Автоматический регулятор температуры горячего водоснабжения. Независимая система отопления с запорно-регулирующим клапаном и циркуляционным насосом. Управление обогревом вашего дома с помощью регулятора температуры отопления

Автоматический регулятор температуры ГВС

Если у Вас закрытая система теплоснабжения, значит в здании установлен теплообменный аппарат на который расходуется до 40% тепловой энергии ежеминутно. Для рационального расхода такого количества тепловой энергии необходима установка регулятора горячего водоснабжения (автоматический регулятор температуры воды, регулятор ГВС).

Как же он работает спросите Вы?

Каждую секунду, чтобы нагреть необходимое количество воды, тратятся Гигакалории (Гкал) тепловой энергии. Это происходит и днём и ночью.

Регулятор ГВС - нужен для поддержания определённой температуры горячей воды. Для этого: на подающем или обратном трубопроводе греющей стороны (по сетевой воде, теплоносителю) теплообменника, устанавливается клапан с электроприводом. Так же монтируются датчики температуры в подающий трубопровод ГВС и в обратный трубопровод по сетевой воде. С помощью контроллера происходит регулирование по заданной уставке температуры: либо по температуре горячей воды, либо по температуре обратного трубопровода. Так же возможно регулирование по дням недели или часам с помощью таймера "реального времени". Например, возможно полное ограничение теплоносителя на теплообменнике в жилом доме с 1.00 ночи до 5.00 утра, т.к. ночью горячая вода не нужна, или в детских садах с 18.00 до 6.00 утра нет сотрудников. Данным регулированием экономится до 50% теплоносителя, и отправляется в систему отопления, принося за собой большой экономический эффект.

Cтоимость регулятора ГВС

Стоимость внедрения регулятора ГВС зависит от диаметра клапана, типа контроллера, вида электропривода и датчиков температуры.

Регулятор температуры ГВС цена

В среднем составляет 100 000 рублей, это цена самая низкая средняя цена по Свердловской области, если Вам предоставят цену регулятора ГВС ниже нашей - мы попробуем сделать её ещё ниже!

Сроки монтажа регулятора ГВС составляют

Не более одного месяца, а при наличии оборудования 1 неделя.

Что Вам даст комплекс установки теплосчетчика и регулятора ГВС?

Вы начинаете снижать платежи за тепловую энергию, рационально используя её.

Но все выше перечисленные мероприятия не дают вам 100% экономии. Настоящая экономия наступает, когда Вы полностью ограничиваете потребление тепловой энергии с помощью внедрения системы автоматического регулирования отопления в зависимости от температуры наружного воздуха (погодного регулирования) , описанной в другой статье нашего сайта. При заказе регулятора ГВС и погодника одновременно у нашей компании, Вы сэкономите ещё и на монтаже.

Внедрить всю тепловую автоматику в вашу систему отопления Вам поможет команда тепловентиляционного участка компании, связаться со специалистами можно по телефону 8-343-202-1-777 или написать на электронный адрес .

Ни один современный человек не чувствовал бы себя комфортно в доме, в котором нет горячей воды. Термостат для гвс – это часть в современной системе отопления. При помощи этого приспособления обитатели дома могут настраивать температуру воды по своему вкусу.

Принцип работы

Как мы знаем, если горячая вода не подается в здание централизовано, мы можем получить ее самостоятельно, посредством подогрева холодной воды. Таких способов на сегодняшний день известно два (не считая кастрюль на газовых конфорках):

          • прямой
          • косвенный

Прямой способ заключается в получении горячего водоснабжения путем подогрева холодной воды электрическим бойлером или газовой колонкой. В первом случае жидкость нагревается электрическим тэном. Во втором – газовой горелкой. Оба этих способа, как правило, применяются в том случае, если в доме установлено центральное отопление.

Если же вы живете в частном секторе и отапливаете свое жилье при помощи газового, твердотопливного или электрического котла, подогрев воды у вас, скорее всего, осуществляется другим способом.

Как известно, котлы бывают двух типов:

              • одноконтурные
              • двухконтурные

Одноконтурный предназначен только для обогрева здания. Двухконтурный – и горячего водоснабжения. Именно во втором случае может использоваться термостат гвс, при помощи которого можно нагреть горячую воду до определенной температуры. В целях безопасности, специалисты рекомендуют, что эта температура не должна быть ниже 60 и выше 75 градусов Цельсия. Давайте посмотрим, из чего состоит двухконтурный котел. Так вам будет проще понять принцип работы термостата гвс.


Приготовление горячей воды происходит в проточном теплообменнике. По этой причине котлу необходимо иметь высокую мощность, перекрывающей наибольшую потребность в горячей воде. Для того чтобы покрыть эту потребность в системе отопления предусмотрен бойлер косвенного нагрева с постоянным запасом теплой жидкости. Термостат гвс управляет подогревом жидкости. Если температура в бойлере начинает падать, он дает команду на подогрев воды. После того, как температура достигает желаемого значения, нагрев воды автоматически прекращается.

Типы устройств

Термостаты ГВС бывают двух типов:

              • накладные
              • погружные

Первый тип изделий устанавливается гораздо проще, чем второй. Однако надежность крепления второго значительно выше. Стоимость приборов примерно одинакова.

Наиболее известные представители

Сегодня самой известной фабрикой по производству термостатов ГВС в Европе является . Она производит следующие популярные модели этого класса.

Представители фирмы Danfoss
№ п/п Наименование модели Техническое описание
1. BasicPlus2 Надежное изделие. Выпускается, как с механическим кольцом настройки температуры, так и с жидкокристаллическим дисплеем, на котором отображается температура воды.
2. RET2000B-RF Беспроводное устройство, которое можно установить прямо в ванной и оттуда управлять ГВС.
3. TP5001A-RF Программируемый беспроводный прибор, при помощи которого можно регулировать теплоотдачу обоих контуров котла.

Помимо фабрики «Данфосс», известным производителем изделий, о которых мы рассказываем в этой статье, является компания SALUS. Ее продукция представляет собой ассортимент многофункциональный, надежных приборов для регулировки климата. Отдельно среди них следует выделить модель iT500. Это настоящий микрокомпьютер, который имеет множество функций и возможность подключения к интернету. Данным устройством можно управлять при помощи смартфона или планшета. Стоит такой прибор порядка 20 734,29 рублей за штуку. Однако это устройство одно из самых дорогих. Что касается обычных термостатов ГВС, то их стоимость варьируется от 1 500 до 5 000 рублей за штуку, что по карману многим жителям нашей страны.

Д.т.н. П.В. Ротов, заместитель главного инженера;
А.А. Сивухин, начальник ПТО, МУП «Городской теплосервис»;
д.т.н. В.И. Шарапов, профессор, заведующий кафедрой «Теплогазоснабжение и вентиляция», ФГБОУ ВПО «Ульяновский государственный технический университет», г. Ульяновск

Автоматическое регулирование нагрузки системы ГВС

Потребление горячей воды в жилых и общественных зданиях характеризуется значительной неравномерностью как в течение суток, так и в отдельные дни недели. Мгновенный расход потребляемой воды является случайной величиной. При этом, в разные дни недели, в одно и то же время при прочих равных условиях, вероятность потребления аналогичного количества воды мала. В рабочие дни наибольшее потребление воды наблюдается в вечерние часы, в выходные дни - с утра. Кроме того, на неравномерность потребления могут оказывать влияние климатические условия, периоды массовых отпусков и школьные каникулы, даже телевизионные передачи.

Для компенсации тепловых потерь в трубопроводах системы ГВС предусматривают циркуляцию. Но, поскольку данные по тепловым потерям во внутридомовых системах ГВС зачастую отсутствуют, то для их определения используют долевую часть от расхода воды, а именно 10% от расчетного расхода воды, определенного для неотопительного периода . В потери теплоты трубопроводами систем ГВС учитываются прибавлением доли среднего за отопительный период расхода воды в системах ГВС с учетом коэффициента, учитывающего потери теплоты трубопроводами в зависимости от конструктивных особенностей и наличия изоляции, который изменяется в пределах от 0,15 до 0,35.

Проведенное обследование систем ГВС жилых домов показало, что реальное значение циркуляционного расхода в трубопроводах систем ГВС существенно превышает расчетные значения и составляет 40-90% от расхода в подающем трубопроводе и 70-500% от расхода воды на ГВС. При этом расход воды в циркуляционном трубопроводе зависит от режима потребления горячей воды. Установка на циркуляционных трубопроводах жилых домов дроссельных шайб с постоянным отверстием не позволяет в полной мере учесть режим работы систем ГВС. Повышенный циркуляционный расход способствует росту температуры воды в циркуляционном трубопроводе относительно температуры воды в обратном трубопроводе тепловой сети более чем на 10 О С, что, в свою очередь, влияет на экономичность работы источника теплоснабжения.

Повысить эффективность работы системы ГВС возможно путем автоматического регулирования расхода воды в циркуляционном трубопроводе с учетом неравномерности режима потребления горячей воды. Одна из таких технологий, разработанная в научно-исследовательской лаборатории «Теплоэнергетические системы и установки» (НИЛ «ТЭСУ») УлГТУ, реализована в 2014 г. на ЦТП Ульяновского МУП «Городской теплосервис» . На рис. 1 показана принципиальная схема ЦТП с установленным оборудованием. Регулирование расхода воды в циркуляционном трубопроводе осуществляется запорно-регулирующим клапаном (регулятором температуры) 11, установленном на циркуляционном трубопроводе. Управление запорно-регулирующим клапаном осуществляется программируемым логическим контроллером по импульсу от датчика температуры 12. В период водоразбора тепловые потери в системе ГВС компенсируются за счет слива воды, поэтому можно снизить расход воды в циркуляционном трубопроводе. При отсутствии водоразбора расход воды в циркуляционном трубопроводе поддерживается в зависимости от определенного перепада температур в подающем и обратном трубопроводе системы ГВС, тем самым обеспечивая необходимую тепловую нагрузку.

В течение 2014 г. проводился инженерный эксперимент, в результате которого анализировались параметры работы ЦТП при различных режимах настройки регулятора температуры, установленного на циркуляционном трубопроводе. Настройка регулятора температуры по времени суток осуществлялась на основании предварительного анализа работы ЦТП. На рис. 2 представлена диаграмма изменения расхода воды в системе ГВС за 6 дней, из которой следует, что максимальный отбор горячей воды происходит в период с 8:00 до 15:00-16:00. Среднечасовое значение температуры горячей воды за этот же период составило 60,3 О С. Во время минимального разбора горячей воды настройка регулятора температуры производилась на температурный перепад в системе ГВС, равный 10 О С.

В период с 19.06.2014 г. по 06.08.2014 г. анализировались режимы работы ЦТП с различными настройками регулятора температуры на циркуляционном трубопроводе. В I режиме регулятор температуры был настроен на круглосуточном поддержании температуры воды, равной 50 О С, в циркуляционном трубопроводе. Во II режиме настройки регулятора температуры изменялись в течение суток по графику: с 9:00 до 15:00 поддерживалась температура циркуляционной воды, равная 45 О С, в остальное время температура циркуляционной воды поддерживалась равной 50 О С. В III режиме регулирование температуры воды в циркуляционном трубопроводе не производилось.

Среднечасовые значения параметров работы ЦТП в каждом из трех режимов представлены в табл. 1. Экономия тепловой энергии на ЦТП определялась для I и II режимов в сравнении с III режимом, когда не производилось регулирование циркуляционного расхода воды.

Таблица 1. Режимные показатели работы ЦТП при регулировании циркуляционного расхода в период с 19.06.2014 г. по 06.08.2014 г.

В результате анализа данных, представленных в табл. 1, установлено, что экономия тепловой энергии на ЦТП в режимах с регулированием циркуляционного расхода горячей воды относительно режима без регулирования составляет 12-14% (0,03 Гкал/ч). При этом в режиме с дифференцированной по времени суток температурой воды в циркуляционном трубопроводе ГВС достигается большая экономия теплоты.

В отопительном периоде с 19.10.2014 г. по 17.11.2014 г. на том же ЦТП проводился анализ режимных параметров в условиях регулирования и отсутствия регулирования температуры циркуляционной воды в системе ГВС. В первом периоде (I режим) настройки регулятора температуры изменялись в течение суток по графику: с 9 до 15 ч поддерживалась температура циркуляционной воды равная 45 О С, в остальное время температура циркуляционной воды поддерживалась равной 50 О С. Во втором периоде (II режим) регулирование температуры воды в циркуляционном трубопроводе не производилось.

Анализ среднечасовых показателей работы ЦТП в отопительном периоде показывает, что в I режиме теплоты потребляется на 20% меньше, чем во II (табл. 2).

Таблица 2. Режимные показатели работы ЦТП при регулировании циркуляционного расхода в период с 19.10.2014 г. по 17.11.2014 г.

На рис. 3-5 показана динамика изменения расхода теплоносителя, температуры воды и теплопотребления в системе ГВС по часам суток при различных режимах работы ЦТП в период с 19.10.2014 г по 17.11.2014 г На приведенных диаграммах четко видно снижение температуры циркуляционной воды, расхода воды и теплопотребления в системе ГВС в период регулирования температуры циркуляционной воды. Снижение теплопотребления приводит к соответствующей экономии топливно-энергетических ресурсов. Равенство температуры воды, подаваемой на ГВС при различных режимах, показывает, что снижение расхода теплоносителя и количества тепловой энергии обусловлено только оптимизацией режима работы системы ГВС за счет регулирования расхода воды в циркуляционном трубопроводе. При этом температура воды в подающем трубопроводе системы ГВС соответствует нормативным требованиям (рис. 3).

С целью оценки инвестиционной привлекательности проведено технико-экономическое обоснование реализованной технологии регулирования нагрузки системы ГВС. На основании анализа режимов работы системы ГВС определена минимальная среднечасовая экономия теплоты 0,03 Гкал/ч (табл. 1). Предполагаемое время работы системы ГВС с регулированием циркуляционного расхода составляет 3600 ч в год. Суммарная экономия теплоты на одном ЦТП за этот период составит 108 Гкал, что при тарифе за тепловую энергию 1500 руб./Гкал равно 162 тыс. руб. Затраты на приобретение оборудования для системы автоматического регулирования составили 74,6 тыс. руб., т.е. технология окупается за половину временного периода работы системы автоматического регулирования, т.е. за 2,5-3 месяца.

Энергосберегающий потенциал разработанной технологии при ее реализации на всех ЦТП системы теплоснабжения Ульяновска составляет более 12 млн руб. в год, что, с учетом небольшого срока окупаемости, является выгодным инвестиционным проектом.

При технико-экономическом обосновании не учитывались снижение затрат электроэнергии на транспорт теплоносителя, снижение тепловых потерь в трубопроводах системы ГВС, возможное увеличение комбинированной выработки электроэнергии на ТЭЦ за счет снижения температуры обратной сетевой воды. С учетом этих составляющих срок окупаемости такой технологии будет еще меньше.

Поквартирные тепловые пункты

Примером энергоэффективных технологий использования теплоты в системах теплопотребления в ряде случаев могут служить поквартирные тепловые пункты (ПТП), которые представляют собой комплекс устройств, преобразующих параметры теплоносителя, перераспределяющих потоки теплоносителя в контурах отопления и ГВС квартиры и управляющих тепловыми нагрузками этих контуров. Применение ПТП в системах водоснабжения и отопления позволяет упростить схему разводящих внутри- домовых сетей теплоснабжения, снизить затраты на эксплуатацию объекта капитального строительства (за счет отсутствия централизованной системы ГВС) . При этом владельцы квартир могут по своему усмотрению устанавливать необходимый экономичный тепловой режим и тем самым определять приемлемую оплату за потребленную тепловую энергию.

Недостатком открытой схемы теплоснабжения (рис. 6) в основном является наличие постоянного круглосуточного расхода циркуляционной воды в системе ГВС, что приводит к сверхнормативным тепловым потерям в системе ГВС и высоким энергетическим затратам на циркуляцию воды в системе ГВС. Типовая открытая система теплоснабжения характеризуется большой металлоемкостью, что приводит к увеличению начальных затрат на ее сооружение.

В НИЛ «ТЭСУ» УлГТУ разработан ряд технологий ГВС на основе ПТП , одна из которых представлена на рис. 7.

Основным принципом работы такой системы теплоснабжения является то, что подготовка горячей воды происходит в непосредственной близости от водоразборных кранов, при этом отсутствуют тепловые потери в трубопроводе подачи ГВС, что позволяет полностью исключить циркуляцию воды в системе ГВС.

Определим экономию от внедрения ПТП в открытой системе теплоснабжения на примере одного стояка системы ГВС в 9-этажном многоквартирном жилом доме. Протяженность циркуляционных трубопроводов принята равной 60 м, диаметр - 20 мм.

Суммарный расход воды на нужды теплоснабжения определяем по формуле:

Gт=Gот+Gвс (1)

где Gот, Gгвс - расходы воды соответственно на отопление и ГВС.

Расход воды на ГВС определяем по формуле:

Gгвс=Gг+Gц, (2)

где G г G u - расходы горячей воды соответственно в водоразборных приборах и в циркуляционном трубопроводе.

Тепловые потери в циркуляционном трубопроводе при этом составят:

Q ц тп =q ц *l ц =632,9 ккал/ч, (3)

где q ц - плотность теплового потока через 1 м циркуляционного трубопровода:

1 ц =60 м - протяженность циркуляционного трубопровода; t ц - температура циркуляционной воды, О С; t нв - температура наружного воздуха, О С; λст- - коэффициент теплопроводности стали, Вт/(м. О С); d вн - внутренний диаметр трубопровода, м; d н - наружный диаметр трубопровода, м; α в - коэффициент теплоотдачи от воды к внутренней стенке трубы, Вт/(м 2 .К); α вн - коэффициент теплоотдачи от наружной стенки трубы к наружному воздуху, Вт/(м 2 .К).

При годовой работе системы ГВС тепловые потери в циркуляционном трубопроводе составят:

где τ гвс год =8160 - количество часов работы системы ГВС в год, ч.

Отсутствие теплопотерь в циркуляционном трубопроводе при использовании ПТП приведет к снижению расхода топлива:

ΔВ=(Q ц тп)/(Q P н *η бр)* τ гвс год =0,8 т у. т. в год, (6)

где Q P н - низшая теплота сгорания топлива, Дж/кг; η бр, - КПД котла.

При стоимости 1 т у.т. равной 3700 руб. экономия с одного стояка внутридомовой системы ГВС составит П тэ =3,0 тыс. руб. в год.

Расход воды на циркуляцию:

Gц= Q ц тп /(c*∆t ц)=63,3 кг/ч, (7)

где с - удельная теплоемкость воды, ккал/(кг О С); ∆t ц - температурный перепад в циркуляционном трубопроводе, О С.

Годовой расход воды в циркуляционном трубопроводе составит:

G ц год =G ц * τ гвс год = 516,5 т/год. (8)

Расход электроэнергии циркуляции горячей воды при этом:

Nэ=γ*H*G ц /η н =2,16 кВт*ч, (9)

где γ - удельный вес перекачиваемой жидкости, Н/м 3 ; Н - напор насоса, м; η н - КПД насоса.

Потребление электроэнергии на привод насоса составит 17,6 кВтч/год, что в денежном эквиваленте при стоимости электроэнергии 4 руб./кВт*ч составит П э =70,4 тыс. руб. в год.

Общая экономия эксплуатационных затрат при использовании в системах ГВС ПТП составит:

Побщ=Пэц+Птэ+Пэ=81,2 тыс. руб. в год. (10)

Кроме того, при отсутствии циркуляционного трубопровода уменьшается и металлоемкость системы ГВС, которая при стоимости трубы Ду 20 - 50 тыс. руб./т приведет к экономии с одного стояка внутридомовой системы ГВС П м =5,0 тыс. руб.

Определим капитальные затраты на внедрение ПТП с учетом дополнительного оборудования, устанавливаемого в них. В качестве основных капитальных затрат принята установка регулятора температуры и регулятора перепада давления. Стоимость этого оборудования в одном ПТП составит около 60 тыс. руб. Капитальные затраты на один стояк внутридомовой системы ГВС в 9-этажном многоквартирном доме составят порядка 540 тыс. руб. .

Срок окупаемости затрат от внедрения способа приготовления ГВС в ПТП составляет порядка 6 лет. Данные результаты основаны на расчетном объеме потребления ГВС.

Проведенное обследование систем ГВС жилых домов показало, что реальное значение циркуляционного расхода существенно превышает расчетные значения. Очевидно, если фактический расход воды в циркуляционном трубопроводе системы ГВС будет превышать расчетный в 3-6 раз, срок окупаемости также пропорционально снизится. Таким образом, реальный срок окупаемости технологии ГВС с использованием ПТП составляет не более одного года.

Выводы

1. В системе теплоснабжения г. Ульяновска на одном из ЦТП реализована технология регулирования нагрузки системы горячего водоснабжения, учитывающая неравномерность потребления горячей воды. Особенностью разработанной и реализованной технологии является регулирование расхода воды в циркуляционном трубопроводе в зависимости от температуры воды после водоразборных точек в системе горячего водоснабжения.

2. Проведен анализ параметров ЦТП при различных режимах работы и определена величина экономии теплоты. В режимах работы ЦТП с регулированием циркуляционного расхода горячей воды относительно режима работы без регулирования теплопотребление ЦТП уменьшается на 12-20%.

3. Выполнен технико-экономический расчет реализованной технологии регулирования нагрузки системы горячего водоснабжения. Расчетная годовая экономия теплоты на одном ЦТП составляет 162 тыс. руб. Срок окупаемости, определенный с учетом затрат на покупку и монтаж оборудования, составляет менее трех месяцев.

4. Выполнен сравнительный анализ технологий обеспечения тепловой нагрузки в системах горячего водоснабжения с использованием поквартирных тепловых пунктов. Реализация таких технологий позволяет повысить экономичность работы систем горячего водоснабжения за счет снижения тепловых потерь и затрат на транспорт горячей воды в связи с отсутствием циркуляционного расхода.

5. Расчетный срок окупаемости технологии горячего водоснабжения с использованием поквартирных тепловых пунктов составляет около 6 лет. При фактических затратах на циркуляцию воды в существующих системах ГВС срок окупаемости сокращается до 1 года.

Литература

1. . М.: ЦИТП Госстроя СССР, 1988. 50 с.

2. Строительные нормы и правила. СНиП 2.04.07-86*. Тепловые сети. М.: Минстрой России, 1994. 46 с.

3. О предоставлении коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов. Постановление Правительства РФ от 06.05.2011 г. № 354 // Российская газета. 2006. № 116. 01.06.2011.

4. Ротов П.В. Регулирование нагрузки городских теплофикационных систем / П.В. Ротов, В.И. Шарапов. Ульяновск: УлГТУ, 2013. 309 с.

5. Квартирные тепловые пункты в многоквартирных жилых домах. Рекомендации АВОК Р НП «АВОК» 3.2.1-2009. М.: ООО ИИП «АВОК-ПРЕСС». 2009. 46 с.

6. Патент 2549089 Российская Федерация. МПК 7 F 24 D 3/08. Способ работы открытой двухтрубной системы теплоснабжения/ П.В. Ротов, М.Е. Орлов, В.И. Шарапов, А.А. Сивухин; заявитель и патентообладатель УлГТУ № 2013145525/12; заявл. 10.10.13; опубл. 20.04.15, Бюл. № 11. 5 с.

7. Сивухин А.А. Сравнительный анализ технологий обеспечения нагрузки горячего водоснабжения / А.А. Сивухин, П.В. Ротов, В.И. Шарапов // Новые технологии в теплоснабжении и строительстве: сборник работ аспирантов и студентов - сотрудников научно-исследовательской лаборатории «Теплоэнергетические системы и установки». Ульяновск: УлГТУ, 2015, Выпуск. 13. С. 373-379.

Температура горячей воды. Кто и как должен обеспечить температурный режим горячего водоснабжения (ГВС) в наших квартирах? ТРЖ – что это? Как устроен ТРЖ? Попробуем разобраться в обозначенных вопросах.

Как Вам уже известно, что в соответствии с пунктом 2.4 СанПиН 2.1.4.2496-09 изменений к СанПиН 2.1.4.1074-01 «Гигиенические требования к обеспечению безопасности систем горячего водоснабжения», и согласно пункта 9.5.8 «Правил технической эксплуатации тепловых энергоустановок» зарегистрированных Минюстом РФ 02.04.03 за № 4358, температура горячей воды в местах водоразбора должна быть в пределах не ниже 60°С и не выше 75°С.

А почему именно такая температура? Да все очень просто, здесь соблюден компромисс между потребителями и «производителями» горячей воды.

С одной стороны потребителям выгоднее иметь более горячую воду, чтобы счетчик учитывал, как можно меньше кубических метров дорогой горячей воды, а разбавить ее холодной мы всегда сможем. В тоже время мы пользуемся водой (подставляем руки под горячую воду) с температурой 40-50°С, и чем выше температура горячей воды, тем больше шансов ошпарить свое любимое тело, и не дай Бог, если это маленькие дети. Пластиковые трубы, водомеры, смесители также рассчитаны на рабочую температуру 75-85°С.

С другой стороны энергетикам и поставщикам ГВС выгоднее производить менее горячую воду, т.к. потребители ее будут использовать в большем количестве и соответственно количество кубических метров в показаниях счетчиков будет больше, а значит и энергетики получат больше денег. Менее горячую воду к тому же дешевле и быстрее нагреть, меньше нагрузка на оборудование и сети, меньше теплопотери в сетях.

А если в отопительный период вода в сети 100°С и больше, без снижения температуры в ГВС нас могут серьезно ошпарить, т.к. это уже температура парообразования. Даже в радиаторы запрещено подавать теплоноситель свыше 95°С, т.к. в случае любой незначительной аварии из-за резкого падения давления теплоносителя будет происходить интенсивное парообразование, людей заживо сварит, а теперь представьте, что из вашего смесителя пошел пар. А вот здесь, чтобы обеспечить нормативную температуру горячей воды, обязаны поработать управляющие компании , обслуживающие организации и местный сантехник . С технической точки зрения с этой проблемой успешно справляются регуляторы температуры (ТРЖ – терморегулятор жидкости), которые должны быть установлены на каждую систему ГВС от ТЭЦ, т.е. в наших с вами домах.

Приведем пример наиболее часто применяемых (в нашем случае и более дешевых) ТРЖ в российском ЖКХ.

Наиболее применяемый в ЖКХ регулятор температуры это ТРЖ сильфонного типа (см.эскиз):

  1. Сварной стальной корпус
  2. Сильфон (внутри заполнен легко испаряемым веществом), имеет вид цилиндрической металлической «гармошки».
  3. Крышка корпуса.
  4. Шток для регулировки температуры.
  5. Сальниковое уплотнение штока.

Принцип работы очень простой: сетевая горячая вода поступает в ТРЖ сверху через гильзу с отверстиями, вода, остывшая после отдачи тепла в батареях, поступает справа, внутри ТРЖ они смешиваются и из левого патрубка вода уходит к потребителю в квартиры. Если вода очень горячая сильфон удлиняется, отверстия гильзы перекрываются и уменьшается подача сетевой воды, если вода остыла, сильфон сжимается и горячей сетевой воды поступает больше. Все происходит в автоматическом режиме. ТРЖ можно отрегулировать вручную на подачу воды от 30 до 90°С. Поворотом штока по часовой стрелке мы поднимаем сильфон вверх и тем самым уменьшаем поступление горячей сетевой воды, против часовой - опускаем сильфон и вода на выходе будет горячее.

Пример регуляторов температуры сильфонного типа: - ТРТС-50-ОС , - РТЕ-21М.

Для примера, наиболее применяемая и доступная модель ТРЖ-М-1. Принцип действия и регулировки аналогичен выше указанному прибору, но в отличие от него в ТРЖ-М-1 вместо сильфона установлен термостат, подобный автомобильному.

У данной модели есть преимущества и недостатки по сравнению с сильфонным ТРЖ.

Преимущества: в случае выхода из строя термочувствительного клапана, можно заменить только датчик.

Недостатки :

  1. Датчик регулирует температуру воды в диапазоне 15°С (45-55; 55-65; 75-85…), для каждого режима требуется свой датчик.
  2. В летний период когда вода подается только по одному трубопроводу и температура воды превышает на 20°С верхнюю градацию установленного датчика, его нужно извлечь из корпуса ТРЖ, иначе он выйдет из строя и потребует замены.

Если у слесаря – сантехника на обслуживании 30-60 систем ГВС, это очень хлопотно.

Внешний вид термостата и датчиков устанавливаемых внутри корпуса ТРЖ-М-1 (как в двигателе автомашины).

2. В настоящее время на рынке активно продвигаются регуляторы температуры РТВЖ «КОРАЛ»

Пример: РТВЖ исполнение-2, Ру16, но это совершенно другая ценовая ниша ≈ в 3÷5 раз дороже вышеназванных ТРЖ, хотя принцип работы такой же. В целом рынок предлагает множество моделей ТРЖ, но к сожалению другие модели, особенно импортные, очень дорогие и их применение рядовым собственникам жилья и муниципальным учреждениям просто не по карману.

  • для автоматического регулирования температуры вторичного теплоносителя (горячей воды) в закрытых системах горячего водоснабжения путем изменения расхода первичного теплоносителя — терморегулятор для системы отопления;
  • для автоматического изменения температуры горячей воды в необходимое время в соответствии с функциональными возможностями устройства управления;
  • для комплектования оборудования центральных и индивидуальных тепловых пунктов (ЦТП, ИТП);
  • для применения в системах отопления с насосным смешением, в системах вентиляции и кондиционирования воздуха и других технологических установках.

Состав

  • Устройство управления « », выполненное на базе однокристальной микро-ЭВМ.
  • Клапан проходной типа КП.
  • Датчик температуры теплоносителя.

Термомайзеры изготавливаются в 8 исполнениях (см. в таблице).

Обозначение исполнения термомайзера Ду присоединения клапана, мм Условная пропускная способность, м3/ч Масса, кг Примечание
Р-2.Т-25-2,5 25 2,5 17,5
Р-2.Т-25-4,0 25 4,0 17,5
Р-2.Т-25-6,0 25 6,0 17,5
Р-2.Т-50-10,0 50 10,0 23,0
Р-2.Т-50-16,0 50 16,0 23,0
Р-2.Т-50-25,0 50 25,0 23,0
Р-2.Т-80-56,0 80 56,0 52,0 спецзаказ
Р-2.Т-80-71,0 80 71,0 52,0 спецзаказ

Условия эксплуатации

  • Окружающая среда – воздух;
  • Температура окружающей среды от +5˚С до +45˚С;
  • Относительная влажность воздуха до 85% при температуре +25˚С;
  • Атмосферное давление от 84,0 до 106,6 кПа;
  • Температура теплоносителя в питающей среде до +150˚С;
  • Перепад давления теплоносителя в сетевом и обратном трубопроводах 0,15-0,3 МПа;
  • Напряжение питания или напряжение управляющих импульсов от 187 до 242 В частоты (501) Гц.

Могут применяться в различных случаях: промышленные системы отопления и т.д.

Автоматический регулятор температуры ГВС. Применение термомайзеров в системах горячего водоснабжения

Терморегуляторы для отопления. Применение термомайзеров в системах отопления

Отопление здания, промышленные системы отопления. Режим работы, при котором автоматический регулятор температуры отопления обеспечивают контроль и ограничение температуры теплоносителя в здании. Типовая схема включения регулятора температуры отопления в систему отопления изображена на рисунке.

— датчик температуры теплоносителя в подающем трубопроводе;
— датчик температуры теплоносителя в обратном трубопроводе;
— датчик температуры наружного воздуха.
Отопление комнаты. Режим, при котором устройство обеспечивает контроль температуры воздуха в отдельной комнате, например, где установлено оборудование, требующее для своей работы поддержания постоянной температуры. Типовая схема, где терморегулятор для радиатора отопления включен в систему отопления изображена на рисунке.
В данном режиме используется три температурных датчика:
— датчик температуры теплоносителя в подающем трубопроводе (опционально);
— датчик температуры воздуха в первой точке;
— датчик температуры воздуха во второй точке.

Устройство и работа термомайзера

Термомайзер (терморегуляторы отопления и водоснабжения, терморегулятор для системы отопления) выполнен на базе проходных клапанов типа КП (в дальнейшем – клапан); регулятор температуры — устройство управления типа «Теплур» осуществляет управление клапанами. Регулирование температуры вторичного теплоносителя (воды, воздуха) осуществляется изменением количества первичного теплоносителя, поступающего в теплообменник или смесительное устройство, путем регулирования сечения проточной части клапана. Невысока на такой регулятор температуры цена .

При отклонении текущей температуры вторичного теплоносителя от заданной или расчетной, устройство управления подает в электромоторный привод клапана – механизм электрический исполнительный – управляющие импульсы, в результате чего происходит перемещение регулирующего органа в необходимом направлении до получения требуемого параметра теплоносителя. В регуляторах для систем горячего водоснабжения устанавливается один датчик температуры горячей воды. Количество датчиков температуры для других случаев применения регуляторов определяется по согласованию с заказчиком. Промышленные системы отопления уже многих наших клиентов работают с применением термомайзер Р 2 Т .

Устройство и работа клапана проходного типа КП

В основе работы лежит принцип управления потоком рабочей среды путем регулирования сечения проточной части. Регулирование температуры вторичного теплоносителя (воды, воздуха) осуществляется изменением количества первичного теплоносителя, поступающего в теплообменник или систему отопления путем регулирования пропускной способности клапана. При отклонении текущей температуры вторичного теплоносителя от заданной или расчетной, устройство управления подает МЭИ клапана управляющие импульсы, в результате чего происходит перемещение регулирующего органа в необходимом направлении до получения требуемого параметра теплоносителя.

Купить регулятор температуры вы можете, просто позвонив нам или оставив заявку на сайте.