Автоматическое регулирование основных теплотехнических параметров. Автоматическое регулирование температуры в теплице

Температура является показателем термодинамического состояния объекта и используется как выходная координата при автоматизации тепловых процессов. Характеристики объектов в системах регулирования температуры зависят от физических параметров процесса и конструкции аппарата. Поэтому общие рекомендации по выбору АСР температуры сформулировать невозможно и требуется тщательный анализ характеристик каждого конкретного процесса.

Регулирование температуры в инженерных системах производится значительно чаще, чем регулирование каких-либо других параметров. Диапазон регулируемых температур невелик. Нижний предел этого диапазона ограничен минимальным значением температуры наружного воздуха (-40 °С), верхний - максимальной температурой теплоносителя (+150 °С).

К общим особенностям АСР температуры можно отнести значительную инерционность тепловых процессов и измерителей (датчиков) температуры. Поэтому одной из основных задач при создании АСР температуры является уменьшение инерционности датчиков.

Рассмотрим в качестве примера, характеристики наиболее распространенного в инженерных системах манометрического термометра в защитном чехле (рис. 5.1). Структурную схему такого термометра можно представить в виде последовательного соединения четырех тепловых емкостей (рис. 5.2): защитного чехла /, воздушной прослойки 2 , стенки термометра 3 и рабочей жидкости 4. Если пренебречь тепловым сопротивлением каждого слоя, то уравнение теплового баланса для каждого элемента этого прибора можно записать в виде

G,Cpit, = а п? Sj і (tj _і - tj) - a i2 S i2 (tj - Сн), (5.1)

где Gj- масса соответственно чехла, воздушной прослойки, стенки и жидкости; C pj - удельная теплоемкость; tj - температура; a,i, а /2 - коэффициенты теплоотдачи; S n , S i2 - поверхности теплоотдачи.

Рис. 5.1. Принципиальная схема манометрического термометра:

  • 1 - защитный чехол; 2 - воздушная прослойка; 3 - стенка термометра;
  • 4 - рабочая жидкость

Рис. 5.2.

Как видно из уравнения (5.1), основными направлениями уменьшения инерционности датчиков температуры являются;

  • повышение коэффициентов теплоотдачи от среды к чехлу в результате правильного выбора места установки датчика; при этом скорость движения среды должна быть максимальной; при прочих равных условиях более предпочтительна установка термометров в жидкой фазе (по сравнению с газообразной), в конденсирующемся паре (по сравнению с конденсатом) и т. п.;
  • уменьшение теплового сопротивления и тепловой емкости защитного чехла в результате выбора его материала и толщины;
  • уменьшение постоянной времени воздушной прослойки за счет применения наполнителей (жидкости, металлической стружки); у термопар рабочий спай припаивается к корпусу защитного чехла;
  • выбор типа первичного преобразователя: например, при выборе необходимо учитывать, что наименьшей инерционностью обладает термопара в малоинерционном исполнении, наибольшей - манометрический термометр.

Каждая АСР температуры в инженерных системах создается для вполне конкретной цели (регулирования температуры воздуха в помещениях, тепло- или холодоносителя) и, следовательно, предназначена для работы в очень небольшом диапазоне. В связи с этим условия применения той или иной АСР определяют устройство и конструкцию как датчика, так и регулятора температуры. Например, при автоматизации инженерных систем широко применяются регуляторы температуры прямого действия с манометрическими измерительными устройствами. Так, для регулирования температуры воздуха в помещениях административных и общественных зданий при использовании эжекционных и вентиляторных доводчиков трехтрубной схемы тепло- и холодоснаб-жения применяют регулятор прямого действия прямого типа РТК (рис. 5.3), который состоит из термосистемы и регулирующего клапана. Термосистема, пропорционально перемещающая шток регулирующего клапана при изменении температуры рециркуляционного воздуха на входе в доводчик, включает чувствительный элемент, задатчик и исполнительный механизм. Эти три узла соединены капиллярной трубкой и представляют единый герметичный объем, заполненный термочувствительной (рабочей) жидкостью. Трехходовой регулирующий клапан управляет подачей горячей или холодной воды к теплообменнику эжекционного


Рис. 5.3.

а - регулятор; б - регулирующий клапан; в - термосистема;

  • 1 - сильфон; 2 - задатчик; 3 - ручка настройки; 4 - корпус;
  • 5, 6 - регулирующие органы соответственно горячей и холодной воды; 7 - шток; 8 - исполнительный механизм; 9 - чувствительный элемент

доводчика и состоит из корпуса и регулирующих органов. С повышением температуры воздуха рабочая жидкость термосистемы увеличивает свой объем и сильфон клапана перемещает шток и регулирующий орган, закрывая прохождение горячей воды через клапан. При увеличении температуры на 0, 5-1 °С регулирующие органы остаются неподвижными (проходы горячей и холодной воды закрыты), а при более высокой температуре открывается лишь проход холодной воды (проход горячей воды остается закрытым). Заданная температура обеспечивается вращением ручки настройки, связанной с сильфоном, который изменяет внутренний объем термосистемы. Регулятор может быть настроен на температуру в диапазоне от 15 до 30 °С.

При регулировании температуры в водо-и пароводных подогревателях и охладителях используются регуляторы типа РТ, которые незначительно отличаются от регуляторов типа РТК. Их основная особенность - совмещенное исполнение термобаллона с задатчиком, а также использование двухседельного клапана в качестве регулирующего органа. Такие манометрические регуляторы выпускаются на несколько 40-градусных диапазонов в пределах от 20 до 180 °С с диаметром условного прохода от 15 до 80 мм. В связи с наличием в этих регуляторах большой статической ошибки (10 °С) их не рекомендуется применять для высокоточного регулирования температуры.

Манометрические термосистемы используются также в пневматических П-регуляторах, широко применяемых для регулирования температуры в инженерных системах кондиционирования воздуха и вентиляции (рис. 5.4). Здесь при изменении температуры изменяется давление в термосистеме, которое через сильфон действует на рычаги, передающие усилие на шток пневмореле и мембрану. При равенстве текущей температуры с заданной вся система находится в равновесии, оба клапана пневмореле, питающий и стравливающий, закрыты. При увеличении давления на шток начинает открываться питающий клапан. К нему подведено давление от сети питания сжатым воздухом, в результате чего в пневмореле образуется давление управления, возрастающее от 0, 2 до 1 кгс/см 2 пропорционально увеличению температуры контролируемой среды. Этим давлением приводится в действие исполнительный механизм.

Для автоматического регулирования температуры воздуха в помещениях начали широко использоваться термостатические клапаны американской фирмы Honeywell и радиаторные терморегуляторы (термостаты) RTD, выпускаемые московским филиалом


Рис. 5.4.

с манометрической термосистемой:

  • 1 - шток пневмореле; 2 - узел неравномерности; 3, 9 - рычаги;
  • 4, 7 - винты; 5 - шкала; 6 - гайка; 8 - пружина; 10 - сильфон;
  • 11 - мембрана; 12 - пневмореле; 13 - термобаллон; 14 - питающий

клапан; 15 - стравливающий клапан

датской фирмы Danfoss, необходимая температура задается поворотом настроенной рукоятки (головки) с указателем от 6 до 26 °С. Понижение температуры на 1 °С (например, с 23 до 22 °С) позволяет экономить 5-7% тепла, потребляемого на отопление. Термостаты RTD позволяют избежать перегрева помещений в переходный и другие периоды года и обеспечить минимально необходимый уровень отопления в помещениях с периодическим проживанием людей. Кроме этого, радиаторные терморегуляторы RTD обеспечивают гидравлическую устойчивость для двухтрубной системы отопления и возможность ее регулировки и увязки в случае ошибок при монтаже и проектировании без использования дроссельных шайб и других конструктивных решений.

Терморегулятор состоит из регулирующего клапана (корпуса) и термостатического элемента с сильфоном (головки). Соединение корпуса и головки производится с помощью накидной гайки с резьбой. Для удобства монтажа на трубопровод и присоединения терморегулятора к отопительному прибору он комплектуется накидной гайкой с резьбовым ниппелем. Температура в помещении поддерживается путем изменения расхода воды через отопительный прибор (радиатор или конвектор). Изменение расхода воды происходит за счет перемещения штока клапана сильфоном, заполненным специальной смесью газов, изменяющих свой объем даже при незначительном изменении температуры окружающего сильфон воздуха. Удлинению сильфона при повышении температуры противодействует настроечная пружина, усилие которой регулируется поворотом рукоятки с указателем желаемого значения температуры.

Для лучшего соответствия любым системам отопления выпускаются два типа корпусов регулятора: RTD-G с малым сопротивлением для однотрубных систем и RTD-N с повышенным сопротивлением для двухтрубных систем. Корпуса изготавливаются для прямого и углового клапанов.

Термостатические элементы регуляторов изготавливаются в пяти вариантах: со встроенным датчиком; с дистанционным датчиком (длина капиллярной трубки 2 м); с защитой от неумелого использования и воровства; с ограничением диапазона настройки до 21 °С. В любом исполнении термостатический элемент обеспечивает ограничение настроенного диапазона температур или фиксации на требуемой температуре воздуха в помещении.

Срок эксплуатации регуляторов RTD 20-25 лет, хотя в гостинице «Россия» (Москва) зарегистрирован срок службы 2000 регуляторов более 30 лет.

Регулирующий прибор (погодный компенсатор) ECL (рис. 5.5) обеспечивает поддержание температуры теплоносителя в подающем и обратном трубопроводах системы отопления в зависимости от температуры наружного воздуха по соответствующему конкретному ремонту и конкретному объекту отопительному графику. Прибор воздействует на регулирующий клапан с электроприводом (при необходимости - и на циркуляционный насос) и позволяет осуществлять следующие операции:

  • поддержание расчетного отопительного графика;
  • ночное снижение температурного графика по недельным (интервал 2 ч) или 24-часовым (интервал 15 мин) программируемым часам (в случае электронных часов интервал 1 мин);
  • натоп помещения в течение 1 ч после ночного снижения температуры;
  • подключение через релейные выходы регулирующего клапана и насоса (или 2 регулирующих клапанов и 2 насосов);

Рис. 5.5. Погодный компенсатор ЕС/. с настройкой,

доступной потребителю:

1 - программируемые часы с возможностью задания периодов работы комфортной или пониженной температуры по суточному или недельному циклу: 2 - параллельное перемещение графика температуры в системе отопления в зависимости от температуры наружного воздуха (отопительного графика): 3 - переключатель режимов работы; 4 - место для инструкции по эксплуатации: 5 - сигнализация включения, текущего режима работы,

аварийных режимов;

О - отопление отключено, поддерживается температура, предотвращающая замерзание теплоносителя в системе отопления;) - работа с пониженной температурой в системе отопления; © - автоматическое переключение с режима комфортной температуры на режим с пониженной температурой и обратно в соответствии с заданием на программируемых часах;

О - работа без понижения температуры по суточному или недельному циклу; - ручное управление: регулятор выключен, циркуляционный насос включен постоянно, управление клапаном производится вручную

  • автоматический переход из летнего режима в зимний и обратно по заданной температуре наружного воздуха;
  • прекращение ночного снижения температуры при понижении наружных температур ниже заданного значения;
  • защиту системы от замораживания;
  • коррекцию отопительного графика по температуре воздуха в помещении;
  • переход на ручное управление приводом клапана;
  • максимальные и минимальные ограничения температуры воды на подаче и возможность фиксированного или пропорцио-

нального ограничения температуры обратной воды в зависимости от температуры наружного воздуха;

  • самотестирование и цифровую индикацию значений температур всех датчиков и состояний клапанов и насосов;
  • установку зоны нечувствительности, зоны пропорциональности и времени накопления;
  • возможность работы по накопленным за заданный период или текущим значениям температур;
  • задание коэффициента тепловой устойчивости здания и задание влияния отклонения температуры обратной воды на температуру воды на подаче;
  • защиту от образования накипи при работе с газовым котлом. В схемах автоматизации инженерных систем используются

также биметаллические и дилатометрические терморегуляторы, в частности электрический двухпозиционный и пневматический пропорциональный.

Электрический биметаллический датчик предназначен в основном для двухпозиционного регулирования температуры в помещениях. Чувствительным элементом этого прибора является биметаллическая спираль, один конец которой закреплен неподвижно, а другой свободен и удовлетворяет подвижным контактам, замыкающимся или размыкающимся с неподвижным контактом в зависимости от текущего и заданного значений температуры. Заданную температуру устанавливают поворотом шкалы настройки. В зависимости от диапазона настройки терморегуляторы выпускаются в 16 модификациях с общим диапазоном настройки от -30 до + 35 °С, причем каждый регулятор имеет диапазон 10, 20 и 30 °С. Погрешность срабатывания ±1 °С на средней отметке и до ±2, 5 °С на крайних отметках шкалы.

Пневматический биметаллический регулятор в качестве преобразователя-усилителя имеет сопло-заслонку, на которую действует усилие биметаллического измерительного элемента. Эти регуляторы выпускаются 8 модификаций, прямого и обратного действия с общим диапазоном настройки от +5 до +30 °С. Диапазон настройки каждой модификации 10 °С.

Дилатометрические регуляторы устроены на использовании разности коэффициентов линейного расширения инварного (железоникелевый сплав) стержня и латунной или стальной трубки. Эти терморегуляторы по принципу действия регулирующих устройств не отличаются от подобных регуляторов, использующих манометрическую измерительную систему.

Установить счетчики и полагать, что экономия достигнута — заблуждение. Не стоит останавливаться на достигнутом! Изучив рынок энергосберегающего оборудования как следует, приходит понимание, что настоящая экономия начинается с установки термомайзера . Ведь этот прибор должен применяться в каждой системе отопления и горячего водоснабжения! Термомайзер – это автоматический регулятор температуры , как горячей воды, так и теплоносителя. Обустроив свою систему термомайзером, вы получаете возможность управления климатом в любом помещении и колоссальную экономию расхода горячей воды или теплоносителя, и как следствие — денег.

Как устроен термомайзер?

В состав термомайзера входит всего два компонента, это регулятор и электронное устройство управления. Первый компонент – регулятор, отвечает за автоматическое регулирование температуры подающейся воды для системы отопления или горячего водоснабжения. Второй компонент термомайзера – электронное устройство, в которое поступают данные с температурных датчиков, расположенных внутри и с наружи помещения, а так же на входе и на выходе теплоносителя. Полученные данные обрабатываются в соответствии с алгоритмом программы, производятся вычисления, по которым поступают команды уже непосредственно на регулятор.

Что умеют термомайзеры?

Выбирая различные программы, мы имеем возможность поддержания заданных температур воды и теплоносителя, графика системы отопления, регулировки температур обратного контура, теплоносителя в подающем трубопроводе по отклонению от заданной внутренней температуры помещения, регулировки при использовании таймера, отдельных режимов для праздников, выходных и ночи и ряда других опций. Термомайзеры оснащаются богатым функционалом и возможностями по экономии, от нас лишь требуется выбрать нужную модель, задать нужные данные и настроить режим.

Важной деталью в экономии является оснащение прибора уличным датчиком, особенно это актуально для весны, во время резких перепадов температуры ночи и дня. При мониторинге всей динамики перепадов, мы всегда имеем нужную нам температуру внутри помещения без перерасхода ресурсов и денег.

Какой термомайзер выбрать?

Выбирать термомайзер следует, отталкиваясь от имеющейся системы водоснабжения и отопления. Любая модель термомайзера позволит эффективно экономить теплоноситель и создаст необходимый микроклимат в помещении. В зависимости от типа регулятора, одни термомайзеры могут использоваться в системах общественных и административных зданий, другие будут более актуальны в открытой системе горячего водоснабжения и отопления, третий вид термомайзеров лучше применим в закрытых системах с насосным смешением, или как дополнительная опция в вентиляционных системах и системах кондиционирования. Самый влияющий фактор на экономию термомайзера – тип регулятора.

Наш завод изготавливает и поставляет весь модельный ряд следующих регуляторов температур:
термомайзер Р-2.Т, термомайзер Р-7.Т, термомайзер Р-8.Т, устройство управления Теплур и другиекомплектующие сверхэффективного энергосберегающего оборудования . Вы можете обратиться за консультацией по вопросам подбора, приобретения, доставки, монтажа и настройке термомайзеров по указанным контактам на странице с товаром.

Сколько служат термомайзеры и как они эксплуатируются

По сроку службы термомайзеры практически вечны, но качество теплоносителя оказывает прямую зависимость на время жизни прибора. Учитывая реалии, термомайзер свободно проработает 15-20 лет. Наш завод изготавливает регуляторы из качественных металлов, таких как нержавейка, латунь и чугун, что положительно сказывается на долговечности и бесперебойной работе приборов. Это дает значительные преимущества перед импортными приборами – конкурентами, выполненными из углеродистой стали, производства Danfoss и др. Качество первичного Российского теплоносителя значительно уступает европейскому, на который и рассчитаны импортные термомайзеры, их эксплуатация в отечественных системах будет сопровождаться множеством проблем.

Термомайзеры в техническом обслуживании вовсе не прихотливы. В принципе, никакого технического обслуживания и не требуется. Достаточно один раз первоначально настроить регулятор. Рекомендуется делегировать установку профессионалам.

Выгода при установке термомайзера

Часто, при прохождении теплоносителем контура отопительной системы он не остывает и имеет достаточно высокую температуру, что бы задействовать ее повторно. Как раз это и осуществляется с помощью термомайзера. За счет вторичного использования теплоносителя, мы достигаем существенной экономии. Административные, жилые и общественные здания могут подключаться по этой схеме.

На время, когда мы не используем помещение, например, в выходные или праздники, можно выставить минимальную температуру теплоносителя на термомайзере, что повлечет за собой значительное сокращение расхода теплоносителя.

Термомайзеры так же позволяют экономить тепловую энергию на производственных и торговых площадях. За эту энергию приходится платить немалые деньги по счетчику. Только представьте, какая переплата получается за выходные, праздники, ночное время суток и другие случаи, когда помещение не используется. На все эти случаи можно настроить определенные режимы в регуляторе термомайзера и не платить лишние деньги за перерасход теплоносителя.

Преимущества термомайзеров выражаются не только деньгами, не стоит забывать и о комфорте. Ведь возможность регулировки и поддержки на необходимом уровне температуры актуальна для многих помещений различных зданий и площадей.

Терморегуляторы — небольшие по размеру, но весьма практичные в быту устройства для контроля теплоотдачи. В зависимости от реальной потребности регуляторы температуры для батарей отопления увеличивают или сокращают объем теплоносителя. Согласитесь, это полезно и для самочувствия владельцев дома/квартиры, и для их кошельков.

Желающим приобрести терморегуляторы для оснащения радиаторов мы предлагаем ознакомиться с подробным описанием видов устройств регулировки отдачи тепла. Мы привели и сравнили их способы управления, принцип действия, стоимость, специфику монтажа. Наши рекомендации помогут выбрать оптимальную разновидность.

Представленную к рассмотрению информацию, собранную и систематизированную для будущих покупателей регуляторов тепла, мы дополнили наглядными фото-подборками, схемами, нормативными таблицами, видео.

Известно, что температура в разных комнатах дома не может быть одинаковой. Также необязательно постоянно поддерживать тот или иной температурный режим.

Например, в спальне ночью необходимо опускать температуру до 17-18 о С. Это положительно влияет на сон, позволяет избавиться от головных болей.

Галерея изображений

Оптимальная температура на кухне составляет 19 о С. Это связано с тем, что в помещении располагается много обогревательной техники, которая генерирует дополнительное тепло. Если в ванной комнате температура будет ниже 24-26 о С, то в помещении будет ощущаться сырость. Поэтому здесь важно обеспечить высокую температуру.

Если в доме предусмотрена детская комната, то ее температурный диапазон может меняться. Для ребенка до года потребуется температура 23-24 о С, для детей постарше достаточно будет 21-22 о С. В остальных комнатах температура может варьироваться от 18 до 22 о С.

Комфортный температурный фон подбирается в зависимости от назначения помещения и частично от времени суток

В ночное время можно понижать температуру воздуха во всех комнатах. Необязательно поддерживать высокую температуру в жилище в случае, если дом некоторое время будет пустовать, а также во время солнечных теплых дней, при работе некоторых электроприборов, генерирующих тепло и др.

В этих случаях установка термостата сказывается на микроклимате положительно — воздух не перегревается и не пересушивается.

Из таблицы видно, что в жилых комнатах в холодное время года температура должна составлять 18-23 о С. На лестничной площадке, в кладовой допустимы низкие температуры — 12-19 о С

Терморегулятор решает следующие проблемы:

  • позволяет создавать определенный температурный режим в комнатах разного назначения;
  • экономит ресурс котла, уменьшает количество расходных материалов для обслуживания системы (до 50%);
  • появляется возможность без отключения всего стояка производить аварийное отключение батареи.

Следует помнить, что с помощью термостата невозможно повысить КПД батареи, увеличить ее теплоотдачу. Сэкономить на расходных материалах смогут люди с индивидуальной системой отопления. Жители многоквартирных домов с помощью термостата смогут лишь регулировать температуру в комнате.

Разберемся, какие существуют , и как сделать верный выбор оборудования.

Виды терморегуляторов и принципы работы

Терморегуляторы разделяют на три вида:

  • механические , с ручной настройкой подачи теплоносителя;
  • электронные , управляемые выносным термодатчиком;
  • полуэлектронные , управляемые термоголовкой с сильфонным устройством.

Главное достоинство механических приборов — невысокая стоимость, простота в эксплуатации, четкость и слаженность в работе. Во время их эксплуатации нет необходимости использовать дополнительные источники энергии.

Модификация позволяет в ручном режиме регулировать , поступающего в радиатор, тем самым контролируя теплоотдачу батарей. Прибор отличается высокой точностью регулировки степени нагрева.

Существенный недостаток конструкции заключается в том, что в ней отсутствует разметка для регулировки, поэтому производить настройку агрегата придется исключительно опытным путем. С одним из методов балансировки мы ознакомимся ниже

Основные элементы регулятора механического типа — термостат и термостатический клапан

Механический терморегулятор состоит из следующих элементов:

  • регулятора;
  • привода;
  • сильфона, заполненного газом или жидкостью;

Электронные термостаты — более сложные конструкции, в основе которого лежит программируемый микропроцессор. С его помощью можно задавать определенную температуру в комнате путем нажатия нескольких кнопок на регуляторе. Некоторые модели многофункциональны, пригодны для управления котлом, насосом, смесителем.

Строение, принцип работы электронного прибора практически не отличается от механического аналога. Здесь термостатический элемент (сильфон) имеет форму цилиндра, его стенки гофрированы. Он заполнен веществом, которое реагирует на колебания температуры воздуха в жилище.

По время повышения температуры происходит расширение вещества, в результате чего на стенки образуется давление, что способствует движению штока, который автоматически закрывает клапан. При движении штока проводимость клапана увеличивается или уменьшается. Если температура снижается, то рабочее вещество сжимается, в результате сильфон не растягивается, а клапан открывается, и наоборот.

Сильфон обладают высокой прочность, большим рабочим ресурсом, выдерживают сотни тысяч сжатий на протяжении нескольких десятков лет.

Основной элемент электронного регулятора — термодатчик. В его функции входит передача информации о температуре окружающей среды, в результате чего система генерирует необходимое количество тепла

Электронные терморегуляторые условно разделяют на:

  • Закрытые терморегуляторы для радиаторов отопления не обладают функцией автоматического определения температуры, поэтому они настраиваются в ручном режиме. Отрегулировать возможно температуру, которая будет поддерживаться в комнате, и допустимые колебания температуры.
  • Открытые термостаты можно запрограммировать. Например, при понижении температуры на несколько градусов режим работы может измениться. Также возможно настроить время срабатывания того или иного режима, отрегулировать таймер. Используются такие приборы преимущественно в промышленности.

Электронные регуляторы работают от батареек или специального аккумулятора, который идет в комплекте с зарядкой. Полуэлектронные регуляторы идеально подходят для бытовых целей. Они идут с цифровых дисплеем, который отображает температуру помещения.

Принцип действия полуэлектронных устройств для регулировки теплоотдачи радиатором позаимствован из механических моделей, поэтому его регулировка осуществляется вручную

Газонаполненные и жидкостные термостаты

При разработке регулятора в качестве термостатического элемента могут использовать вещество в газообразном или жидком состоянии (например, парафин). Исходя из этого, приборы делят на газонаполненные и жидкостные.

Парафин (жидкий или газообразный) обладает свойством расширяться под действием температуры. В результате масса давит на шток, к которому подсоединен клапан. Шток частично перекрывает трубу, через который проходит теплоноситель. Все происходит автоматически

Газонаполненные регуляторы обладают высоким сроком службы (от 20 лет). Газообразное вещество позволяет более плавно и четко регулировать температуру воздуха в жилище. Приборы идут с датчиком, которые определяет температуру воздуха в жилище.

Газовые сильфоны быстрее срабатывают на колебания температуры воздуха в помещении. Жидкостные же отличаются более высокой точность в передаче внутреннего давления на подвижные механизм. При выборе регулятора на основе жидкого или газообразного вещества ориентируются на качество и срок службы агрегата.

Жидкостные и газовые регуляторы могут быть двух типов:

  • со встроенным датчиком;
  • с дистанционным.

Если радиатор подключен к рабочей системе отопления, то из него следует слить воду. Сделать это можно с помощью шарового крана, запирающего вентиля или любого другого устройства, блокирующего подачу воды из общего стояка.

После этого открывают клапан батареи, располагающийся в области места поступления воды в систему, перекрывают все краны.

После того, как из батареи была устранена вода, ее необходимо продуть, чтоб убрать воздух. Также это можно сделать с помощью крана Маевского

На следующем этапе выполняют снятие адаптера. Перед процедурой пол застилают материалом, хорошо поглощающим влагу (салфетками, полотенцами, мягкой бумагой и т.д.).

В комнату помещают термометр, затем отворачивают клапан до упора. В этом положении теплоноситель заполнит радиатор полностью, а значит, теплоотдача прибора будет максимальной. Через некоторое время необходимо зафиксировать полученную температуру.

Далее необходимо повернуть головку до упора в обратную сторону. Температура начнет понижаться. Когда термометр покажет оптимальные для помещения значения, то клапан начинают открывать до тех пор, пока не послышится шум воды и не произойдет резкий нагрев. В этом случае вращение головки прекращают, фиксируя ее положение.

Выводы и полезное видео по теме

В видео наглядно показано, как настроить терморегулятор и внедрить его в систему отопления. В качестве примера взять автоматический электронный регулятор Living Eco от бренда Danfoss:

Выбрать терморегулятор можно исходя из собственных пожеланий и финансовых возможностей. Для бытовых целей идеально подойдет механической и полуэлектронный агрегат. Любители smart-техники могут отдать предпочтение функциональным электронным модификациям. Установить приборы также возможно без привлечения специалистов.

Каждый огородник или садовод мечтает иметь на своем участке теплицу. Теплица — своеобразная курортная зона, где растения чувствую себя хорошо не зависимо от погодных условий. А как приятно и полезно получить урожай салата, редиса ранней весной, когда на только появившихся проталинках появляется печеночница обыкновенная!

Естественно, для получения подобных результатов необходимо не только построить хорошую теплицу, но и поддерживать там оптимальную температуру. Важна температура воздуха и почвы.

Эти факторы влияют на впитываемость полезных элементов, влаги; качественные и количественные показатели урожая; возникновение разнообразных заболеваний.

Любой огородник должен понимать, что существует прямая связь между температурой воздуха, грунта внутри теплицы, возможным урожаем. Однако многие соседствующие культуры любят разные режимы влажности и температуры. Оптимизировав размещение культур в теплице, можно пользоваться весомой температурной разницей в различных её частях.

В теплице, как и в не защищенном грунте, имеются температурные суточные колебания. Слишком резкие, превышающие 4 – 8 °С, перепады негативно отражаются на росте, развитии растений, урожайности. Приводят к частым болезням и гибели культур. В зависимости от вида растения температура почвы и воздуха в теплице должна находиться на отметке 14 – 25 °С.

Средства регулировки температуры в отдельных комнатах

Благодаря радиаторному терморегулятору Данфосс используется только необходимое количество энергии, и температура в помещении постоянно поддерживается на необходимом уровне. Терморегулятор измеряет температуру помещения и автоматически регулирует теплоподачу.

Он позволяет избежать перегрева помещений в переходной и другие периоды года и обеспечить минимально необходимый уровень отопления в помещениях с периодическим проживанием людей (защита от замораживания системы).

Короткое название радиаторного термостата RTD (Радиаторный Термостат Данфосс). Что такое радиаторный терморегулятор?

1 - комбинация датчика температуры в комнате и водяного клапана,

2 - самостоятельный регулятор давления (работает без дополнительного источника энергии)

3 - прибор, который постоянно поддерживает заданную температуру.



Принцип работы радиаторного терморегулятора:

Принципом работы является равновесие между усилием среды (в данном случае: газ) и силой нажимной пружины, величина которой зависит от настройки головки (на необходимую температуру). Таким образом, величина потока через клапан зависит от настройки головки и температуры внешней среды, которая воспринимается датчиком.

Если температура повышается, то газ расширяется и таким образом немного призакрывает клапан. Если же температура понижается, то газ соответственно сжимается, что и приводит к открытию клапана и доступу теплоносителя в отопительный прибор.

Использование газа предоставляет Данфосс большое преимущество над другими производителями: малая величина константы времени, которая выражается в лучшем использовании свободного тепла через быстрый ответ на изменение температуры в помещении (время реакции).

На сегодня только радиаторные термостаты Данфосс используют принцип расширения и сжатия газа. Причина заключается в том, что использование газа требует очень современную технологию и, соответственно, высокие требования к качеству. Однако компания Данфосс готова идти на дополнительные затраты с целью добиться высококачественной и конкурентной продукции.

Выбор радиаторного термостата зависит от следующих условий:


тип датчика Ю место расположения клапана

тип клапана Ю размер радиатора (потребность в тепле), падение температуры на нагревательном элементе, тип системы отопления (1- или 2-трубная система)

Почему необходимо использовать радиаторный термостат?

1 - потому, что он дает возможность экономить тепловую энергию (15-20%), позволяет использовать свободное, “бесплатное” тепло (солнечное излучение, дополнительное тепло от людей и приборов), срок его окупаемости < 2 лет.

2 - обеспечивает высокий уровень комфорта в помещении.

3 - обеспечивает гидравлическое равновесие - очень важно создать гидравлическое равновесие в отопительной системе, что означает подачу доступной тепловой энергии каждому потребителю соответственно к его потребности.

Термостатические головки RTD (20% сбережения тепла)




Головки для радиаторных термостатов изготовляются в следующих версиях:

RTD 3100 / 3102 - стандартный датчик, встроенный или дистанционный, ряд температур 6-26° С, ограничение и фиксация настройки температуры.

RTD 3120 - датчик с защитой от постороннего вмешательства, встроенный, ряд температур 6 - 26° С, защита от замерзания.

RTD 3150 / 3152 - датчик с ограничением максимума температуры, встроенный или дистанционный, ряд температур 6 - 21° С, защита от замерзания, фиксация настройки температуры.

ряд RTD 3160 - элемент дистанционного управления, капиллярная трубка длина 2 / 5 / 8 м, максимальная температура 28° С с ограничением и фиксацией настройки температуры (для радиаторов и конвекторов, недоступных для пользователя).

Дистанционный датчик необходимо использовать в случае, если на встроенный датчик будет влиять сквозняк или же он спрятан за портьерами или декоративными решетками.

Крепление самой термостатической головки на клапане легко выполняется при помощи накидной гайки. Головка может быть защищена от несанкционированного снятия при помощи винта (заказывается отдельно, как дополнительный аксессуар).


Клапаны RTD-N и RTD-G

Когда Данфосс начал продвижение на рынки за пределами Западной Европы, то специалистами компании были проведены многочисленные анализы качества воды в разных странах. В результате этого опыта стало понятным, что в системах отопления некоторых стран часто встречается низкое качество воды. В связи с этим была разработана новая серия клапанов для рынков Восточной Европы - серия RTD.

Используемые в RTD материалы остаются особенно стойкими при низком качестве используемой воды (по сравнении с клапанами, что выпускаются для рынков Западной Европы, мы заменили все части из оловянистой бронзы на более стойкие, изготовленные из латуни). А это значит, что срок службы клапана значительно увеличивается, даже в сложных условиях Украины. По опыту мы знаем, что средний срок службы клапана достигает 20 лет.

Регулирующие клапаны типа RTD-N (диаметры 10-25 мм) предназначены для применения в двухтрубных насосных системах водяного отопления и оснащены устройством для предварительной (монтажной) настройки их пропускной способности.

В 2-х трубной системе отопления добавление воды сверх расчетного объема приводит к увеличению передачи тепла и дисбалансу в системе. Функция предварительной настройки клапана дает возможность монтажнику, выполняющему его установку, ограничить пропускную способность клапана таким образом, чтобы гидравлическое сопротивление во всех радиаторных контурах было одинаковым и таким образом регулировать величину потока.

Простая и точная настройка пропускной способности легко выполняется без дополнительного инструмента. Число, выбитое на шкале настройки, должно быть совмещено с меткой, расположенной напротив выходного патрубка клапана. Пропускная способность клапана будет изменяться в соответствии с цифрами на шкале настроек. В положении “N” клапан полностью открыт.

Защиту от несанкционированного изменения настройки обеспечивает установленный на клапане термостатический элемент.

Регулирующие клапаны с повышенной пропускной способностью типа RTD-G (диаметры 15-25 мм) предназначены для применения в насосных однотрубных системах водяного отопления. Они могут также использоваться в двухтрубных гравитационных системах. Клапаны имеют фиксированные значения пропускной способности в зависимости от диаметра клапана.

Пример расчета радиаторного термостата:

Потребность в тепле Q = 2 000 kkal/h

разница температур D T = 20 ° C

существующая потеря давления D P = 0.05 bar

Определяем величину потока (расход воды) через прибор:

Расход воды G = 2 000/20 = 100 l/h

Определяем пропускную способность клапана:


Пропускная способность клапана Kv = 0.1/Ц 0.05 = 0.45 m3/bar



Значение Kv = 0.45 m3/h говорит о том, что для клапана RTD-N 15 мм вы можете выбрать предварительную настройку “7” или “N”.

При выборе радиаторного термостата необходимо обеспечить регулировку в пределах от 0.5 ° С до 2 ° С при данных размерах, что позволит обеспечить хорошие условия регулирования. В нашем случае необходимо выбрать предварительную настройку “7” или “N”. Однако, если в системе отопления существует опасность загрязненной воды, то мы не рекомендуем использовать предварительную настройку меньше “3”.

Используя наше техническое описание “Радиаторные терморегуляторы RTD”, вы сможете выбрать размер клапана непосредственно по диаграммам через потери давления на клапане D P, или через величину потока через клапан G. Выбор размера клапанов RTD-G (для 1-трубной системы) проводится идентично.


Новое строительство

В новостроящихся зданиях мы рекомендуем использование 2-трубной системы с RTD-N клапанами с возможностью предварительной настройки для поддержки гидравлического баланса в системе, Ду 10-25 мм, прямые и угловые версии.



Реконструкция

В подавляющем большинстве старых зданий используется 1-трубная система, для которой мы рекомендуем RTD-G клапаны с повышенной пропускной способностью (фиксированные значения пропускной способности в зависимости от диаметра), Ду 15-25 мм, прямые и угловые версии.

Особенно для клапанов RTD-N с предварительной настройкой очень важно использование фильтра для предотвращения препятствий для нормального функционирования клапана.


Уравновешивающие (балансировочные) клапаны серии ASV

Поскольку радиаторные системы отопления являются динамическими системами (разные падения давления через уменьшение тепловой нагрузки), то радиаторные термостаты должны комбинироваться с регуляторами давления (автоматические балансировочные клапаны ASV-P для 2-трубной системы) и запорно-измерительным клапаном MV-FN.

Серия регуляторов ASV включает по два типа автоматических и ручных балансировочных клапанов:

автоматический клапан ASV-PV - регулятор перепаду давления с изменяемой настройкой 5 - 25 кПа

клапан ASV-P - регулятор с фиксированной настройкой на 10 кПа

ASV-М - ручной запорно-измерительный клапан

ASV-І - запорно-измерительный клапан с настройкой пропускной способности

ASV обеспечивает оптимальное распределение теплоносителя по стоякам системы отопления и нормальное функционирования последней независимо от колебаний давления в системе. Они также позволяют перекрыть и опорожнить стояк. Максимальное рабочее давление становит 10 кПа, максимальная рабочая температура 120° С.

Упаковка из стиропора, в которой транспортируется клапан, может использоваться в качестве теплоизоляционной скорлупы при температуре теплоносителя до 80° С. При максимальной рабочей температуре теплоносителя 120° С используется специальная теплоизоляционная скорлупа, которая поставляется по дополнительному заказу.



Автоматический регулятор расхода ASV-Q

Для гидравлического балансирования 1-трубных систем отопления используются автоматические клапаны-ограничители расхода ASV-Q - диаметры 15, 20, 25 и 32 мм (диапазон настроек от 0,1-0,8 м3/час до 0,5-2,5 м3/час). Они используются для автоматического ограничения максимального значения расхода воды через стояк независимо от колебаний давления и расхода теплоносителя в системе и для оптимального распределения теплоносителя по стоякам системы отопления

Эти клапаны особенно полезны для балансировки систем отопления, для которых отсутствуют данные про их гидравлические характеристики. ASV-Q всегда обеспечивает тот расход теплоносителя, на который клапан настроено. При изменении характеристик системы происходит автоматическая подстройка регулятора.

Установка клапанов ASV-Q позволяет отказаться от традиционно сложных наладочных работ в новом строительстве и при реконструкции систем отопления, включая расширение систем без проведения гидравлического расчета трубопроводов.



Применение (примеры 1 - 2 трубных систем)

При реконструкции однотрубной системы без обвода (проточная система) необходимо установить радиаторные терморегуляторы на источники излучения тепла (RTD-G та RTD-головки) и установить обводную линию (байпас), сечение которой должно быть на один размер меньше, чем основной трубы системы (байпас в 1/2” для основной в 3/4").

При помощи байпаса поток теплоносителя через источник излучения тепла уменьшается до 35 - 30 %, что также зависит от диаметра основных труб в системе. Изучая кривую теплоотдачи радиатора однотрубной системы, мы убеждаемся, что уменьшение потока теплоносителя со 100 % даже до 30 % приведет к уменьшению теплоотдачи радиатора лишь на 10 %.

Это значит, что в подавляющем большинстве случаев установка байпаса будет иметь лишь незначительное влияние на теплоотдачу. Во многих случаях размеры теплоизлучателя (радиатора, конвектора) выбраны уже с запасом, и поэтому теплоизлучатели могут продолжать давать необходимое количество тепла. Если же радиатор маломощный, то для решения проблемы необходимо:

- Повысить температуру теплоносителя

- Повысить производительность циркуляционного насоса

- Увеличить поверхности нагрева радиаторов

-Утеплить ограждающие конструкции (стены) здания

Клапаны RTD-G с высокой пропускной способностью используются в однотрубных системах отопления с циркуляционными насосами и в двухтрубных системах гравитационных (самотечных).

Для поддержания гидравлического баланса в системе отопления на каждом стояке необходимо установить автоматический регулятор расхода ASV-Q, который будет ограничивать поток по каждом стояке. Таким образом тепло будет распределяться равномерно по всем стоякам, особенно в случае изменяемой тепловой нагрузки, или если присутствует недостаточное снабжение теплом. Запорно-измерительный клапан ASV-М позволяет перекрыть каждый отдельный стояк и, при необходимости, спустить с него воду, одновременно измеряя поток через стояк.

Теплоизлучатели (радиаторы и конвекторы) могут комплектоваться радиаторными термостатами (RTD-G и RTD-головками) без всяких ограничений. Выбор клапана RTD-G проводится в соответствии с предыдущим примером (смотри также пример выбора RTD-G в техническом описании). В таком случае стояки необходимо оснастить ограничителями потока ASV-Q и ASV-М запорно-измерительным клапаном.

В случае 2-трубной системы теплоизлучатели могут комплектоваться радиаторными термостатами (RTD-N и RTD-датчики) без каких-либо ограничений. Выбор клапана RTD-N проводится в соответствии с приведенными выше примерами для RTD-N. В этом случае каждый стояк должен комплектоваться регулятором давления ASV-P (и запорно-измерительным клапаном ASV-М), который будет обеспечивать постоянный D Р на каждом стояке, чем будут скомпенсированы изменения в тепловой нагрузке и изменении D Р. Более того, уменьшая риск шума в радиаторных терморегуляторах, регулятор перепаду давления тем самым будет обеспечивать их долговечность


Таким образом решается вопрос регулировки температуры в отдельных комнатах.