий уровень. Ключ ТЗ-Т4 закрывается - реле выключается. Лишь когда уровень воды вновь опустится ниже уровня "L", реле включится опять.
Перечень элементов приведен в таблице.


Рис. 4. Внешний вид печатной платы со стороны деталей и со стороны токопроводящих дорожек.

Конструкция

Конструктивно устройство выполнено на печатной плате из фольгированного стеклотекстолита размерами 61x41 мм (рис. 4). В качестве датчиков "L" и "Н" можно использовать подручные материалы, например, медные водопроводные полдюймовые гайки, прочно прикреплённые к изолированным проводам.

Включение устройства

Подключите к плате провода датчиков и расположите их в экспериментальной ёмкости такой же высоты, как и используемый бак таким образом, чтобы соответствовали положения:
"COM" - на дне (если ёмкость - железная, то можно соединить этот провод с корпусом ёмкости);
"L" - на желаемом нижнем уровне воды (уровне включения насоса),
"Н" - на уровне отключения насоса.

Подключите устройство к источнику питания, соблюдая полярность. Сетевое напряжение и насос пока не подключайте. Включите питание. Должен загореться индикаторный светодиод и "щелкнуть" реле, подключив насос. Наливайте воду в емкость. Когда уровень воды достигнет датчика "Н", реле должно отключиться. Выливайте воду из емкости. Когда уровень воды опустится чуть ниже датчика "L", реле должно включиться.

Теперь можно окончательно смонтировать датчики на реальном объекте и, соблюдая осторожность, подключить к контактам схемы 220 В и насос.

Ю. САДИКОВ, Москва

Евгений 2016-05-01 21:43:00

В схеме где то делся R8 ?!


[Ответить] [Ответить с цитатой] [Отменить ответ]
Виталий
На изготовление блока управления насосом подтолкнула неидеальность нашего деревенского ЖКХ - а именно проблема с водоснабжением. То трубы у них прорывает, то насос на насосной сгорает и так далее. В результате этого у дома пробурена скважина и помещен в нее вибрационный насос типа «Малыш», а в подвале дома установлены емкость из нержавейки на 250л и компрессорная станция, поддерживающая давление в водопроводе дома. Но возникла проблема – поддерживать уровень воды в емкости. В Интернете ничего понравившееся не нашел и стал делать прибор под свои запросы. Стал искать датчики уровня и нашёл вот такие (см. фото датчика).

В качестве варианта управления насосом в скважине решил придумать что-то на контроллере, а заодно немного освоить, так как была нужна многорежимность. За основу был взят микроконтроллер ATtiy2313 и разработана такая вот схема (для лучшего качества смотрите вложение в формате splan7). Схема управления насосом:


Писалась на ассемблере, скачать можно здесь в архиве. Данная схема позволяет управлять насосом в 3-х режимах (выбираются кнопкой «Режим»):
1) Режим «Баня» - включение насоса от кнопки «Вкл/Выкл» - это для того, чтобы заливать воду напрямую из скважины в баню, ну или машину помыть.
2) Режим «Лето» - поддержание уровня воды в емкости с использование датчиков уровня (при достижении уровня контакты датчика замыкаются)
3) Режим «Зима» - долив воды (кнопка Вкл/Выкл) в емкость до уровня «Max» при уровне ниже «Min». Режим введен для того, что при зимних морозах вода в шланге замерзает и, чтобы включить насос в скважине, шланг надо сначала разморозить горячей водой.


Дисплей прикрутил из соображений удобности, сначала хотел светодиоды, но домашним не объяснишь какой огонек что значит, памяти не хватит). На первой строке дисплея выводится информация с названием режима, на второй – такая информация как «Работает насос», «Насос отключен» и «Уровень минимум» для зимнего режима. В итоге собранное устройство управления насосом выглядит следующим образом:


Для удобности добавил включение подсветки дисплея примерно на 8 секунд при нажатии любой кнопки. Питание 12 вольт и реле-повторители особо здесь не нужны. Установил их из-за большой длины кабелей (почти 15 метров) до датчиков уровня. Автор схемы: skateman.

Обсудить статью УПРАВЛЕНИЕ НАСОСОМ