Автоматическое включение и выключение ближнего света. Как самостоятельно сделать автоматическое включение ближнего света фар на своём автомобиле

Найдите органы управления фарами. Место расположения будет разниться в зависимости от марки автомобиля, но существует несколько общепринятых мест размещения элементов управления. Обратите внимание на приборную панель или рычаг управления возле рулевого колеса.

  • Некоторые производители помещают отдельную панель управления фарами непосредственно под торпедой слева от водителя. Чаще всего такое исполнение встречается в больших авто с большей площадью торпеды. Найдите небольшую панель с поворотной ручкой. Стандартные символы индикатора фонарей должны располагаться на разном расстоянии по кругу.
  • Другие производители размещают элементы управления фарами на рычагах, прикрепленных к основанию рулевого колеса. Рычаг может располагаться слева или справа от руля, а поворотная ручка управления фарами будет находиться ближе к краю рычага. Такая ручка управления фарами будет иметь стандартные символы.

Найдите положение «ВЫКЛ». По умолчанию элемент управления фарами установлен в положение «ВЫКЛ». Обратите внимание на символ, обозначающий это положение, а также на его положение на ручке, чтобы в нужное время вы смогли отключить фары.

  • Положение «ВЫКЛ» обычно располагается в крайней левой стороне или в нижней части поворотной ручки. В качестве символа используется открытый или незаштрихованный круг.
  • Сегодня многие транспортные средства оснащаются «габаритными огнями», которые автоматически включаются при включении двигателя и выключении основных фар. Если при выключенных передних фарах вы все равно видите свет в передней части автомобиля, то это должны быть габаритные огни.
  • Всегда отключайте фары перед отключением двигателя. Если они останутся включенными при выключенном двигателе, то произойдет разрядка аккумулятора, после чего вы не сможете завести двигатель. Если вы забудете выключить фары и полностью разрядите аккумулятор, то завести машину вы сможете лишь толчком или от чужого аккумулятора.
  • Переключите ручку на правильный символ. Зажмите поворотную ручку управления между большим и указательным пальцами и поворачивайте до нужного положения. Положения обозначены разными символами, при этом вы должны ощущать щелчки при переключении разных положений.

  • Практическая проверка. При наличии сомнений проверьте опытным путем, как ваш автомобиль реагирует на переключение ручки в разные положения.

    • Если у вас есть помощник, попросите его или ее постоять перед машиной. Откройте окно, чтобы вы могли слышать помощника, затем переключайте поворотную ручку в разные положения. После каждого положения делайте паузу и спрашивайте помощника о том, какой свет включен.
    • Если у вас нет помощника, то припаркуйтесь возле гаража, стены или другого строения. Затем переводите поворотную ручку в разные положения и смотрите, как свет будет отражаться на поверхности перед вами. Вы сможете определить все положения по яркости отражаемого света.
  • Правильное использование света. Фары следует включать при низкой видимости. Если вы не можете рассмотреть участок дороги на расстоянии 150-300 метров перед вами, то пора включить фары.

    • Ночью фары всегда должны быть включены. При плотном движении используйте ближний свет, а в остальных случаях – дальний свет.
    • Также включайте фары на рассвете и в сумерках. Даже несмотря на некоторое естественное освещение, темные тени от зданий и других сооружений могут помешать увидеть другие транспортные средства. В эти часы необходимо включать как минимум ближний свет.
    • Включайте противотуманные фары в плохую погоду: дождь, снегопад, туман или пыльные бури. Не включайте дальний свет, поскольку в таких условиях отражение и яркость дальнего света фар может ослепить других водителей.
  • Управление освещением с помощью автоматических выключателей давно стало привычным действием в жизни каждого человека. Такое управление простое в установке и использовании.

    Нередко возникают ситуации, когда кто-то может забыть выключить освещение на улице или в доме. В результате тратится напрасно электроэнергия и повышается пожарная опасность. Это связано с человеческим фактором, который переменчив и приводит к таким последствиям. Но есть и автоматическое выключение света, которое полностью может контролировать подачу питания при подключении датчика в цепь.

    Автоматическое включение света в квартире и доме

    В зависимости от места установки, можно выбрать несколько принципов работы этих устройств. Они могут реагировать:

    • На хлопок ладонями или просто на шум.
    • На передвижение людей или предметов в помещении.
    • На степень освещённости .

    Все они могут комбинироваться между собой и работать в одной цепи, что позволяет освещение контролировать сразу несколькими способами.

    Чтобы контролировать освещение в комнатах, помогут два вида датчиков. Для ванной комнаты чаще всего используют датчики движения для контроля света. К примеру, если кто-то заходит, то устройство включает питание лампы, а при выходе через минуту, когда движения нет, освещение отключается.

    Особенности работы датчиков

    Регистратор перемещений постоянно сканирует помещение на наличие в нём инфракрасных лучей. Как только они появляются, то происходит мгновенное срабатывание. Во время длительного нахождения человека в комнате, идёт постоянное сканирование пространства датчиком присутствия, который намного чувствительнее датчика движения.

    Он способен различить малейшие перемещения, которые всё равно происходят. В этом ему помогает большое количество линз, постоянно собирающих информацию и подающих её на центральный оптический элемент.

    Умный выключатель света также может работать от хлопка ладонями. Для этого в нём установлен микрофон с высокой избирательностью, который способен различить характерный звук от остальных. Также есть варианты автоматики, которая анализирует полученный спектр с записанным в нём фрагментом. Такое исполнение позволит управлять светом при помощи определённого слова, звука или других шумов.

    Умные выключатели для уличного освещения

    Как правило, на улице используют автоматический выключатель света с фотодатчиком, который реагирует на уровень освещения. Он способен с наступлением сумерек включить освещение и когда утром начнёт светать снова, включить его. Он полностью автономный и требует лишь одноразовой установки и настройки.

    Иногда нужно автоматизировать освещение в коридоре или лестничной площадке. Для этой цели идеально подойдёт датчик движения, который на время прохода человеком пространства подсветит путь.

    Для работы датчик света использует фотоэлемент, который чувствителен к окружающему уровню освещения. Его можно настроить на определённые уровни срабатывания. Это может быть наступление полной темноты или незначительное затемнение. Также этот датчик с успехом используется в комбинации с регистратором движения.

    В результате получается, что в ночное время суток если появится движение возле датчика, то зажжётся освещение. В дневное время срабатыванию будет мешать закрытый датчик освещения.

    Для правильной установки датчика освещения необходимо установить его в нейтральной зоне, где на него не будет падать свет от лампы. Также желательно чтобы он не был в тени деревьев или других объектов. Так как он должен быть установлен на открытом воздухе, то его степень защиты должна обеспечивать стандарт не ниже IP44.

    При управлении сразу несколькими потребителями электричества, нужно проверить суммарную нагрузку, которая проходит через датчик. Если она превышает номинальную мощность, то потребуются специальные контроллеры для приёма сигнала с датчика, которые и будут регулировать освещение.

    Выключатели для умного дома служат повышению комфортного пользования освещением, которое автоматически регулируется в зависимости от установленных датчиков. При комбинации нескольких из них в одной цепи, получается гибкая система по управлению освещением.

    Стоит заметить, что помимо управления лампочками, такие датчики с успехом могут включать питание вентиляции, кондиционера, отопления или других приборов в зависимости от требования пользователя.

    Итак, поскольку постоянно забываю включать, а что ещё хуже – выключать ближний свет, я решил попробовать автоматизировать этот процесс. Обычные реле, продающиеся в магазине меня не устраивали тем, что свет либо включается сразу после включения зажигания/запуска ДВС, либо после достижения определённого напряжения, а напряжение как известно – вещь непостоянная.

    Поэтому реле использовал стандартное пятиконтактное, т.к. четырёхконтактного нормально-замкнутого не нашёл. К выводу «30» реле подключаем провод, соединённый с красным спаренным проводом от фишки замка зажигания, который включает втягивающее реле стартера. К выводу «86» цепляем провод с фишки лампочки генератора. Вывод «85» - масса. К выводу «87а» подключаем зелёный провод с кнопки включения наружного освещения. К выводу «87» ничего не подключаем.

    Принцип работы:
    Зажигание выключено – на реле нет напряжения и фары не горят.
    Зажигание включено – на лампе генератора минус и фары не горят.
    Запуск ДВС – на лампе появился плюс, но плюс появился и на втягивающем стартера, релюха разомкнута и фары не горят.
    ДВС заработал, отпускаем стартер, реле замыкается и т.к. на лампе генератора плюс, этот плюс идёт на трёхрычажный переключатель света. Ну, собственно схема:

    То есть фары загораются только тогда, когда запущен двигатель и выключен стартер. Это особенно актуально зимой, т.к. чем меньше лишних потребителей во время запуска двигателя – тем больше шансов завестись.
    Переключение света в подрулевом трёхрычажном переключателе происходит следующим образом: 0 – фары выключены, 1 – горит ближний свет, 2 – горит дальний.

    Вот фото реализации:

    Габариты включаются отдельно кнопкой включения наружного освещения. Про габариты я рассудил так: они нужны только ночью, а ночью их включить 100% не забудешь, потому что как только стемнеет, станет невидно показания приборов. Забыть выключить тоже можно только по очень большой запарке, т.к. гарящие габариты ночью сразу бросятся в глаза. Можно сделать чтобы габариты выключались автоматически, но это лишние реле и лишние провода. ИМХО это ни к чему.
    Такую схему считаю практически идеальной. Единственное что хотелось бы улучшить – это чтобы ближний горел и в нулевом и в первом положениях подрулевого переключателя. Но тогда нужна дополнительная релюха, чтобы при переключении на дальний гас ближний и ещё принудительное отключение фар с кнопки или ручника.

    Изменения в ПДД, внесенные в ноябре 2010 года, обязывают водителя транспортного средства включать дневные ходовые огни, либо ближний свет фар, либо противотуманные фары независимо от времени суток и условий видимости.

    Данное устройство будет хорошим дополнением для тех транспортных средств, которые не оснащены системой автоматического включения ближнего света фар. Приведенная в данной статье схема предназначена для автоматического включения фар при запуске двигателя автомобиля. Как известно, работающий генератор создает напряжение в бортовой сети в районе 14…14,4 В, и это выше чем напряжение аккумулятора (12В).

    Схема автомата отслеживает напряжение в сети автомобиля, и если оно превысит 13,2 В, то через примерно 1 секунду активирует два реле. Первое реле служит для питания габаритных огней и приборной панели, второе служит для дневных ходовых огней или ближний свет фар. После выключения двигателя освещение отключается.

    Принципиальная схема приведена ниже. Компаратора DD1.1 () сравнивает опорное напряжение, поступающее от стабилитрона на 5,6 В (VD2) с напряжением поступающим с R1, R2, R3. R3 используется для точной настройки, чтобы автомат реагировал на входное напряжение в диапазоне 13,2…13,3.

    Резистор R5 между выходом компаратора и неинвертирующим входом вносит положительно обратную связь, обеспечивая работу компаратора с гистерезисом. Чтобы состояние компаратора снова изменилось, необходимо чтобы напряжение снизилось ниже 10,6 В.

    Таким образом, нет никакого опасения, что в результате какой-либо большой нагрузки на бортовую сеть автомобиля свет фар отключиться. Это произойдет только после выключения зажигания, или, например, в момент попытки запуска двигателя стартером.

    Цепь из элементов R6, C3 отвечает за задержку включения фар после запуска двигателя. Для указанных значений задержка составляет примерно 1 секунду. Для реализации этой задержки предназначен второй компаратор DD1.2. Он сравнивает напряжение на конденсаторе C3 с опорным напряжением, полученным со стабилитрона VD2.

    К выходу компаратора DD1.2 подключен транзистор, который управляет выходным реле. К катушкам реле, параллельно в обратном направлении, подключены диоды VD3 и VD4, защищающие транзистор от всплесков напряжения в момент выключения реле. Диод VD1 защищает от ошибки подключения питания (переплюсовки). Нагрузочная способность схемы зависит от примененных реле.

    Для настройки устройства необходим регулируемый блок питания или источник напряжения 13,2 В. Переведите потенциометр R3 в крайнее левое положение. Затем падаем питание 13,2 В. Постепенно вращаем потенциометр R3 право до тех пор, пока не услышим включение реле. Затем уменьшаем напряжение и при этом реле должно отключиться. Снова повышаем напряжение для проверки. Правильно отрегулированная схема должна включаться при напряжении 13,2…13,4 В.

    Работа данной схемы проверена в Proteus:

    (12,6 Kb, скачано: 441)

    Провода от реле должны иметь минимум 1 мм 2 сечения. Стоит дополнительно установить на корпус выключатель питания, чтобы в некоторых случаях иметь возможность отключения автомата.

    Небольшим недостатком данной схемы является тот факт, что фары ближнего света будут находиться во включенном состоянии и при переключении дальнего света. Такая работа лампы не рекомендуется и значительно уменьшает ее срок службы. Отсюда рекомендация — во время длительных ночных поездок рекомендуется отключить автомат выключателем на корпусе.

    Добавить сайт в закладки

    Система автоматического включения и выключения освещения

    В настоящее время на рынке есть готовые схемы включения и отключения освещения, и даже с датчиками движения. Во многих домах на лестничных площадках можно увидеть, как эти схемы работают. Попробовать сделать что-то похожее можно и своими руками.

    Автоматическое освещение набирает популярность в настоящее время. Его главный плюс в том, что теперь не нужно беспокоиться о том, выключил ли ты свет дома или же нет.

    Рассмотрим устройство фотовыключателя, предназначенного для включения освещения и отключения, в зависимости от времени суток (т. е. естественного освещения). Схема автомати­ческого выключателя приведена на рис. 1. Датчиком фотовы­ключателя является фотосопротив­ление Ф, в качестве измеритель­ной схемы применена мостовая схема. Датчик, реагирующий на величину наружного освещения, расположен в одном из плеч из­мерительного моста АГ последова­тельно с полупроводниковым вентилем 1ВП. В другое плечо БГ включена обмотка нейтрального реле 2Р, плечи ВБ и АВ образу­ются постоянными сопротивления­ми R 1 и R 2 . Замыкающие контакты релевключены в цепь управ­ления лампами освещения ЛО.

    Измерительная диагональ со­стоит из сопротивления R 3 , после­довательно с которым соединены обмотка поляризованного реле 1P и газоразрядная лампа МН, па­раллельно лампе МН и реле 1Р подключен конденсатор С. Реле IP снабжено перекидным контак­том, замыкающим ту или другую цепь (зажимы 1 и2) в зависимости от направления тока в его обмотке.

    Рисунок 1. Схема автоматического выключателя.

    Питание моста осуществляется через вентиль 2ВП и через вер­шины измерительного моста Г и В. Газоразрядная лампа МН - это неоновая лампа, в баллоне которой под небольшим давлением (порядка десятка миллимет­ров ртутного столба) находится газ неон. Неоновая лампа не имеет накаливаемого катода, а снабжена двумя электродами (в виде пластинок, цилиндров или проволочек). Если напряжение на лампе ниже определенного значения, называемого напряжением зажига­ния, то ток через лампу не проходит. При напряжении, равном напряжению зажигания, возникает ионизация и через лампу про­ходит ток. Неоновую лампу всегда включают через некоторое сопротивление, ограничивающее ток.

    Схема работает следующим образом. Если на улице светло (освещенность выше 10 лк ), то ток в измерительной диагонали идет от точки Б к точке А, а поляризованное реле1 P включено таким образом, что его перекидной контакт замкнут на зажим 1. Релеотключено (ток, проходящий через его обмотку, недостаточен для срабатывания реле); контакты реле разомкнуты, а следовательно, осветительные лампыЛО отключены.

    Ток в измерительной диагонали идет от точки Б к точке А пото­му, что потенциал точки Б выше потенциала точки А, это вытекает из того, что потеря напряжения на плече АВ больше потери напря­жения на плече ВБ (что, в свою очередь, объясняется соответствую­щим подбором сопротивлений R 1 и R 2); к тому же подключены сопротивления к одному и тому же зажиму цепи. Следует иметь в виду, что ток в измерительной диагонали проходит не непре­рывно, а импульсами, скачками. Постепенно конденсатор С заря­жается и напряжение на нем возрастает; когда напряжение на обкладках конденсатора становится равным напряжению зажига­ния газоразрядной лампы МН, лампа зажигается и пропускает через обмотку реле 1P ток. Таким образом, благодаря наличию газоразрядной лампы в цепи реле будет срабатывать более четко и надежно при определенном значении напряжения (равном напря­жению зажигания газоразрядной лампы).

    Упрощает управление светом, возможность регулировки настроек с помощью любого гаджета, который всегда рядом с вами.

    Когда освещенность уменьшается, электрическое сопротивле­ние фотоэлемента возрастает; благодаря этому ток в плече АВ уменьшается и соответственно уменьшается и падение напряжения. Поскольку падение напряжения в плече БВ остается постоянным, падение напряжения в плече АВ может стать настолько малым, что потенциал в точке А станет большим потенциала в точке Б, и ток переменит свое направление и потечет от А к Б. Это про­изойдет тогда, когда естественное освещение к вечеру уменьшится и станет меньше 10лк. По мере уменьшения освещенности ток в измерительной диагонали будет возрастать, напряжение на кон­денсаторе С увеличивается и при его значении, равном напряже­нию зажигания лампы МН, конденсатор разрядится через лампу и поляризованное реле 1P в обратном направлении; реле перебросит свой контакт на зажим2 (этим схема измерительного моста нару­шается). При этом катушка нейтрального реле окажется при­соединенной к полному напряжению сети переменного тока 220 В. Реле сработает и замыканием своего контакта включит освети­тельные лампыЛО. Таким образом с наступлением вечерних суме­рек автоматически включается электрическое освещение.

    При наступлении утра повышается освещенность, и фотовыклю­чатель должен отключить электрическое освещение. Проследим, как это происходит. С увеличением освещенности уменьшается электрическое сопротивление фотоэлемента Ф, в связи с чем уве­личивается постоянный ток, проходящий по этому плечу (АГ). По измерительной диагонали А Б будет проходить постоянный (вернее, пульсирующий) ток по следующей цепи: фаза Л 2 - зажим 2 - Б - А - 1ВП - Ф - Г - фаза Л 1 , кроме того, по этой же диагонали будет проходить переменный ток, образующий сле­дующую цепь: фаза Л 2 - зажим 2 - Б - А - В - R 4 - фаза Л 1 .

    Пока освещенность мала, разность потенциалов между точками Б и А недостаточна для зажигания лампы МН и, как следствие, для срабатывания поляризованного реле 1P. По мере увеличения освещенности (выше 10 лк) потенциал в точке А, как это уже было объяснено выше, окажется меньше потенциала в точке Б; ток изменит свое направление на обратное, а конденсатор С разрядит­ся на лампу МН и реле от точки Б к точке А; реле сработает и перебросит свой контакт на зажим 1. При этом катушка релеокажется отключенной от полного напряжения сети 220 В и срабо­тает на отключение своего контакта; электрическое освещение будет выключено.