Адсорбция газовых примесей. АПГ (адсорбированный природный газ) где он

1. Поверхность твердого тела, в отличие от поверхности жидкости, имеет сложный, неоднородный характер. Даже полированное зеркало имеет на поверхности выступы размерами до 3 * 10 -7 см.

2. Адсорбция происходит не на всей поверхности, а лишь на активных центрах.

3. Адсорбция кинетически обратима наряду с адсорбцией газа происходит его десорбция. Адсорбционное равновесие устанавливается очень быстро. Молекула газа статается адсорбированной, если она находится в поверхностном слое в течение определенного времени, называемого временем адсорбции т. Существуют методы, позволяющие экспериментально определить т. Так, для паров кадмия, адсорбированных на стекле, = 10 -6 -10 -12 с в зависимости от температуры; для паров аргона на стекле =3*10 -5 с, при 90 К и = 75 * 10- 5 с при 78 К.

В зависимости от природы адсорбционных сил адсорбция газов и паров может быть физической и химической (см. параграф 2.5).

С повышением температуры физическая адсорбция уменьшается, так как возрастает интенсивность теплового движения молекул газа, стремящихся равномерно распределиться по всему объему системы. Это приводит к уменьшению времени адсорбции, а следовательно, к уменьшению количества адсорбированного вещества.

При хемосорбции молекулы адсорбата образуют с адсорбентом химические соединения. Хемосорбция может быть поверхностной (химическая реакция протекает только в пределах поверхностного слоя). Например, при адсорбции кислорода на поверхности алюминия происходит реакция:

4А1 + 3О 2 = 2А1 2 О 3 ,

в результате которой алюминий покрывается прочной оксидной пленкой.

Хемосорбция может быть и объемной, когда слой вещества, образовавшегося в результате реакции на поверхности, не препятствует дальнейшему проникновению газа в объем твёрдого адсорбента, например:

СаО (тв) + СО 2(г) = СаСО 3(ТВ) ,

Хемосорбция, в отличие от физической адсорбции, является необратимой.

Обычно имеют место промежуточные случай, когда основная масса адсорбированного вещества связана с адсорбентом сравнительно слабо, а следы его связаны прочно и могут быть удалены лишь путем длительного прогревания и откачивания. Водород на никеле при низких температурах адсорбируется физически ввиду малой скорости химической реакции, но при повышений температуры начинает протекать адсорбция с заметной энергией активации по типу химических реакций.

4. Поверхность адсорбента часто бывает пористой. Наличие пор приводит к тому, что адсорбция сопровождается капиллярной конденсацией.

5. Наряду с адсорбцией, представляющей собой поверхностный процесс, может происходить поглощение газа или пара всем объемом твердого тела (например, поглощение водорода металлическим палладием или платиной). Это явление называется адсорбцией.


Адсорбцию газа на твердом адсорбенте количественно характеризуют величиной а:

где v i количество i-гo газа, адсорбированного на твердом адсорбенте; m масса адсорбента.

Иногда вместо количества газа указывают его массу (m):

Часто количество газа выражают через его объем, приведенный к нормальным условиям:

Каким образом охарактеризована адсорбция, легко установить по размерности приведенной величины а i .

Величина адсорбции газа на твердом адсорбенте зависит от следующих факторов:

Температуры;

Концентрации (равновесного давления) пара или газа в поверхностном слое;

В природы твердого тела;

Особенности адсорбции на твердом адсорбенте

Адсорбция происходит на межфазной поверхности газ-твердое тело, жидкость-твердое тело.

Вотличие от жидкой твердая поверхность энергетически и геометрически неоднородна. Кроме того, твердые адсорбенты могут иметь поры.Наличие пор приводит к тому, что адсорбция сопровождается капиллярной конденсацией .

Рассмотрим сечение зерна адсорбента (рис. 14).

А

Рис. 14. Сечение зерна

адсорбента

дсорбент имеет большую удельную поверхность (за счет неровностей) и, следовательно, большую нескомпенсированную поверхностную энергию. Активна вся поверхность адсорбента, но есть точки с большой плотностью энергии. Их называют активными центрами.

Внутри фазы все силы уравновешены. На поверхности раздела фаз пространственная симметрия сил межмолекулярного взаимодействия отсутствует. Поэтому в пиках нескомпенсированная энергия максимальна.

Адсорбция на твердом адсорбенте протекает в две стадии:

    диффузионная – диффузия вещества к поверхности адсорбента;

    собственно адсорбция.

Лимитирующей стадией, определяющей скорость всего процесса, является диффузионная. Поэтому важный фактор – перемешивание.

Вследствие геометрической неровности поверхности адсорбента величину адсорбции определяют как количество адсорбата, отнесенное к единице массы адсорбента

, моль/кг.

Характеристика твердых адсорбентов.

Требования, предъявляемые к адсорбентам

В качестве адсорбентов наиболее часто применяют углеродные сорбенты (древесный или костный уголь, графитированная термическая сажа ГТС), бентонитовые глины, силикагель, цеолиты и др.

Углеродные сорбенты получают из всевозможного сырья, которое при определенных условиях может давать твердый углеродный остаток – ископаемых углей, торфа, древесины, ореховой скорлупы, фруктовых косточек и животных костей. Лучшими считаются угли, полученные из скорлупы кокосовых орехов и абрикосовых косточек.

Для повышения адсорбционной способности углеродных сорбентов их дополнительно активируют, выдерживая при повышенной температуре в присутствии паров воды и углекислого газа. В процессе активации выгорает смола, заполняющая поры углей, удельная поверхность адсорбента, а следовательно, и его адсорбционная способность, возрастают.

Удельная поверхность активированного угля, включая поверхность всех его пор, может достигать 1000 м 2 /г.

Углеродные сорбенты применяют для очистки воды, пищевых масс; очистки и разделения газов; в медицине.

Силикагель получают высушиванием студня поликремниевой кислоты; по химическому составу – этоSiO 2 . Выпускается в виде пористых крупинок, удельная поверхность составляет ~ 500 м 2 /г.

Бентониты – предварительно активированные кислотой глины, применяют для очистки сиропов, соков, растительных масел.

Пористые стекла получают при удалении из стекол щелочных и щелочноземельных металлов.

Цеолиты (в переводе с греческого «кипящий камень» из-за способности вспучиваться при нагревании) – природные и синтетические алюмосиликатные материалы. Кристаллическая структура их образована тетраэдрами 4– и 5– , объединенными общими вершинами в трехмерный каркас, пронизанный полостями и каналами, в которых находятся молекулы воды и катионы металловI,IIгрупп.

Цеолиты проявляют адсорбционные свойства после удаления воды из их полостей (при нагревании). Цеолиты различных разновидностей имеют строго определенный размер входов в полости и каналы. Поэтому их называют еще «молекулярными ситами» за способность сорбировать лишь определенные компоненты.

Используются для выделения и очистки углеводородов нефти; очистки, осушки и разделения газов (в т.ч. воздуха); осушки фреонов; извлечения радиоактивных элементов.

Твердые адсорбенты бывают пористые инепористые .

Пористость адсорбента определяется отношением суммарного объема порV п к общему объему адсорбентаV адс

П = V п / V адс.

В зависимости от размера пор различают макропористые, мезопористые и микропористые адсорбенты.

Т а б л и ц а 3

адсорбента

Удельная

поверхность, м 2 /кг

Непористые

Цемент, бетон

Пористые

– макропористые

Асбест, мука, древесина,

– мезопористые

Бентониты,

силикагель

– микропористые

Активированный уголь, цеолиты, пористые стекла

Пористость адсорбента имеет большое значение для адсорбции: чем она выше, тем больше удельная поверхность и выше адсорбционная способность. Однако это справедливо только в том случае, если молекулы адсорбата невелики и легко могут проникать в поры, т.е. соизмеримы с размером пор.

Различают полярные (гидрофильные) и неполярные (гидрофобные) адсорбенты.

Полярные (хорошо смачиваются водой) – силикагель, цеолит, глины, пористое стекло; неполярные (водой не смачиваются) – активированный уголь, графит, тальк, парафин.

Требования, предъявляемые к адсорбентам:

    большая удельная поверхность (достигается за счет измельчения, активирования поверхности, нанесения тонкого слоя адсорбента на пористую поверхность (керамику, кирпич));

    механическая прочность, термическая и химическая устойчивость;

    низкая себестоимость;

    возможность регенерации.

Правила подбора адсорбентов

При выборе адсорбента необходимо определить тип адсорбируемого вещества (полярное, неполярное, ПАВ). Полярные адсорбенты не следует применять при адсорбции из водных растворов, т.к. они могут адсорбировать растворитель – воду. Их целесообразно использовать при адсорбции из неводных растворов.

Неполярные адсорбенты хорошо адсорбируют из водных сред.

Дифильные молекулы могут адсорбироваться на любом адсорбенте. При этом они ориентируются своими полярными группами в полярную среду, неполярными – в неполярную (рис. 15).

Образовавшийся адсорбционный слой может изменить характер поверхности. Например, адсорбция дифильных молекул из водного раствора приводит к гидрофилизации поверхности угля, вследствие чего уголь приобретает способность смачиваться водой.

Эффект Ребиндера : при адсорбции ПАВ разность полярностей между адсорбентом и растворителем уменьшается.

Степень разделения растворенного вещества и растворителя тем выше, чем больше разница в полярности.

При выборе адсорбента необходимо учитывать размеры молекул адсорбтива: диаметр пор должен превышать диаметр молекул.

Основные теории адсорбции на твердых адсорбентах

Все теории разработаны для адсорбции газов и паров твердыми телами, поскольку система твердое тело-газ состоит всего из двух компонентов и поэтому удобна для теоретического рассмотрения явления адсорбции.

В 1915 году Ленгмюром и Поляни одновременно и независимо были созданы две совершенно различные теории адсорбции газов на твердом теле.

Основные положения теории мономолекулярной адсорбции Ленгмюра.

При разработке теории мономолекулярной адсорбции газа на твердом адсорбенте Ленгмюр исходил из следующих допущений.

1. Адсорбция происходит не на всей свободной поверхности адсорбента, а на активных центрах, характеризующихся максимальной свободной энергией (при адсорбции на границе жидкость-газ все активные центры в энергетическом отношении одинаковы) (рис. 16).

2. Адсорбция локализована на отдельных адсорбционных центрах (молекулы не перемещаются по поверхности).

3. Вследствие малого радиуса действия адсорбционных сил каждый активный центр, адсорбируя молекулу адсорбата, ста-

новится уже неспособным к дальнейшей адсорбции (молекулы, ударяющиеся об адсорбированные молекулы, отражаются без задержки).

4. Взаимодействием между молекулами адсорбата можно пренебречь.

5. В системе устанавливается динамическое равновесие, т.е. скорость адсорбции равна скорости десорбции.

Уравнение Ленгмюра для описания адсорбции газа твердой поверхностью

.

Уравнение Ленгмюра можно использовать только при отсутствии адсорбции сверх мономолекулярного слоя.

П

Рис. 17. s -образная изотерма адсорбции

ри широком исследовании изотерм адсорбции на различных адсорбентах, особенно при адсорбции паров, установлено, что наиболее общим типом яляются не ленгмюровские изотермы, а так называемыеs-образные изотермы (рис. 17), в которых адсорбция не останавливается на образовании монослоя, а продолжается до образования полимолекулярно-го слоя.

В связи с необходимостью объяснения характера таких изотерм возникла потребность в других теориях.

Основные положения теории полимолекулярной адсорбции Поляни.

1. Адсорбция обусловлена только физическими силами.

2. На поверхности адсорбента нет активных центров, а адсорбционные силы исходят от всей поверхности адсорбента и образуют около нее непрерывное силовое поле.

3

Рис. 18. Схема полимолекулярной

адсорбции по теории Поляни

. Адсорбционные силы действуют на достаточно больших расстояниях, превышающих размеры отдельных молекул адсорбтива, и поэтому можно говорить о существовании у поверхности адсорбента адсорбционного объема, который заполняется молекулами адсорбтива (рис. 18).

4. Действие адсорбционных сил по мере удаления от поверхности уменьшается и на некотором расстоянии становится равным нулю.

5. Под воздействием адсорбционного поля возникает возможность образования нескольких слоев молекул адсорбата. Наибольшее притяжение и сжатие испытывает первый адсорбционный слой; газообразные продукты в нем конденсируются в жидкость.

6. Притяжение данной молекулы поверхностью адсорбента не зависит от наличия в адсорбционном пространстве других молекул.

7. Адсорбционные силы не зависят от температуры и, следовательно, с изменением температуры адсорбционный объем не изменяется.

Теория полимолекулярной адсорбции Поляни позволяет описать адсорбцию на пористых адсорбентах и качественно объяснить характер s-образной изотермы. Главный недостаток теории Поляни – отсутствие аналитического выражения изотермы адсорбции.

Основные положения теории полимолекулярной адсорбции БЭТ.

Брунауэр, Эммет и Теллер разработали теорию применительно к адсорбции паров. Эта теория получила название теории БЭТ по первым буквам фамилий авторов.

1. Адсорбция осуществляется под действием сил Ван-дер-Ваальса.

2. Нескомпенсированная поверхностная энергия неравномерно распределена по поверхности адсорбента. На поверхности имеются активные центры с большой концентрацией энергии.

3. Все активные центры поверхности занимают частицы адсорбата, образуя первый слой. Каждая молекула первого слоя представляет собой активный центр для дальнейшей адсорбции, что приводит к образованию второго, третьего и т. д. слоев. При этом построение последующих слоев возможно при незаполненном первом (рис. 19).

4. Взаимодействием соседних адсорбированных молекул в рамках одного слоя пренебрегают;

5. Существует динамическое равновесие адсорбция  десорбция.

Теория БЭТ объясняет s-образную изотерму адсорбции.

Кроме того, было получено уравнение, описывающее изотерму адсорбции, названное уравнением полимолекулярной адсорбции БЭТ :

,

где р s – давление насыщенного пара при данной температуре; р/р s – относительное давление пара;

,

k р – константа адсорбционного равновесия для первого слоя; k L – константа конденсации пара.

При малых относительных давлениях (р /р s << 1 и p << p s) уравнение БЭТ превращается в уравнение мономолекулярной адсорбции Ленгмюра.

Уравнение Фрейндлиха

На практике часто для аналитического описания зависимости адсорбции на твердом адсорбенте от концентрации адсорбтива применяется эмпирическое уравнение Фрейндлиха:

– для адсорбции газа;

– для адсорбции из раствора,

где β, n – эмпирические коэффициенты, зависящие от природы адсорбтива и температуры.

Уравнение Фрейндлиха представляет собой уравнение параболы, поэтому оно описывает не всю изотерму адсорбции, а только ее криволинейный участок.

Постоянные уравнения Фрейндлиха определяются на основе опытных данных. Для этого уравнение Фрейндлиха приводят к линейному виду (логарифмируют):

и строят график в координатах lnA = f ( lnр) , который представляет собой прямую (рис. 20). Тангенс угла наклона равенn , а отрезок, отсекаемый прямой на оси ординат, –lnp .

Уравнение Фрейндлиха – эмпирическое уравнение. Поэтому его можно применять для расчета величины адсорбции в том диапазоне равновесных концентраций, для которого найдены значения констант и n .

Преимущество – простота в использовании, поэтому часто применяется в инженерных расчетах.

Капиллярная конденсация

При давлении, равном давлению насыщенного парар s , начинается капиллярная конденсация .

Процесс сорбции паров твердыми пористыми адсорбентами включает 2 стадии.

П

Рис. 21. Капиллярная конденсация

ри невысоких давлениях пар адсорбируется на стенках капилляров (пор). В самых тонких капиллярах или в сужениях капилляров переменного сечения слои конденсата соединяются и, если жидкость хорошо

смачивает поверхность твердого тела, поверхность жидкости на границе с паром образует вогнутый мениск (рис. 21).

Известно, что давление насыщенного пара над вогнутой поверхностью (с радиусом кривизны r ) жидкости меньше давления пара над плоской поверхностью (радиус кривизны равен ).

В результате пар, который над плоской поверхностью является насыщенным, оказывается пересыщенным при контакте с вогнутой поверхностью жидкости и конденсируется.

На второй стадии идет заполнение капилляров жидкостью – капиллярная конденсация. Внешне это проявляется как резкое увеличение адсорбции при давлении р s (рис. 22).

Связь между радиусом сферического мениска и давлением насыщенного пара при температуреТ над мениском выражается уравнением Томсона (Кельвина):

где р r – давление насыщенного пара над вогнутым мениском с радиусом кривизныr ;р – давление насыщенного пара над плоской поверхностью (радиус кривизны плоской поверхности равен бесконечности); σ – поверх-

ностное натяжение жидкости; r – радиус кривизны вогнутого мениска;V m – мольный объем жидкости;R – универсальная газовая постоянная.

Уравнение Томсона-Кельвина является основным при расчетах, связанных с явлением капиллярной конденсации. Зная давления р r ир  , можно вычислить максимальный радиус капилляров, в которых будет происходить конденсация. Эти данные необходимы для правильного подбора адсорбента.

Капиллярная конденсация – вторичное явление. Она происходит не под действием адсорбционных сил, а под действием сил притяжения пара к вогнутому мениску жидкости.

Капиллярная конденсация происходит обычно довольно быстро, завершаясь в несколько минут.

На практике явление адсорбции, сопровождающееся капиллярной конденсацией, применяют в процессе рекуперации, т.е. улавливания и возвращения в производство летучих растворителей. Например, при получении пектина (который широко применяется в пищевой промышленности) из свекловичного жома используется этиловый спирт. В ходе производственных операций испаряется ~ 2 л этанола в расчете на 1 кг пектина. Для избежания потерь спирта воздух, насыщенный парами этанола, пропускают через слой пористого адсорбента – активированного угля, в капиллярах которого сначала идет адсорбция, а затем капиллярная конденсация спирта. После насыщения адсорбента через него пропускают горячий водяной пар, в результате чего происходит испарение и десорбция спирта, и водно-спиртовую паровую смесь конденсируют в холодильнике.

Ионная адсорбция из растворов

Ионная адсорбция - адсорбция из растворов сильных электролитов. В этом случае растворенное вещество адсорбируется в виде ионов.

Ионная адсорбция является более сложным процессом по сравнению с молекулярной адсорбцией, так как в растворе присутствуют уже частицы как минимум 3 видов: катионы, анионы растворенного вещества и молекулы растворителя.

Ионная адсорбция имеет ряд особенностей.

1 Адсорбируются заряженные частицы (ионы), а не молекулы;

    Адсорбция происходит только на полярных адсорбентах, часто ее так и называют – полярная адсорбция;

    Адсорбция сопровождается образованием двойного электрического слоя (ДЭС);

    Адсорбция является избирательной, т. е. на данном адсорбенте катионы и анионы адсорбируются неодинаково.

    В основе ионной адсорбции лежат химические силы, и она чаще всего кинетически необратима;

    Для ионной адсорбции характерно явление обменной адсорбции.

На ионную адсорбцию влияет рядфактров.

1 Химическая природа адсорбента

Чем более полярным является адсорбент, тем лучше он адсорбирует ионы из водных растворов. На активных центрах, несущих положительный заряд, адсорбируются анионы, на отрицательных – катионы.

2. Химическая природа ионов

а) На адсорбцию ионов большое влияние оказывает величина радиуса иона. Чем больше кристаллический радиус иона при одинаковом заряде, тем лучше он адсорбируется, так как с увеличением кристаллического радиуса иона возрастает его поляризуемость, а следовательно, способность притягиваться к полярной поверхности - адсорбироваться на ней. Одновременно увеличение кристаллического радиуса приводит к уменьшению гидратации иона, а это облегчает адсорбцию, В соответствии с этим ионы можно расположить в ряды по возрастающей способности к адсорбции, называемые лиотропными рядами:

Li + < Na + < К + < Rb + < Cs +

Mg 2+ < Ca 2+ < Sr 2+ < Ba 2+

Сl – < Br – < NQ 3 – < I – < NCS – .

адсорбционная способность возрастает

б) Чем больше заряд иона, тем сильнее ион притягивается противоположно заряженной поверхностью твердого тела, тем сильнее адсорбция:

К + << Са 2+ << А1 3+ << Th 4+ .

усиление адсорбции

Особый интерес для коллоидной химии представляет адсорбция ионов поверхностью кристалла, в состав которого входят такие же или родственные ионы. В этом случае адсорбцию можно рассматривать как кристаизацию, т.е. достройку кристаллической решетки способными адсорбироваться на ней ионами. Это позволило Панету и Фаянсу сформулировать следующее правило:

На кристаллической поверхности адсорбируются ионы, которые способны достраивать кристаллическую решетку и дают труднорастворимое соединение с ионами, входящими в кристалл.

Так, если мы имеем кристалл хлорида серебра nAgCl, а в растворе ионы К + и Сl – , то адсорбироваться на кристалле будут ионы Сl – .

Ионообменная адсорбция

Ионообменная адсорбция - это процесс, при котором твердый адсорбент обменивает свои ионы на ионы того же знака из жидкого раствора.

Твердый адсорбент, практически нерастворимый в воде поглощает из раствора ионы одного заряда (катионы или анионы) и вместо них отдает в раствор эквивалентное число других ионов того же заряда. Такой обменный ионный процесс аналогичен обменным химическим реакциям, но только протекает на поверхности твердой фазы.

Ионообменная адсорбция имеет следующие особенности:

    специфична, т. е. к обмену способны только определенные ионы;

    не всегда обратима;

    протекает более медленно, чем молекулярная адсорбция;

    может приводить к изменению рН среды.

Вещества, проявляющие способность к ионному обмену, называются ионитами. В зависимости от того, какой вид ионов участвует в обмене, иониты подразделяются на катиониты и аниониты. Катиониты способны обменивать катионы, в т. ч. ион Н + , аниониты – анионы, в т. ч. ион ОН – . Существуют также амфолиты, которые в зависимости от условий способны проявлять как катионообменные, так и анионообменные свойства.

Иониты имеют структуру в виде каркаса, «сшитого», обычно, ковалентными связями. Каркас имеет положительный или отрицательный заряд, скомпенсированный противоположным зарядом подвижных ионов (противоионов), которые могут легко заменяться на другие ионы с зарядом того же знака. Каркас выступает в роли полииона и обусловливает нерастворимость ионита в растворителях.

Различают природные и синтетические иониты. Природные: алюмосиликатные материалы – гидрослюда, цеолиты и т.д. Синтетические: ионообменные смолы, сульфитированные угли, ионообменные целлюлозы.

Ионный обмен широко применяется в различных отраслях промышленности. Иониты применяют для очистки сточных вод, умягчения и обессоливания воды, при производстве сахара, молока (для изменения его солевого состава), вина (для предотвращения помутнения и понижения кислотности).

ВВЕДЕНИЕ

Настоящая разработка является изложением материала специального курса лекций, который автор в течение ряда лет читает студентам, дипломникам и аспирантам, специализирующимся в области адсорбции. Автор надеется, что это учебно-методическое пособие восполнит пробел, который имеется в научной и учебной литературе по рассматриваемой теме, и поможет начинающим исследователям познакомится с основными проблемами и достижениями науки об адсорбции – этом сложнейшем разделе термодинамики.

В предлагаемом варианте разработки не рассмотрены такие важные разделы, как адсорбция на мезопористых адсорбентах, сопровождающаяся процессами капиллярной конденсации, применение аппарата молекулярностатистической термодинамики, сложных решеточных моделей, квантовохимических и численных методов для анализа адсорбционных явлений. Автор надеется осуществить необходимые дополнения в 2008-2009г.г. и будет признателен за все замечания и предложения по улучшению данного

Лекции 1. Метод избытков Гиббса. Лекция 2. Метод полного содержания.

Лекции 3. Термодинамика адсорбции. Стехиометрическая теория адсорбции.

Лекция 4. Термодинамика адсорбции бинарных смесей флюидов и термодинамика адсорбированных растворов.

Лекция 5: Описание адсорбционных равновесий газов, паров и растворов на макро и микропористых адсорбентах.

Лекция 1. Метод избытков Гиббса.

Введение.

Адсорбция – это сгущение вещества у границы раздела фаз, обусловленное ненасыщенностью связей поверхностных атомов или молекул и, как следствие этого, существованием адсорбционного поля, распространяющегося, строго говоря, до бесконечно удаленных от поверхности адсорбента точек в объемной фазе. Это обстоятельство приводит к необходимости учитывать следующие особенности таких систем: 1.Разделение системы на адсорбционную и объемную фазы не может быть проведено строго1,2 .

2. Адсорбционная фаза, выделенная на основании каких-либо дополнительных (всегда приближенных) соображений, будет энергетически неоднородна (она будет находиться в неоднородном адсорбционном поле) и, поскольку эта неоднородность не может быть учтена в рамках феноменологической термодинамики, описание свойств адсорбционной фазы приходится проводить с использованием средних по фазе значений параметров (концентраций, химических потенциалов и т. д.)3 .

Параметры адсорбционной фазы: концентрации – с ,x , коэффициенты активности -γ , химические потенциалы -μ отмечаются либо чертой над соответствующим символом, либо подстрочным индексом R.

3. Наличие адсорбционного поля необходимо учитывать в выражении для химического потенциала, т. е. использовать полные химические

потенциалы для компонентов адсорбционной фазы3 (подробнее см. методическую разработку к курсу лекций по физической химии, гл. 2: http://www.chem.msu.su/rus/teaching/tolmachev/tolmachev.pdf):

Для объемной газовой или паровой фазы:

μ (P , T)= μ0

1)+ RTln

P iγ i

P i,ст.

μ i (Ci , T)= μ0 i,ид. (T, Ci,ст. = 1)+ RTln

C iγ i

C i,ст.

1) =μ 0

1)− RTlnRT

Для объемной жидкой фазы:

μ i (Xi , T, P)= μ o i,ид. (T, P, Xст. = 1)+ RTln Xi γ i,x

μ i (Ci , T, P)= μ o i,ид. (T, P,Cст. )+ RTln

C iγ i

C i,ст.= 1 или С i,ст =С i 0

C i,ст.

Для адсорбционной фазы:

Введем новую функцию состояния:

G *= G − σ W , dG* = dG − Wd σ − σ dW = -SdT + VdP+ ∑ μ i dn i - Wdσ

где: W- поверхность (объем пор) адсорбента, σ − поверхностное натяжение (внутреннее давление).

Используя уравнения Максвелла, получим:

∂μ i

∂W

= −s i ,

μi (σ) = μi (σ= σ0 ) − s i (σ− σ0 )

∂n i

∂ σ P, T, n

P , T, σ , nj

И, соответственно (s i - парциальная мольная площадка (объем) адсорбата):

i = μ 0 i,ид.(T, P,

i,ст. )+ RT ln

− s i (σ − σ0 )

c i,ст.

i = μ 0 i,x,ид.(T, P,

i ,ст. = 1)+ RT ln

i,x − s i(σ − σ 0)

Стандартные состояния для адсорбатов и отсчетные состояния для γ i :

i,ст. =

i,c,отсч. = 1 при

i,ст. = 1

i,x,отсч.. = 1 при

i,ст. = 1

Помимо указанных выше вариантов выбора стандартных состояний в качестве альтернативы иногда рассматриваются: давление насыщенного пара и насыщенные растворы. При анализе межфазовых равновесий удобно использовать стандартные состояния компонента в двух фазах равновесные

друг другу, например давление насыщенного пара и концентрацию чистой

жидкости или адсорбата при полном насыщении адсорбента (С i,ст. = С 0 i ).

При этом:

μ i = RT ln

P iγ i

RT ln

− s i (σ − σ0

P i,s

С i,s

Полезно обратить внимание на две формы уравнения ГиббсаДюгема, широко используемых для адсорбционных растворов в рамках метода полного содержания. В более старых моделях адсорбент часто не рассматривался в качестве компонента адсорбционного раствора, а только как источник адсорбционного поля (поверхностной энергии). В этом случае, например, при адсорбции однокомпонентного пара уравнение ГиббсаДюгема имеет вид (P,T=const.):

i + Wdσ= 0

(W- площадь поверхности адсорбента,μ i -полный химический потенциал адсорбата).

В современных моделях адсорбент (R) является компонентом адсорбционного раствора. Он вводится либо в виде адсорбционных центров (как в моделях Ленгмюра и Толмачева), либо в виде вакансий (свободных пустот определенных размеров в адсорбционном растворе).

В этом случае уравнение Гиббса-Дюгема может быть представлено в двух эквивалентных формах (однокомпонентный пар, P,T=const.):

(мольные площадки компонентов - s=const., s i +s R =W ) (1.8) сводится к виду:

сi dμ i + cR dμ R − (si + sR )dσ+ Wdσ= сi dμ iR + cR dμ R = 0(1.9)

Уравнения (1.7), (1.8) позволяют использовать равенство полных потенциалов в равновесных фазах, а (1.9) более удобно для анализа свойств адсорбционного раствора.

Указанные выше особенности адсорбционных систем привели к разработке двух вариантов их термодинамического описания:

1.Метода избытков Гиббса 1,2 - термодинамически строгому описанию изменения при адсорбции свойстввсей системы в целом на основе экспериментально определяемыхизбыточных величин адсорбции (см. ниже) без ее разделения на две фазы. Этот метод, очевидно, не позволяет получать какую-либо информацию о свойствах адсорбционной фазы и, поэтому, недостаточно информативен, особенно, при решении практических задач, поскольку не дает информации о емкости адсорбента по отношению к компонентам объемной фазы, о ее структуре, свойствах и т. п..

2. Метода полного содержания, 3-6 основанного на разделении системы на две фазы (см. ниже) и описании ее свойств, как гетерогенной системы с использованием абсолютных концентраций компонентов в каждой из равновесных фаз. Термодинамически этот метод менее строг, т.к. он основан намодельном приближении, определяющем проведение границы раздела между объемной и адсорбционной фазами, но он, очевидно, значительно более информативен, т.к. позволяет получать характеристики адсорбционной фазы, что исключительно важно с практической точки зрения, и, кроме того, позволяет сопоставлять их с рассчитываемыми на основе различных молекулярных моделей, обязательно связанных с заданием конкретного расположения молекул у поверхности адсорбента.

В этой связи значительная часть современной информации об адсорбции представляется в рамках метода полного содержания, а метод избытков используется для получения первичной информации и как кретериальный (см. ниже) при выборе модели для перехода к методу полного содержания. Рассмотрим кратко оба эти метода:

1.2. Метод избытков Гиббса .

Краткое изложение основ «Метода избытков Гиббса» начнем с двух цитат, достаточно полно излагающих основную идею метода и отражающих два подхода к оценке значения этого метода в современной теории адсорбционных явлений:

1. «Особенность подхода Гиббса заключается в том, что он сразу отказался от попытки характеризовать адсорбцию какими-либо абсолютными величинами, т. е. рассматривать межфазный слой как некоторый физический объект, имеющий естественные границы и, следовательно, содержащий определенное количество вещества в определенном объеме, которое можно было бы приравнять измеряемой величине адсорбции.Такое рассмотрение противоречило бы принципам измерения адсорбции. По Гиббсу величина адсорбции (Г ), а также связанные с ней термодинамические функции – этоизбыточные величины , для вычисления которых вместо одной системы нужно рассматривать две: реальную, интересующую нас систему и определенным образом вводимуюсистему сравнения – нулевой уровень, от которого производится отсчет адсорбционных свойств»2 и далее: «Преимуществом избыточных величин является то, что они непосредственно измеряются в эксперименте и поэтому не связаны ни с какими моделями. С их помощью можно построить термодинамическую теорию, которая будет включать только экспериментальные величины»2 ;

2. «Некоторые особенности предложенного термодинамического формализма для описания адсорбционных явлений находятся, как нам кажется, в резком несоответствии с современным состоянием учения об адсорбции. Величина адсорбции определяется по Гиббсу как некоторая избыточная величина, представляющая собой разность количества адсорбтива в реальной адсорбционной системе и в фиктивной системе, характеризуемой теми же макроскопическими параметрами состояния (объем, давление, температура), что и реальная система, но в которой сосуществующие фазы однородны вплоть до некоторой математической поверхности раздела фаз. Избыточная величина адсорбции определяется непосредственно из адсорбционного опыта, и в любом уравнении

адсорбционной теории Гиббса разрешается пользоваться только этой величиной. С нашей точки зрения, использование во всех случаях только избыточной адсорбции поставило метод Гиббса в непримиримое противоречие с адсорбционной наукой конца XX века. В самом деле, в любом уравнении изотермы адсорбции (например, уравнении Ленгмюра) или уравнении состояния адсорбционной фазы, опирающихся на молекулярнокинетические представления, входит не число избыточных молекул, а полное число реальных молекул в области неоднородности. Определяемые на опыте теплоты адсорбции связаны с изменением энтальпии при попадании всех, а не только избыточных молекул в поле адсорбента. В двумерных фазовых переходах участвуют не только избыточные, а все адсорбированные молекулы. Наконец, применяя для описания адсорбционных явлений метод статистической термодинамики, следует помнить, что в статистической физике вообще нет «избыточных» молекул. Таким образом, практически при любом современном исследовании адсорбции необходимо вводить в

рассмотрение все молекулы адсорбата, в то время как в термодинамических уравнениях по Гиббсу во имя эфемерной «строгости» надо учитывать только избыточную адсорбцию»5

Суть этого метода рассмотрим сначала на примере адсорбции однокомпонентного газа.

Введем в три (I, II, III) одинаковых сосуда (рис. 1) с объемами V 0 одинаковые количества молей газаn 0. Пусть стенки сосуда I абсолютно не адсорбируют данный газ – тогда его давление в сосуде I будетР 0 , молярная плотностьρ 0 , а количество молейn 0 = ρ 0 V 0 . Пусть в сосуде II нижняя стенка будетадсорбирующей поверхностью . Тогда у поверхности плотность газа увеличится, а вдали от поверхности в объеме сосуда уменьшится доρ ρ распространяется вплоть до нижней адсорбирующей

поверхности (адсорбционная фаза отождествляется с геометрической поверхностью, расположенной на нижней стенке сосуда II).

Изменение количества газа в объеме сосуда II по сравнению с сосудом I:

ne = V ρ

− V ρ

представляющее избыток газа у поверхности по сравнению с его количеством в одинаковом объеме вдалеке от поверхности, называется

избыточной величиной адсорбции или кратко избыточной адсорбцией данного газа. Очевидно, что только эта величинаи может быть измерена в реальном адсорбционном эксперименте. Обычно ее относят к единице веса (или поверхности) адсорбента. Например:

Г =

V0 ρ0

− V 0

Проведем теперь в сосуде III разделение системы на объемную и адсорбционную фазы, проведя (способ проведения будет рассмотрен ниже) границу раздела фаз на некотором расстоянии от адсорбирующей поверхности. В этом случае мы сможем рассчитать абсолютную величину адсорбции газа в объеме адсорбционной фазы (среднюю по всему объему

адсорбционной фазы )V , а объем газовой фазы будет равен:

V = V0 − V

Действительно, абсолютная адсорбция n будет равна.

Адсорбция газов и паров на твердых адсорбентах (г/тв, ж/тв) является чисто поверхностным процессом, который заключается во взаимодействии молекул адсорбата (адсорбтива) с поверхностью адсорбента за счет сил Ван-дер-Ваальса и водородных связей. Количество поглощенного газа или пара твердым адсорбентом в результате адсорбции зависит от следующих факторов:

Ø природы и площади поверхности адсорбента;

Ø природы поглощаемого газа или пара;

Ø концентрации адсорбтива (газа или пара);

Ø температуры.

Адсорбция газов и паров на твердых адсорбентах зависит прежде всего от свободной поверхностной энергии, которая имеет большую величину для адсорбентов с аморфной структурой (активированный уголь) на выступах, впадинах и в капиллярах, а для кристаллических (оксиды кремния, алюминия) - на ребрах, углах и в трещинах кристаллов. Поэтому адсорбент тем эффективней, чем мельче измельчен и чем выше его пористость. Важной характеристикой твердых адсорбентов является величина удельной поверхности S уд (м 2 /г). У непористых адсорбентов (оксиды металлов, соли, сажа) S уд = 0,01 – 10 м 2 /г, а у пористых (активированный уголь, силикагель (SiO 2)n , цеолиты (Me n Al x Si y (H 2 O) z , где Me –Na, K, Ca, Mg) - S уд = 10 3 –10 5 м 2 /г. Процесс активации углей заключается в обжиге угля без доступа воздуха или в пропарке его перегретым паром, при этом происходит увеличениеих пористости за счет очистки от смол, заполняющих поры, и создание новых пор. Например, 1 таблетка активированного угля, массой 0,25 г, имеет поверхность »100 м 2 .

Пористые тела классифицируют на макропористые, переходнопористые и микропористые в зависимости от размера пор и механизма протекающих в них адсорбционных процессов.

Макропористые тела имеют поры радиусом больше 50 нм, S уд =
0,5–2 м 2 /г. Такие поры намного больше адсорбируемых молекул. Их стенки рассматривают как ровные поверхности, поэтому для макропористых тел применима теория адсорбции Ленгмюра. В адсорбентах макропоры играют роль транспортных каналов. К макропористым телам относятся асбест, древесина, хлеб, сухари и др.

Переходнопористые (мезопористые) тела имеют размеры пор
2–50 нм, S уд = 10–500 м 2 /г. На стенках этих пор при малых давлениях происходит полимолекулярная адсорбция паров, которая с увеличением давления заканчивается капиллярной конденсацией. К переходнопористым адсорбентам можно отнести силикагели, алюмогели, алюмосиликагели.

Микропористые тела обладают порами, соизмеримыми с размерами адсорбируемых молекул. Радиусы пор лежат в пределах от 0,5 до 2 нм, S уд = 500–1000 м 2 /г и выше. Отличительная черта микропор – близкое расположение противоположных стенок. Поэтому поля поверхностных сил перекрываются и действуют во всем объеме микропор. К микропористым телам применима адсорбционная теория объемного заполнения микропор. К микропористым адсорбентам относят цеолиты и некоторые активированные угли.



Для микропористых адсорбентов характерен так называемый «ситовый» эффект. Он заключается в том, что адсорбироваться могут только те молекулы, размеры которых меньше размеров микропор или равны им, в связи с чем, все микропористые адсорбенты называют «молекулярным ситами».

Большинство промышленных адсорбентов характеризуется широкой полидисперсностью, и относится к смешанным типам адсорбентов.

В зависимости от природы адсорбенты подразделяются на неполярные (гидрофобные) – сажа, активированный уголь, тальк (3MgO×H 2 O×4SiO 2), фторопласт, и полярные (гидрофильные) – силикагель (SiO 2)n, алюмогель (Al 2 O 3)n, глины, цеолиты.

Адсорбируемость газа или пара определяется его сродством к поверхности адсорбента. Полярные вещества лучше адсорбируются на полярных адсорбентах, а неполярные – на неполярных адсорбентах. При этом, чем больше адсорбтив склонен к межмолекулярным взаимодействиям, тем лучше он адсорбируется.

Адсорбируемость различных газов на активированном угле приведена в табл. 1 (см. также табл.8 приложения).

Таблица 1

& При физической адсорбции смеси газов или паров лучше адсорбируется тот компонент, который легче сжижается, так как его молекулы более склонны к межмолекулярным взаимодействиям.

Влияние концентрации (или давления) газов или паров на процесс адсорбции имеет сложный характер. Графически (рис. 5) это выражается зависимостью величины удельной адсорбции (Г) от концентрации поглощаемого вещества в системе при постоянной температуре и называется изотермой адсорбции .

Рис. 5. Изотерма адсорбции Ленгмюра

Скорость адсорбции на легкодоступной поверхности большая, а на пористых адсорбентах протекает медленнее, и с тем меньшей скоростью, чем тоньше поры адсорбента. Поэтому время установления адсорбционного равновесия на пористых адсорбентах, как правило, значительно, что нужно помнить при работе с пористыми адсорбентами.

При равновесии концентрация газа или пара в окружающей среде и на поверхности адсорбента постоянны. С увеличением концентрации или давления газа в системе возрастает и его адсорбция, но до определенного предела. В этом случае изотерма адсорбции содержит три участка. При очень малых концентрациях изотерма прямолинейна (I), т.е. удельная адсорбция (Г) возрастает практически прямо пропорционально концентрации газа. При больших концентрациях изотерма имеет вид горизонтальной прямой (III), т.е. величина удельной адсорбции, достигнув величины Г ¥ , не изменяется. Это предел адсорбции, отвечающий полному насыщению поверхности адсорбента молекулами адсорбтива. Средний участок изотермы (II) адсорбции соответствует еще неполному насыщению поверхности.

Закономерности адсорбции, которые выявляет изотерма адсорбции, описываются теорией Ленгмюра , основные положения которой следующие:

Ø адсорбция молекул происходит не на всей поверхности адсорбента, а только на адсорбционных (активных) центрах, где имеются участки с нескомпенсированными силовыми полями;

Ø каждый адсорбционный центр может удерживать только одну молекулу адсорбтива, при этом адсорбированные молекулы не взаимодействуют со свободными молекулами, что и приводит к образованию мономолекулярного слоя поглощаемого вещества;

Ø процесс адсорбции носит динамический характер, т.к. адсорбированные молекулы удерживаются адсорбционными центрами только в течение определенного промежутка времени, после чего происходит десорбция этих молекул и адсорбция того же числа новых молекул.

Исходя из этих положений, Ленгмюр предложил уравнение адсорбции:

Г = Г ¥ ,

где Г ¥ – величина предельной адсорбции; с – равновесная концентрация адсорбтива в системе, a - константа адсорбционного равновесия.

Американский химик Ирвинг Ленгмюр (1881-1957) родился в Нью-Йорке, в Бруклине. Он был третьим ребенком в семье Чарльза и Сэйди (Каминг) Ленгмюр. Отец его, шотландец по происхождению, работал страховым агентом, а род его матери восходил к первым английским переселенцам-пуританам, которые высадились на землю Северной Америки с корабля «Мейфлауэр» в 1620 г. Получив два образования – химическое и по математической физике, – Ленгмюр посвятил свою жизнь фундаментальным научным исследованиям.

В основе его первого крупного вклада в науку лежали исследования, проведенные им в ходе подготовки докторской диссертации. Они касались характеристик нитей по их способности гореть в различных газах. Через три года после того, как Ленгмюр начал работать в компании «Дженерал электрик», он оспорил общепринятое среди инженеров-электриков представление о том, что безукоризненная лампа получается благодаря безукоризненному вакууму. Вместо этого он доказал, что если колба электрической лампы наполнена азотом, то лампа светит сильнее и ярче, чем любая другая. Простота и эффективность новой электрической лампы обеспечивала экономию огромного количества энергии. Интерес Ленгмюра к явлениям, связанным с вакуумом, привел его к изобретению в 1916 г. ртутного высоковакуумного насоса. Этот насос был в 100 раз более мощным, чем любой из ранее существовавших, и с его помощью Ленгмюру удалось создать низкое давление, необходимое для изготовления вакуумных трубок, которые применяются в радиотехнике. Приблизительно в это же время Ленгмюр подверг анализу узкую пластинку вольфрама, покрытую оксидом тория, с целью установить ее способность испускать электроны. Он обнаружил, что вольфрамовая нить «ведет себя лучше всего», если она покрыта слоем оксида тория толщиной всего в одну молекулу.

Это открытие заставило Ленгмюра обратиться к изучению поверхностных явлений – молекулярной активности, которая наблюдается в тонких покрытиях или на поверхностях. В этом фактически двухмерном мире он изучал адсорбцию и поверхностное напряжение, а также поведение тонких покрытий жидких и твердых тел. Адсорбцию – способность определенных веществ удерживать на своей поверхности молекулы других веществ – исследовали в XIX в. шотландский химик Д. Дьюар и американский физик Д.Гиббс. Однако обобщенная, опирающаяся на результаты экспериментов концепция все еще не была выработана.

Основываясь на имеющихся достижениях в области теории строения атома, Ленгмюр описал химическое поведение поверхностей как поведение отдельных атомов и молекул, которые занимают определенные места, подобно фигурам на шахматной доске. Он также установил, что в явлении адсорбции принимают участие 6 сил: кулоновские силы, дипольные межмолекулярные силы, валентные силы, силы притяжения Вандер-Ваальса, силы отталкивания, вызываемые непроницаемостью заполненных электронных оболочек, и электронное давление, которое уравновешивает силы кулоновского взаимодействия. Во время первой мировой войны Ленгмюру пришлось прервать изучение химии поверхностей, так как он разрабатывал механизм обнаружения подводных лодок для военно-морских сил США.

В 1923 г. Ленгмюр приступил к продолжавшемуся в течение девяти лет исследованию свойств электрических разрядов в газах. Ученый ввел термин «плазма» для ионизированного газа, который образовывался, когда в ходе экспериментов применялись чрезвычайно мощные переменные токи. Он также разработал теорию электронной температуры и способ измерения как электронной температуры, так и ионной плотности с помощью специального электрода, называемого теперь щупом Ленгмюра. Контролируемый термоядерный синтез основывается на теориях плазмы, которые были впервые выдвинуты Ленгмюром.

В 1932 г. Ленгмюру была присуждена Нобелевская премия по химии «за открытия и исследования в области химии поверхностных явлений». Его вклад в химию поверхностных процессов имел очень большое значение для многих технических областей: в биологии – для изучения сложных вирусов, в химии – для исследования гигантских молекул, в оптике – для изучения передачи света.

Начиная с 1938 г. и до выхода в отставку Ленгмюр посвятил себя изучению мира природы, особенно атмосферы. Во время второй мировой войны Ленгмюр участвовал в создании аппаратуры, обеспечивающей дымовую завесу, которая скрывала войска и корабли от наблюдения противника. Ученый работал также над созданием методов предотвращения оледенения самолетов. После войны Ленгмюр вернулся к интересовавшим его занятиям метеорологией и выступал за создание контроля над погодой, осуществляемого путем рассеивания облаков с помощью сухого льда (твердой углекислоты) и йодида серебра.

Ленгмюр, которого постоянно приглашали выступать в качестве лектора и популяризатора научных знаний, с удовольствием делился своими взглядами на философию науки и взаимоотношение науки и общества. Одной из его наиболее любимых тем была: «Свобода, которая характерна для демократии и необходима для научных открытий». Ленгмюр воспитал двух приемных детей.

Помимо Нобелевской премии, Ленгмюр получил много других наград. Он был членом американской Национальной академии наук и Лондонского королевского общества, президентом Американского химического общества (1929) и Американской ассоциации содействия развитию науки (1941). Ленгмюру были присвоены 15 почетных ученых степеней. Его именем названа гора на Аляске, а также один из колледжей Нью-Йоркского государственного университета в Стони-Брук.

Для определения величины адсорбции на твердом адсорбенте применяется также эмпирическое уравнение Фрейндлиха :

Г = = K·р 1 / n ; или Г = = K·с 1 / n ,

где K и 1/n – эмпирические константы, не имеющие физического смысла;

р и с – равновесные давление и концентрация адсорбтива.

На практике при больших концентрациях адсорбтива на изотерме адсорбции после участка, соответствующего насыщению поверхности, обычно наблюдается резкое увеличение удельной адсорбции. Это происходит из-за перехода от мономолекулярной к полимолекулярной адсорбции, что и приводит к увеличению удельной адсорбции (рис.6).

Рис. 6. Переход от мономолекулярной к полимолекулярной адсорбции

Сначала пар адсорбируется в порах и конденсируется в жидкость, заполняя самые тонкие капилляры с образованием вогнутого мениска. Давление насыщенного пара над вогнутым мениском всегда меньше давления пара над плоской поверхностью жидкости, поэтому в капиллярах пар начинает конденсироваться при более низком его давлении, заполняя, прежде всего, наиболее мелкие поры.

Таким образом, капиллярная конденсация является вторичным процессом и происходит за счет сил притяжения молекул пара к поверхности вогнутого мениска жидкости в порах. Капиллярная конденсация происходит достаточно быстро в течение нескольких минут.

Повышение температуры, в соответствии с принципом Ле-Шателье, уменьшает физическую адсорбцию, так как она является экзотермическим процессом (DН < 0) (рис.7).


Рис. 7. Влияние температуры на величину адсорбции

Герберт Макс Фрейндлих (1880 – 1941) – немецкий физикохимик родился в Берлине. Учился в Мюнхенском и Лейпцигском университетах (доктор философии, 1908). Преподавал в Лейпцигском университете, в 1911-1916 гг. в Высшей технической школе Брауншвейга, с 1916 г. работал в Институте физической химии и электрохимии кайзера Вильгельма в Берлине. С 1923 г. профессор Берлинского университета, с 1925 г. – Высшей технической школы в Берлине. В 1933 г. эмигрировал в Англию, где преподавал в Университетском колледже в Лондоне. С 1938 г. профессор университета Миннесоты (США).

Основные работы относятся к коллоидной химии. Исследовал (с 1911) коагуляцию и устойчивость коллоидных растворов. Установил (1920-1922) зависимость адсорбции от температуры, подтвердил справедливость эмпирического уравнения изотермы адсорбции, которое вывел в 1888 г. голландский химик И. М. ван Бемелен (т.н. изотерма адсорбции Фрейндлиха). Открыл (1930) коллоидные системы, способные к обратимому гелеобразованию при постоянной температуре и покое. Установил способность твёрдообразных структур обратимо разрушаться (разжижаться) при механическом воздействии и назвал это явление тиксотропией. Использовал эффект тиксотропии в технологии силикатов. Занимался коллоиднохимическими проблемами, связанными с биологией и медициной.

Адсорбция на поверхности раздела твердое вещество - газ.

Адсорбция газа на твердом теле является простейшим случаем адсорбционного процесса, так как система состоит всего из двух компонентов. Конкретный пример такой адсорбции мы рассмотрели в предыдущем параграфе. Опыт показывает, что при прочих рав­ных условиях для твердого адсорбента и данного адсорбируемого газа количество адсорбируемого вещества будет возрастать по ме­ре увеличения адсорбирующей поверхности. Следовательно, чтобы достигнуть большого адсорбционного эффекта, необходимо иметь как можно большую поверхность поглотителя. Способность адсорбента к поглощению газов определяется не только его пористостью, но и физическим состоянием; так, адсорбенты в аморфном состоя­нии лучше адсорбируют газы, чем в кристаллическом. В качестве адсорбентов на практике применяют древесный и ко­стяной угли, силикагель, высокодисперсные металлы, полученные восстановлением их из оксидов.

Активированный уголь как адсорбент применяет­ся в противогазах, а также для очистки воздуха на промышленных предприятиях, для осветления различных растворов и т. п. Высо­кая адсорбционная способность активированного угля объясня­ется, сильно развитой поверхностью. Так, суммарная поверхность всех пор, заключающихся в 1 г такого угля, составляет от 300 до 1000 м 2 . Такая огромная площадь обус­ловливает возникновение большого молекулярного силового поля и, стало быть, избыток поверхностной энергии на границе уголь - газ. За счет свободной поверхностной энергии и происходит адсорб­ция газа, т. е. повышение его концентрации в поверхностном слое угля при одновременном понижении концентрации газа в окружа­ющем пространстве.

Как показали исследования, время пребывания молекул газа на поверхности твердого адсорбента очень мало: они удерживают­ся на адсорбенте всего сотые и тысячные доли секунды и, десорбируясь, замещаются на новые частицы. В конечном итоге устанавли­вается динамическое равновесие между свободными и адсорбиро­ванными молекулами. Скорость достижения адсорбционного рав­новесия для разных газов неодинакова: при адсорбции СО 2 на угле равновесие наступает через 20 с, при адсорбции О 2 - через 2,5 ч, при адсорбции N 2 - через 20 ч и т. п. Скорость адсорбции имеет большое значение для практического использования различных ад­сорбентов. Например, в широко используемом при химической за­щите противогазе проходящий через коробку воздух должен очень быстро очищаться от примесей отравляющих веществ. Это возмож­но лишь при высоких скоростях адсорбционных процессов.

Активированный уголь в противогазе играет роль не только адсорбента целого ряда отравляющих веществ, но и катализатора реакции разложения многих из них. В качестве примера можно указать на каталитический гидролиз фосгена

или хлорпикрина

Опыт показывает, что адсорбция зависит не только от приро­ды поглотителя, но и от природы поглощаемого газа, при прочих равных ус­ловиях сильнее адсорбируются те газы, которые легче конденсиру­ются в жидкость. Следовательно, они обладают более высокой температурой кипения в сжиженном состоянии.

Для объяснения явлений адсорбции существуют различные тео­рии. Одна из них - физическая теория, согласно которой природа адсорбционных сил чисто физическая и связана с проявлением межмолекулярных сил. Согласно химической теории ненасыщенные силы адсорбционных поверхностных слоев являются химическими (валентными) силами.

Известно несколько теорий физической адсорбции, из которых интерес представляет теория мономолекулярной адсорбции Ленгмюра (1915). В построении ее ученый опирался на представление об адсорбционных силах, которые впервые были высказаны рус­ским ученым Л. Г. Гуревичем. Основные положения теории Ленгмюра:

1. Адсорбция вызывается валентными силами или силами оста­точной химической валентности.

2. Адсорбция происходит не на всей поверхности адсорбента, а лишь на активных центрах этой поверхности. Такими центрами являются углубления и выступы, имеющиеся на любой, даже самой гладкой поверхности. Действие таких центров сводится к высокой ненасыщенности их силового поля, благодаря чему центры удержи­вают газовые молекулы. Причем активность центра тем выше, чем меньше насыщена молекула или атом адсорбента.

3. Адсорбционные силы обладают малым радиусом действия, вследствие чего каждый активный центр адсорбирует лишь одну молекулу адсорбтива, и на адсорбенте образуется мономолекуляр­ный слой адсорбтива.

4. Адсорбированные молекулы газа не сидят прочно на поверх­ности адсорбента; они непрерывно обмениваются с молекулами в газовой сфере, при этом устанавливается динамическое адсорбци­онное равновесие. Каждая молекула задерживается в течение ко­роткого времени на поверхности, затем в результате флуктуации энергии молекулы отрываются от активного центра, уступая место новой молекуле.

В отличие от физической адсорбции химическая адсорбция, или хемосорбция , осуществляется при помощи химических сил. Эти виды адсорбции имеют следующие отличительные признаки: физи­ческая адсорбция - явление обратимое, и теплота ее составляет всего 8,4-33,5 кДж/моль, в то время как теплота химической ад­сорбции достигает десятков и сотен кДж/моль.

С повышением тем­пературы физическая адсорбция уменьшается, а химическая уве­личивается.

Объясняется это тем, что химическая адсорбция требу­ет более значительной энергии активации (40-120 кДж/моль).

Химическая адсорбция необратима, поэтому процесс десорбции состоит не в простом отрыве адсорбированной молекулы, а в раз­ложении поверхностного химического соединения. В качестве ти­пичного примера химической адсорбции можно назвать адсорбцию кислорода на поверхности угля.

Весьма характерным является то, что при нагревании с поверх­ности адсорбента удаляется не кислород, а окись углерода.

Согласно современным представлениям при адсорбции проявля­ются все виды физических и химических сил, т. е. адсорбция, по существу, является физико-химическим процессом. И действитель­но, советские ученые Н. А. Шилов, М. М. Дубинин, Л. К. Лепинь установили, что при различных случаях адсорбции играют роль физические и химические взаимодействия между адсорбентом и адсорбируемым веществом. Это особенно четко проявляется при адсорбции газов. Исследования показали, что при поглощении первых порций газа на чистой поверхности адсорбента чаще проявляется действие химических сил, а при последующей адсорбции газа, при повышении давления процесс переходит постепенно в чисто физический.