2 контура отопления. Правила установки двухконтурного оборудования. Горизонтальный и вертикальный тип компоновки

В автономной системе отопления нередко наблюдается ситуация, когда удаленные от котла радиаторы отдают меньшее количество тепла, чем установленные ближе. Проблема может заключаться не только в большой протяженности магистрали, но и в неправильно составленной схеме с единым контуром. Можно ли сделать их несколько и что такое контуры отопления, их описание и балансировка?

Проблемы балансировки контуров отопления

Самым простым примером грамотного распределения теплоносителя по нескольким потребителям является отопление многоэтажного дома. Если бы при его создании использовалась одноконтурная схема – некоторые потребители остались бы без тепла. Поэтому в здании предусмотрено несколько контуров отопления. Такой же принцип можно применить и для автономной системы частного дома или коттеджа.

Но сначала нужно разобраться, что такое контур отопления. Представим, что на определенном участке трубопровода происходит разветвление, и часть теплоносителя направляется по отдельному контуру в другое помещение. При этом длина каждого из контуров может быть различна, так как комнаты в доме имеют неодинаковые площади. В результате в общую обратную трубу попадает вода с разной степенью остывания. Но большая проблема заключается в неравномерном распределении тепла в доме. Для устранения этого необходима балансировка контуров отопления.

Этот комплекс мер, направленных на равномерное распределение теплоносителя в зависимости от протяженности каждой ветви отопительной системы. Это можно предусмотреть еще на этапе проектирования:

  • Если в системе есть два контура отопления – их длина должна быть примерно равна. Для этого делают разделение трубопроводов по площадям каждой комнаты;
  • Установка распределительных коллекторов . Их преимущества заключается в возможности использования специальных элементов, которые в автоматическом режиме ограничивают приток теплоносителя. Определяющим показателем является длина контура отопления;
  • Применение специальных устройств , регулирующих объем горячей воды в зависимости от установленных значений.

Итогом предпринятых мер по балансировке контуров отопления должна стать равномерная температура во всех помещениях дома.

Расчет балансировки контуров отопления нужно делать еще на этапе проектирования. Не всегда можно сделать модификацию уже существующей системы.

Регулировка водяного теплого пола

Чаще всего с проблемой терморегулирования сталкиваются при проектировании системы водяного теплого пола. Именно поэтому в его схеме в обязательном порядке предусмотрен коллектор, который отвечает за этот закрытый контур отопления.

К каждому входному и выходному патрубку подключаются отдельные контура. Не всегда их длина может быть одинаковой. Поэтому в конструкции предусмотрены механизмы регулирования:

  • Расходомер – устанавливается на обратный патрубок коллектора. Он выполняет функцию регулировки количественного показателя воды в зависимости от длины контура отопления;
  • Терморегуляторы – ограничивают приток воды по температурному показателю.

Для изначально правильного распределения теплоносителя по закрытому контуру отопления достаточно сделать несложный расчет. Главным показателем является объем каждого разветвления. Сумма этих значений будет соответствовать 100%. Для расчета нужно разделить объем каждого контура и вычислить коэффициент ограничения притока воды в него.

При балансировке водяного теплого пола с большой площадью рекомендуется учитывать количество поворотов в каждом контуре. Они создают дополнительные гидравлические сопротивления.

Коллекторная система отопления

Намного сложнее организовать равномерное распределение теплоносителя в схеме, состоящей из двух контуров отопления. До недавнего времени для этого использовали обычные тройниковые распределители. Однако они не могли обеспечить желаемый результат – больший объем воды проходил по пути наименьшего гидравлического сопротивления. В итоге получалась существенная разница температур в помещениях.

Выяснив, что такое контур в отоплении на примере теплых водяных полов, такую же модель перенесли для всей системы дома. Только в этом случае появилась возможность делать отдельные магистрали для каждого помещения или группы комнат. Чаще всего применяется , которая по сравнению с классической имеет следующие преимущества:

  • Возможность осуществлять регулировку расхода теплоносителя в каждом разветвлении с помощью расходометров. Таким образом осуществляется балансировка отдельных контуров отопления без изменения параметров всей системы;
  • По надобности можно полностью исключить теплоснабжение помещений. Это может понадобиться для экономии текущих затрат по отоплению;
  • Отсутствие большого влияния длины контура в отопления на температурный режим работы. Главное – установить регулирующую аппаратуру.

Недостатком подобной схемы является большая протяженность магистралей. В среднем для создания коллекторного отопления потребуется на 30-40% больше расходных материалов, чем для классического варианта. При этом увеличивается общее количество теплоносителя, что повышает требуемую мощность котла отопления.

Не целесообразно монтировать коллекторное отопление для одноэтажных домов площадью до 120 м².

Балансировочный клапан

Но что делать, если изначально есть уже готовая система отопления, а вышеописанные механизмы для регулировки контуров отсутствуют? Тогда в подобных закрытых контурах отопления можно установить балансировочный клапан.

Ближайшим аналогом балансировочного клапана является обычная запорная арматура. Но только в отличие от нее в механизме клапан предусмотрена возможности автоматической или ручной регулировки притока теплоносителя в конкретный контур отопления. Для больших систем выбирают автоматические модели. Если же есть возможность осуществлять ручную периодическую регулировку – можно установить механический аналог.

Принцип его работы заключается в ограничении притока теплоносителя в отдельную магистраль. Для этого в конструкции предусмотрен шток, выполняющий запорную функцию.

При выборе определенной модели необходимо обращать внимание на следующие параметры этого оборудования:

  • Значение давления рабочей среды – максимальное и номинальное;
  • Разница давления в обратной и подающей трубе. Это важно, так как избыток теплоносителя перенаправляется в обратную магистраль;
  • Значение скорости потока воды в трубах;
  • Номинальный температурный режим работы системы.

Эти характеристики можно взять из предварительного расчета отопления, либо получить их опытным путем методом несложных вычислений. Стоимость балансировочного клапана напрямую зависит от его функциональных возможностей, диаметра патрубка и материала изготовления. Хорошо зарекомендовали себя модели из нержавеющей стали, работающие в автоматическом режиме.

Узнав, что такое контуры отопления и методы их балансировки можно оптимизировать показатели всей системы. Но при этом важно следить за показаниями давления в каждом из них, чтобы не создался избыточный гидравлический напор.

1. Поддержание температуры в одном контуре отопления:

  • регулирование производится при помощи трехпозиционного регулирующего клапана (управление «Больше»/«Меньше»);
  • уставка температуры в контуре формируется исходя из температуры наружного воздуха в соответствии с отопительным графиком;
  • предусмотрена возможность сдвига отопительного графика в ночное время и в выходные дни;
  • переключение контура отопления в летний режим с отключением регулирования.

2. Защита от превышения температуры обратной воды:

  • уставка температуры обратной воды формируется исходя из температуры наружного воздуха в соответствии с графиком обратной воды;
  • при превышении температуры обратной воды, регулирование в контуре отопления прекращается и клапан отопления закрывается, регулирование возобновляется после того как температура обратной воды остынет на заданное количество градусов.

3. Поддержание температуры в двух различных контурах ГВС (ГВС1 и ГВС2):

  • регулирование в каждом контуре производится независимо при помощи трехпозиционного регулирующего клапана (управление «Больше»/«Меньше»);
  • уставки температуры для каждого контура задаются пользователем с панели управления.

4. Управление четырьмя насосными группами: отопления, ГВС1, ГВС2 и подпитки:

  • каждая насосная группа может состоять из одного или двух насосов;
  • при использовании двух насосов производится их автоматическое чередование через заданные промежутки времени для равномерного износа, а также аварийное включение резерва (АВР) при выходе насоса из строя;
  • для контроля исправности насосов используется контактный датчик («сухой контакт»). В качестве датчика может выступать датчик-реле давления, реле перепада давления, электроконтактный манометр или реле протока;
  • включение насосов подпитки производится при срабатывании датчика, установленного на обратном трубопроводе контура отопления. В качестве датчика может выступать датчик-реле давления или электроконтактный манометр;
  • временные интервалы работы для каждой насосной группы настраиваются независимо.

5. Энергонезависимый архив аварийных ситуаций в виде списка на экране контроллера.

6. Универсальные входы для датчиков температуры (поддерживаются термосопротивления 50М, pt100, pt1000).

7. Индикация двух дополнительных датчиков: температуры и давления воды, поступающей из теплосети.

8. Диспетчеризация по интерфейсу RS-485 или Ethernet, а также удаленная диспетчеризация при помощи USB GSM-модема (SMS-сообщения, GPRS).

Двухконтурная система отопления для частного дома имеет более сложное строение, чем классическая одноконтурная. При этом преимущества таких систем неоспоримы. Представляет собой два замкнутых контура, одним из которых осуществляется подача теплоносителя к радиаторам, а другим – возвращение его в котел.

Применяется двухконтурное отопление для всех типов зданий.

Преимущества:

  • Практически полностью отсутствуют потери теплоносителя при подаче к радиаторам.
  • Обеспечивается подача теплоносителя с одинаковой температурой ко всем радиаторам системы.
  • Использование труб малого диаметра сокращает материальные затраты.
  • Высокая надежность.
  • Большой КПД установки.
  • Возможность установки регулирующей арматуры на каждый радиатор, т.е. температуру каждого нагревательного элемента можно регулировать отдельно от других.
  • Низкий расход воды и электроэнергии.
  • Отсутствие громоздких конструкций – лучшее решение для современных интерьеров.
  • Простота внедрения в существующий дом.

Типы системы относительно оси расположения трубопровода:

  • Горизонтальные. Устанавливается в одноэтажных домах большой площади.
  • Вертикальные. Возможно применение в многоэтажных домах. Контур каждого этажа врезается в общий стояк системы. Преимуществом является отсутствие завоздушивания системы – воздух выходит из системы через расширительный бак.

В обоих случаях необходима балансировка. Для вертикального типа балансировка производится по стояку.

Преимуществом обоих систем является большая теплоотдача и высокая гидравлическая устойчивость.

Типы разводки:

  1. Верхняя. Разводка труб осуществляется в верхней точке трубопровода. Расширительный бак располагается там же.
    Данный тип не может быть установлен в домах без чердака.
  2. Нижняя. Разводка труб осуществляется в подвале или цокольном этаже. При этом следует учитывать, что трубы обратного контура должны быть заложены еще ниже подающий. Поэтому допускается укладка труб в подполе.

Является наиболее простой системой, т.к. схема содержит минимальное количество элементов.

Состав оборудования при принудительной схеме:

  • Котел.
  • Измерительные приборы.
  • Радиаторы.
  • Трубопровод.
  • Предохранительный клапан.
  • Циркуляционный насос.
  • Расширительный бак.

Схема с принудительной циркуляцией

Принцип работы системы:

  • Подготовленный теплоноситель с рабочими параметрами насосом подается в верхнюю точку системы.
  • За счет гравитации жидкость двигается по трубопроводам и наполняет радиаторы последовательно (так как на разработанной схеме).
  • По обратному контуру вода циркуляционным насосом поступает обратно в котел для дальнейших циклов.

Преимущества:

  • Минимальное количество узлов в схеме.
  • Относительно высокий КДП.
  • Равномерный нагрев радиаторов.
  • Низкая стоимость строительно-монтажных работ и оборудования.
  • Возможность работы в режиме естественной циркуляции – при отключении от электросети насоса вода в системе циркулирует самотеком.

Недостатки:

  • Малая эффективность системы в домах с большой площадью.

Данный вид отопления аналогичен системе с принудительной циркуляцией.
Отличием в работе является отсутствие циркуляционного насоса. Для повышения эффективности схемы используют гладкие трубы большого диаметра.

Преимущества:

  • Низкая стоимость монтажных работ и оборудования.
  • Отсутствие затрат на электроэнергию (в том случае, если котел газовый).
  • Лучший вариант для домов, удаленных от городской черты. Система не использует электроэнергию для циркуляции теплоносителя по контурам.
  • Возможность работы на любом виде топлива.
  • Длительный срок эксплуатации. Возможна работа до 40 лет без проведения капительных ремонтов.

Недостатки:

  • Небольшой радиус действия (не более 30м).
  • Медленный прогрев комнат.
  • Большие затраты топлива на запуск системы.
  • Невозможность регулировки температуры теплоносителя.
  • Частые завоздушивания радиаторов.
  • При установке расширительного бака в неотапливаемом помещении существует вероятность его промерзания.

Состав оборудования при естественной схеме:

  • Котел.
  • Радиаторы.
  • Предохранительный клапан.
  • Система труб (прямая и обратная).
  • Расширительный бак. Обеспечивает постоянное давление в системе.

Схема с естественной циркуляцией

Принцип работы системы:

  • При повышении температуры давление теплоносителя изменяется.
  • Холодные слои выталкивают горючую жидкость в систему.
  • По достижении самой высокой точки системы вода самотеком пускается по трубопроводам.
  • Охлажденный теплоноситель также самотеком поступает в котел по обратному контуру.
  • Благодаря трубам, расположенным с уклоном обеспечивается естественная циркуляция теплоносителя.

Обратите внимание! Уклон прямого контура идет по направлению к радиатору, для обратки уклон устанавливается в сторону котла. Правильно выполненные уклоны обеспечиваю отвод пузырьков воздуха в расширительном бачке.

Меры для обеспечения стабильной работы системы

  • Уклон горизонтальных участков должны быть большими из-за малой разности плотностей горячей и остывшей воды.
  • Котел должен быть заглублен для того, чтобы выдержать оптимальный уклон обратного контура.
  • Расширительный бак должен быть только открытого типа, т.к. для работы в системе не должно создаваться избыточное давление.

Различают два типа схем с естественной циркуляцией

  • С верхней разводкой. Котел должен быть установлен в центре, разводка выполняется в обе стороны.
    Следует сооружать контуры длинно не более 20м для обеспечения высокой теплоотдачи.
  • С нижней разводкой. В этом случае трубы подачи должны быть заложены рядом с обраткой, обеспечивая движение теплоносителя снизу вверх к радиаторам.

Для повышения КПД в схему включают воздушные трубопроводы для отведения воздуха из системы.

Для двухэтажного дома

Для двухэтажной застройки необходимо применение более сложных отопительных схем. Эффективно построенная система позволяет поддерживать уютную и комфортную атмосферу в доме.

При минимальных теоретических знаниях и практических навыках ремонтных работ возможно самостоятельно соорудить двухконтурную систему отопления в двухэтажном доме.

Схема с естественной циркуляцией для двухэтажного дома

Коллекторная

Преимущества двухконтурных коллекторных систем для коттеджей

  • Равномерное распределение теплоносителя в радиаторы непосредственно из котла.
  • Минимальные потери давления и температуры.
  • Возможность использовать мощные циркуляционные насосы.
  • Осуществление настройки и ремонта отдельных элементов без отрицательного влияния на всю систему.

Недостатки

  • Большой расход материалов.

Важно знать! Подключение дополнительных элементов («теплый пол», полотенцесушители, массажные ванны) возможно, как во время монтажа основной части, так и при очередном ремонте. Наиболее целесообразным является проектирование системы отопления при возведении дома, т.к. в этом случае сеть отопления имеет самый высокий КПД (выбирается наиболее удачное место расположения котла, радиаторов и трубопровода).


Составные части коллекторной системы:

  • Котел.
  • Радиаторы.
  • Автовоздушник
  • Балансировочный, предохраниельный и термостатический клапан.
  • Мембранный расширительный бачок.
  • Запорная арматура.
  • Механический фильтр.
  • Манометр
  • Циркуляционный насос.

Особенностью отопления, как и в одноэтажных постройках, является наличие двух контуров – подающего и обратного трубопроводов. Подключение радиаторов происходит параллельно. Наиболее целесообразно подвод осуществлять в верхней части, а отвод – в нижней. Направление жидкости по диагонали создает равномерный прогрев и большую теплоотдачу теплоносителя.


Для регулировки температуры используют также термостатические клапаны, расположенные на радиаторах. С их помощью легко ограничить температуру в отдельной комнате или перекрыть подачу тепла вовсе. Исключение таким образом радиатора не влияет на эффективность работы системы в общем.

Для равномерности потока теплоносителя на радиаторах устанавливают балансировочные клапаны.

Предохранительный клапан, при возникновении избыточного давления, сбрасывает жидкость в расширительный бак. При значительном снижении напора в системе происходит забор рабочей жидкости из мембранного бачка.

Циркуляционный насос включен в схему для поддержания необходимой скорости потока теплоносителя.

Принцип работы системы

  • Рабочая жидкость поступает в подающий трубопровод.
  • После удаления избытка воздуха (посредством автоматического клапана) подогревается и подается в вертикальные стояки. Где происходит разделение подачи для первого и второго этажей.
  • После прохождения через радиаторы возвращается по обратному контуру к котлу.

Важно знать! Обратка (обратный трубопровод) подключается к другому входу котла. Разделяется аналогично подающему контуру.

Данная схема может применяться в системе с искусственной и естественной циркуляцией при использовании дополнительного оборудования: насосов, теплообменников, расширительных бачков.

Двухтрубная система при внедрении коллекторной схемы является лучшим решением для отопления двухэтажных домов. Несмотря на трудоемкость и высокие финансовые затраты такое отопление окупается за несколько сезонов.

Система водяного отопления может быть однотрубной и двухтрубной. Двухтрубная называется так, потому что для работы необходимо две трубы – по одной от котла подается горячий теплоноситель в радиаторы, по другой от элементов отопления отводится остывший и подается снова в котел. С такой системой могут работать котлы любого типа на любом топливе. Могут быть реализованы как принудительная, так и естественная циркуляция. Устанавливаются двухтрубные системы и в одноэтажных, и в двух- или много этажных зданиях.

Достоинства и недостатки

Из способа организации циркуляции теплоносителя вытекает основной минус такого способа организации отопления: двойное количество труб по сравнению с основным конкурентом – однотрубной системой. Несмотря на такое положение затраты на приобретение материалов выше незначительно, а все из-за того, что при 2-х трубной системе используются меньшие диаметры и труб, и, соответственно фитингов, а стоят они намного меньше. Так что в результате затраты на материалы больше, но незначительно. Чего действительно больше, так это работы, а соответственно требуется и в два раза больше времени.

Этот недостаток компенсируется тем, что на каждый радиатор можно поставить терморегулирующую головку, при помощи которой система легко балансируется в автоматическом режиме, чего нельзя сделать в однотрубной системе. На таком устройстве выставляете желаемую температуру теплоносителя и она поддерживается постоянно с небольшой погрешностью (точное значение погрешности зависит от марки). В однотрубной системе можно реализовать возможность регулировать температуру каждого радиатора в отдельности, но для этого необходим байпас с игольчатым или трехходовым краном, что усложняет и удорожает систему, сводя на нет выигрыш в денежных средствах на приобретение материалов и времени на установку.

Еще один недостаток двухтрубки – невозможность ремонта радиаторов без останова системы. Это неудобно и это свойство можно обойти, если поставить возле каждого отопительного прибора на подаче и обратке шаровые краны. Перекрыв их, вы сможете снять и отремонтировать радиатор или полотенцесушитель. Система при этом будет функционировать сколь угодно долго.

Зато есть у такой организации отопления важное преимущество: в отличие от однотрубки, в системе с двумя магистралями на каждый отопительный элемент поступает вода одной температуры – сразу от котла. Хотя она стремиться пойти по пути наименьшего сопротивления и не распространятся далее первого радиатора, установка термостатических головок или кранов для регулирования интенсивности потока решает проблему.

Есть еще одно преимущество – меньшие потери давления и более легкая реализация самотечного отопления или применение насосов меньшей мощности для систем с принудительной циркуляцией.

Классификация 2 трубных систем

Отопительные системы любого типа делятся на открытые и закрытые. В закрытых устанавливается расширительный бачок мембранного типа, который дает возможность функционировать системе при повышенном давлении. Такая система дает возможность использовать в качестве теплоносителя не только воду, но и составы на основе этиленгликоля, которые имеют пониженную температуру замерзания (до -40 о С) и называются еще антифризами. Для нормальной работы оборудования в системах отопления должны использоваться специальные составы, разработанные для этих целей, а не общего назначения, и тем более, не автомобильные. То же относится и к используемым присадкам и добавкам: только специализированные. Особенно жестко стоит придерживаться этого правила при использовании дорогостоящих современных котлов с автоматическим управлением – ремонт при неполадках не будет гарантийным, даже если поломка и не связана напрямую с теплоносителем.

В открытой системе в верхней точке встраивается расширительный бачок открытого типа. К нему обычно подсоединяют патрубок для отвода воздуха из системы, а также организовывают трубопровод для слива излишка воды в системе. Иногда из расширительного бака могут забирать теплую воду для хозяйственных нужд, но в этом случае нужно подпитку системы сделать автоматической, а также не использовать добавок и присадок.

Вертикальная и горизонтальная двухтрубная система

Есть два типа организации двухтрубной системы – вертикальная и горизонтальная. Вертикальная применяется чаще всего в многоэтажных домах. Она требует большего количества труб, зато легко реализуется возможность подключения радиаторов на каждом этаже. Главное достоинство такой системы – автоматический вывод воздуха (он стремится вверх и там выходит или через расширительный бачек или через спускной вентиль).

Горизонтальная двухтрубная система применяется чаще в одноэтажных или, максимум, в двухэтажных домах. Для стравливания воздуха из системы на радиаторах устанавливают краны «Маевского».

Двухтрубная горизонтальная схема отопления двухэтажного частного дома (кликните по картинке чтобы увеличить масштаб)

Верхняя и нижняя разводка

По способу разводки подачи различают систему с верхней и нижней подачей. При верхней разводке труба идет под потолком, а от нее вниз опускаются к радиаторам трубы подачи. Обратка идет вдоль пола. Этот способ хорош тем, что можно легко сделать систему с естественной циркуляцией – перепад высот создает поток достаточной силы, чтобы обеспечить хорошую скорость циркуляции, необходимо только соблюсти уклон с достаточным углом. Но такая система становится все менее популярной из-за эстетических соображений. Хотя, если вверху под подвесной или натяжной потолок, то на виду останутся только трубы к приборам, а их, собственно, можно замонолитить в стену. Верхняя и нижняя разводка применяются и в вертикальных двухтрубных системах. Разница продемонстрирована на рисунке.

При нижней разводке труба подачи идет понизу, но выше, чем обратка. Тубу подачи располагать можно в подвальном или полуподвальной помещении (обратка еще ниже), между черновым и чистовым полом и т.д. Подводить/отводить теплоноситель к радиаторам можно, пропустив трубы через отверстия в полу. При таком расположении подключение получается наиболее скрытым и эстетичным. Но тут нужно подбирать расположение котла: в его положение относительно радиаторов неважно – насос «продавит», а вот в системах с естественной циркуляцией радиаторы должны находиться выше уровня котла, для чего котел заглубляют.

Двухтрубная система отопления двухэтажного частного дома проиллюстрирована в видео. Она имеет два крыла, температура в каждом из которых регулируется вентилями, нижний тип разводки. Система с принудительной циркуляцией, потому котел висит на стене.

Тупиковая и попутная двухтрубные системы

Тупиковой называется такая система, в которой движение подачи теплоносителя и обратки разнонаправленные. Есть система с попутным движением. Она называется еще петлей/схемой «Тихельмана». Последний вариант проще балансируется и настраивается, особенно при протяженных сетях. Если в системе с попутным движением теплоносителя установлены радиаторы с одинаковым количеством секций, она является автоматически сбалансированной, в то время как при тупиковой схеме понадобится на каждом радиаторе установка термостатического клапана или игольчатого вентиля.

Даже если с схеме «Тихельмана» установлены разные по количеству секций радиаторы и клапаны/вентиля ставить все равно надо, то шанс сбалансировать такую схему гораздо выше, чем тупиковую, особенно, если она достаточно протяженная.

Для балансировки двухтрубной системы с разнонаправленным движением теплоносителя, вентиль на первом радиаторе требуется прикрутить очень сильно. И может возникнуть ситуация, при которой его потребуется закрыть настолько, что теплоноситель туда и поступать не будет. Получается тогда вам нужно выбирать: не будет греть первая батарея в сети, или последняя, потому как выровнять теплоотдачу в таком случае не удастся.

Системы отопления на два крыла

И все-таки чаще используют систему с тупиковой схемой. А все потому, что длиннее магистраль обратки и собирать ее сложнее. Если отопительный контур у вас не очень большой, вполне можно отрегулировать теплоотдачу на каждом радиаторе и при тупиковом подключении. Если же контур получается большой, а петлю «Тихельмана» делать не хочется, можно разделить один большой отопительный контур на два крыла меньшего размера. Есть условие — для этого должна иметься техническая возможность такого построения сети. При этом в каждом контуре после разделения нужно ставить вентили, которыми будет регулироваться интенсивность потока теплоносителя в каждом из контуров. Без таких вентилей сбалансировать систему или очень сложно, или невозможно.

Разные типы циркуляции теплоносителя продемонстрированы в видео, также в нем даны полезные советы по монтажу и подбору оборудования для систем отопления.

Подключение радиаторов отопления при двухтрубной системе

В двухтрубной системе реализуется любой из способов подключения радиаторов: диагональное (перекрестное), одностороннее и нижнее. Самый лучший вариант — диагональное подключение. В этом случае теплоотдача от отопительного прибора может быть в районе 95-98% от номинальной тепловой мощности прибора.

Несмотря на разные значения потерь тепла при каждом из типов подключения, все они используются, просто в разных ситуациях. Нижнее подключение, хотя и самое непроизводительное, чаще встречается, если трубы проложены под полом. В этом случае оно реализуется проще всего. Можно при скрытой прокладке подключать радиаторы и по другим схемам, но тогда или на виду остаются большие участки труб, или прятать их нужно будет в стену.

Боковое подключение практикуют в случае необходимости при числе секций не более 15. В таком случае потерь тепла почти нет, а вот при количестве секций радиатора больше 15 требуется уже диагональное подключение, иначе циркуляция и теплоотдача будет недостаточны.

Итоги

Несмотря на то, что на организацию двухтрубных схем используется больше материалов, они становятся более популярными из-за более надежной схемы. Кроме того такую систему легче компенсировать.

Самой популярной, несмотря на наличие инновационных технологий, остается «классическая» система отопления. То есть с нагревом воды (или какого-то иного жидкого теплоносителя) в котельной и ее дальнейшим переносом по системе проложенных трубопроводов по помещениям для осуществления теплообмена. Тип генератора тепла может быть разным (газовый котел , электрический, твердо — или жидкотопливный, или даже печь с водяным контуром), но общий принцип работы при этом остается тем же.

Она отличается достаточно высокой эффективностью, способностью создавать наиболее комфортный микроклимат, несложна и понятна в эксплуатации, и при правильном проектировании и монтаже – очень хорошо поддается регулировкам.

Но при всей внешней схожести применяемых водяных систем , они могут довольно существенно различаться конструкционно, использовать различные принципы транспортировки теплоносителя по радиаторам, установленным в помещениях. Предмет нашего сегодняшнего рассмотрения – двухтрубная система отопления частного дома, которую, при имеющихся недостатках, все же можно считать оптимальным вариантом.

Если обрисовать принцип работы любой «водяной» системы отопления, так сказать, в двух словах, то он заключается в следующем.

  • В котле за счет того или иного внешнего источника энергии производится разогрев воды или другого теплоносителя до определённого уровня температуры.
  • Любая система представляет собой замкнутый контур труб, по которым теплоноситель и передается на приборы теплообмена (радиаторы или конвекторы), и возвращается обратно в котельную. Таким образом, вода отдает тепло в помещения, постепенно остывая при этом.
  • Остывший теплоноситель поступает вновь в котельную, разогревается – и так цикл повторяется дальше и дальше, пока работает котел . В хорошо отлаженной автономной системе, кстати, котёл осуществляет нагрев далеко не постоянно – при достижении требуемого уровня обогрева в помещениях его работа приостанавливается автоматикой, и обратное включение произойдет при падении температуры до какого-то заранее установленного порога.

Этот принцип функционирования един для всех подобных систем. Замкнутость общего контура обеспечивает постоянную циркуляцию воды и передачу тепла. Но вот сам замкнутый контур может быть организован по-разному, в чем и кроется главное отличие систем.

Проще всего, конечно, связать подающий и обратный патрубок котла (или коллектора, если речь идет о каком-то выделенном участке системы) одной трубой, на которой расположить все необходимые радиаторы отопления, словно «нанизав» их на этот замкнутый петлей контур. Именно так (в той или иной вариации) устроена однотрубная система.

Действительно, очень просто, но давайте взглянем на схему – и совершенно очевидным покажется главный ее недостаток.

Даже незнакомому с законами тепло техники читателю совершенно должно быть понятно, что теплоноситель, последовательно переходящий от одного теплообменного прибора к очередному - значительно теряет в температуре. Это и понятно: что для предыдущего радиатора является «обраткой», для последующего уже становится подачей. В масштабах даже не самой большой системы отопления эта разница становится очень существенной. То есть по мере удаления от котельной нагрев батарей все меньше и меньше.

В таком примитивном виде, как показано выше, однотрубная система, конечно, практически не применяется – это было бы совсем уже бездарное исполнение. Чаще используют более совершенные схемы, позволяющие все же каким-то образом регулировать их работу.

Примером может служить популярная однотрубная система, известная под характерным названием «ленинградка». И хотя в ней перепады температур на батареях уже не столь выражены, полностью избавиться от него не получается – все равно в трубу подачи идет постоянный подмес остывшего теплоносителя на каждом из радиаторов.

Система отопления «ленинградка» - достоинства и недостатки

Подобная схема организации контуров завоевала широкую популярность за экономичность в плане расхода материалов, простоту монтажных работ. Что из себя представляет , по каким принципам создается и отлаживается – читайте в специальной публикации нашего портала.

Существует, безусловно, немало способов свести к минимуму это негативное явление. Так, например , по мере удаления от котельной постепенно увеличивают количество секций радиаторов, устанавливают специальные термостатические устройства, варьируют диаметры труб на разных участках контура. Тем не менее , полностью избавиться от «температурного градиента» от радиатора к радиатору – невозможно. Все равно зависимость последующих отопительных приборов от предыдущих прослеживается.

Вот поэтому-то двухтрубная система отопления и становится оптимальным решением. В ней подобное явление исключается.

Каждый прибор теплообмена в обязательно порядке связан с двумя трубами – по одной подается горячий теплоноситель, поступающий из котельной, по другой отводится остывший, «поделившийся» своим теплом с воздухом в помещении.

Обратите внимание – нигде на всем протяжении трубы подачи к ней не производится подмеса остывшего теплоносителя. То есть можно говорить о том, что на входе в любой из радиаторов сохраняется «температурный паритет». Если разница и есть, то она связана лишь с тем, что возможны незначительные потери температуры за счет теплоотдачи от самого тела трубы. Но этот момент существенным считать нельзя, тем более что трубы при скрытой их проводке очень часто заключаются в термоизоляцию.

Одним словом, труба подачи превращается в своеобразный коллектор, от которого уже идет раздача на приборы теплообмена. А вторая труба-коллектор отвечает за сбор и транспортировку в котельную остывшего теплоносителя. И никакой значимой зависимости функционирования любого из отдельно взятых радиаторов от работы других – не прослеживается.

Какие преимущества характерны для такой системы?

  • Прежде всего, равномерное распределение температуры на входах в радиаторы позволяет очень гибко управлять системой отопления в целом. Для каждой из батарей может быть выбран свой тепловой режим работы, например, установкой термостатических регуляторов – в зависимости от типа отапливаемого помещения и его реальной потребности в притоке тепла. Это никак не сказывается на работе других участков общего контура.

  • В отличие от однотрубной системы, отмечаются минимальные потери давления в контуре. Этим достигается упрощение балансировки всех участков контура, появляется возможность использования не столь мощного, то есть менее дорогостоящего и более экономичного циркуляционного насоса.
  • Нет никаких ограничений ни по длине контуров (в разумных пределах, естественно), ни по этажности здания, ни по сложности разводок. То есть систему можно вписать в частный дом любой планировки и площади.
  • Любой из радиаторов при необходимости вывести из эксплуатации - отключить, если нет необходимости обогрева конкретного помещения, или даже демонтировать для проведения тех или иных профилактических или ремонтных работ. На общей работоспособности системы это никак не сказывается.

Как видно, уже перечисленных выше достоинств вполне достаточно, чтобы понять все выгоды установки именно двухтрубной системы отопления. Но, возможно, у нее есть серьезные недостатки ?

  • Да, конечно, и к таковым в первую очередь можно отнести более высокую стоимость первоначальных вложений. Причина банальна, и кроется уже в самом названии – труб для такой системы потребуется гораздо больше.
  • Второй недостаток неразрывно связан с первым - раз больше труб, значит, масштабнее и сложнее монтажные работы в период создания системы.

Правда, и здесь можно сделать оговорку. Дело в том, что специфика двухтрубной системы отопления нередко позволяет обойтись трубами небольшого диаметра. Так что суммарные затраты, по сравнению с однотрубной разводкой с такими же показателями тепловой отдачи, могут различаться все же не столь пугающе. И это – с получением целого комплекта явных преимуществ!

Еще одним недостатком можно считать более значительный объем теплоносителя, циркулирующего по трубам. Это, конечно, не имеет существенного значения, если в этом качестве применяется обычная вода. Но в том случае, когда систему предполагается заполнять специальным теплоносителем-антифризом, разница может почувствоваться. Впрочем, тоже не настоль существенно, чтобы из-за этого пренебрегать достоинствами двухтрубной системы.

Какими бывают двухтрубные системы отопления?

Принцип подачи теплоносителя к радиаторам и его отвода по двум разным трубам – он общий для всего разнообразия подобных систем. А вот по иным параметрам они могут довольно серьезно различаться.

Системы открытого и закрытого типа

Как уже говорилось выше, любая система является замкнутым контуром. Но обязательным условием ее нормального функционирования является наличие расширительного бака. Объясняется это просто – любая жидкость при нагревании увеличивается в объеме . Стало быть, необходима какая-то емкость , способная «принять в себя» эти колебания объема .

Расширительный бачок имеется во всех системах. И разница в том, является ли он отрытым, сообщающимся с атмосферой, или герметичным.

Система открытого типа

Системы отопления открытого типа когда-то «властвовали единолично» - других доступных вариантов для собственника дома попросту не предлагалось. Да и в наши дни, даже при возможности иных решений, они все еще остаются весьма популярными.

Главная особенность таких систем – это наличие емкости , установленной в самой высокой точке трубной разводки. Обязательное условие – в баке поддерживается обычное атмосферное давление, то есть он не закрывается герметично.

Пройдемся по основным элементам системы:

1 – котел обеспечивающий нагрев циркулирующего по конурам теплоносителя.

2 – стояк (труба) подачи.

3 – открытый расширительный бак.

4 – приборы теплообмена, установленные в помещениях (радиаторы или конвекторы).

5 – магистраль «обратки».

6 – насос с соответствующей обвязкой, обеспечивающий циркуляцию теплоносителя по контуру.

Что же такое открытый расширительный бак? Следует правильно понимать - из названия вовсе не следует, что он действительно полностью открытый, то есть не оснащён какой-либо крышкой. Безусловно, чтобы защитить емкость от попадания пыли или мусора, и чтобы хоть в какой-то мере снизить эффект испарения жидкости, как правило, крышка на нем предусматривается. Но она никак не ограничивает прямой контакт его объема с атмосферой, то есть негерметична.

Расширительный бак открытого типа может быть приобретён в готовом виде, но очень часто домашние мастера изготавливают его и самостоятельно. Для этого может использоваться любая емкость необходимой вместительности (желательно – из материала, стойкого к коррозии).

В нижней части бака имеется патрубок для подключения его к контуру отопления. Могут быть (необязательно) предусмотрены патрубки для подключения к системе подпитки и к трубе перелива – если объём расширившейся воды выходит за установленные пределы, излишек сбрасывается в дренаж.

Определяющим же условием является расположение бака в самой высокой точке системы. Это объясняется двумя обстоятельствами:

Негерметичный бак установить ниже попросту невозможно – в противном случае , по закону сообщающихся сосудов, теплоноситель будет из него выливаться.

Открытый расширительный бак в этой позиции отлично справляется с функцией воздухоотводчика . Все пузырьки воздуха или образовавшихся в результате возможных химических реакций газов поднимаются вверх и из бака выходят в атмосферу.

Кстати, показанное на схеме расположение расширительного бака – это вовсе не догма, хотя и практикуется чаще всего. Но возможны и иные варианты:

а - наиболее распространенный вариант: бак расположен непосредственно в верхней части вертикального «разгонного» участка магистрали подачи.

б - соединение с расширительным баком идет от магистрали «обратки», для чего используется длинная вертикальная труба. Иногда к подобному размещению вынуждают особенности самой системы или даже специфика строения. Правда, в этом случае практически сходит на нет функциональность бака, как газоотводчика . И приходится устанавливать дополнительные устройства на самом контуре в верхней его части и на радиаторах отопления.

в – бак установлен в верхней точке удаленного подающего стока. В принципе, это может быть любой участок верхней петли подачи – главное, чтобы емкость встала в самой высокой точке.

г – скажем сразу, нетипичное расположение бака, сходное с «а», но с насосным узлом непосредственного поле него.

Достоинствами системы открытого типа являются простота ее монтажа, отсутствие необходимости в дополнительных сложных узлах. Полностью исключается риск опасно повышенного давления в системе.

Но и недостатков у нее – немало:

  • Самая высокая точка, где можно установить такой расширительный бак, в большинстве случаев в частном домостроении приходится на чердачное помещение. А это означает, что или чердак доложен быть теплым , или сам бак потребует качественной термоизоляции. В противном случае при сильных холодах вода в нем может замерзнуть - а это один шаг до серьезной аварии. Кроме того, нельзя сбрасывать со счетов и немалую непроизводительную утечку тепла из системы.

В интернете можно найти немало примеров, когда открытый расширительный бак пытаются установить внутри помещений под потолком. Вариант, безусловно, возможный, но не всегда. При верхнем расположении трубы подачи пространства под потолком может и не хватить, ведь объем бака рекомендуют выдерживать не менее 10% от объема всего теплоносителя в системе отопления. Да и интерьер помещения такое дополнение, согласитесь, не украсит. Проще будет уже приобрести закрытый мембранный бак.

  • Второй явный минус – испарение жидкости, которое, конечно, можно минимизировать, но нельзя исключить полностью. Даже в случае с водой это потребует дополнительных хлопот – контроля за ее уровнем или использования специальных устройств автоматической подпитки. Иначе можно прозевать момент, и система «завоздушится ».

Кроме того, открытый бак несовместим с системами, в которых используются специальные теплоносители-антифризы. Во-первых, это расточительно, а во-вторых - испарения многих «незамерзаек » отнюдь не безвредны для человеческого организма.

Не рекомендуется к применению открытый бак и в том случае, если в системе установлен электродный котел отопления. Ввиду особенностей принципа нагрева, эффективность работы котла напрямую зависит от сбалансированного химического состава теплоносителя. Естественно, при постоянном испарении поддерживать оптимальный состав будет чрезвычайно сложно.

Еще один нюанс. Некоторые приборы теплообмена, например, биметаллические радиаторы отопления, раскрывают свои преимущества только при довольно высоких показателях давления теплоносителя в системе. А в случае с открытым баком достичь этого – просто невозможно, так как давление уравновешивается внешним атмосферным. Это тоже следует иметь в виду.

Система отопления закрытого типа

В общую схему такой системы отопления также включен расширительный бак, но он уже имеет совершенно иную конструкцию. Если объяснить просто – то это герметичная емкость , разделённая на две части эластичной перегородкой – мембраной. Одна часть бака заполнена воздухом, с созданием определённого избыточного давления, вторая – сообщается через патрубок с контуром отопления. Примерная схема показана на иллюстрации ниже:

1 – металлический корпус бака.

2 – патрубок для подсоединения к контуру системы отопления.

3 – мембрана, играющая роль эластичной перегородки между двумя камерами бака.

4 – камера, заполняемая теплоносителем.

5 – воздушная камера.

6 – ниппельное устройство для предварительной подкачки воздушной камеры.

Система отопления получается полностью герметичной. Пока она не работает, созданное заранее давление в воздушной камере удерживает мембрану в нижнем положении. По мере нагрева теплоносителя, по законам термодинамики, в системе повышается давление, жидкость старается расшириться в объеме . Единственная возможность для этого – именно расширительный бак. Под действием повышающегося давления теплоноситель начинает прожимать мембрану вверх, тем самым увеличивая объем водяной камеры бака и, соответственно, уменьшая объем воздушной. В воздушной камере от этого также возрастает давление.

Если все рассчитано правильно, и эксплуатационные характеристики расширительного бака соответствуют параметрам системы, то наступает примерный паритет давления в камерах. При измерении уровня нагрева в системе мембрана просто займет несколько иное положение в ту или иную сторону, и при этом равновесие не будет нарушено. При полностью же выключенном отоплении по мере остывания теплоносителя мембрана вновь возвратится на свою исходную нижнюю позицию.

Вот примерна та же упрощенная схема, что использовалась нами выше, но только уже для закрытой системы отопления:

Нумерация основных элементов и узлов системы сохранена, только добавлено два новых пункта.

7 – мембранный расширительный бак.

8 – «группа безопасности».

Все очень просто и весьма эффективно. Бак, безусловно, придется покупать – самостоятельное его изготовление вряд ли разумно. (Есть нюанс – некоторые современные модели котлов отопления, в особенности настенной компоновки, уже оснащены им, как говорится «по умолчанию»). Но эти дополнительные затраты выглядят необременительными, а взамен получается немало преимуществ.

  • В принципе, нет вообще никаких ограничений по месту установки мембранного расширительного бака. Чаще всего его монтируют на обратке неподалёку от котла и насосного узла, но это вовсе не является обязательным правилом.

  • Закрытая система отопления позволяет выполнять какую угодно разводку труб, если, конечно, в ней используется принцип принудительной циркуляции (об этом будет сказано ниже).
  • Хозяин волен использовать любой из возможных теплоносителей.
  • В системе можно поддерживать оптимальное значение давления (напора) воды в контурах.
  • Теплоноситель не контактирует с воздухом, то есть и не насыщается им, а значит, процессы коррозии на металлических деталях контура не будут активизироваться.

Несколько слов о недостатках , так как их совсем немного:

  • Если котел изначально не оснащен расширительным баком, его придется приобретать самостоятельно. Впрочем, с открытым баком ситуация примерно такая же.
  • Закрытая система должна быть полностью герметична, с воздухом теплоноситель не контактирует, но процессов газообразования в котле, трубах и радиаторах полностью исключать нельзя. А выхода , как в открытой системе, для газов нет. То есть придётся устанавливать газоотводчики в самых высоких точках системы и на радиаторах.
  • Герметичность системы требует контроля. Ситуации возможны разные, и иногда отказ какого-либо уровня защиты может привести к опасному росту давления в контурах. Это чревато и протечками на соединениях, и даже взрывоопасной ситуацией.

Для того чтобы бороться с указанными негативными особенностями, в закрытой системе обязательно предусматривается установка так называемой «группы безопасности» .

1 – контрольно-измерительный прибор. Это или просто манометр, показывающий уровень давление теплоносителя в системе, или даже комбинированный прибор, одновременно показывающий еще и температуру нагрева.

2 – автоматический возхдухоотводчик , самостоятельно стравливающий скопившиеся газы.

3 – предохранительный клапан, с предустановленным уровнем срабатывания. То есть в том случае, если давление достигнет возможного «потолка», клапан выпустит излишек жидкости, предотвращая создание опасной ситуации.

Очень часто группу безопасности устанавливают непосредственно в котельной – так проще отлеживать показания манометра. Нередко отопительные котлы уже имеют в своей конструкции подобный предохранительный узел . Правда, это не избавляет владельца от необходимости установки клапанов-воздухоотводчиков и в верхних точках системы отопления.

Подбор нужной модели расширительного бака подчиняется определенным правилам и проводится на основании расчетов . Об этом обязательно будет рассказано в серии публикаций, специально посвященной проведении расчетов всех основных элементов двухтрубной системы отопления .

Различия по принципу организации циркуляции теплоносителя.

Для нормального теплообмена теплоноситель не должен быть статичным – он постоянно перемещается по контуру отопления. А достигаться эта необходимая циркуляция может по-разному .

Двухтрубная система с естественной циркуляцией теплоносителя.

Еще не столь давно подобная система в частных домах считалась чуть ли не единственно возможной – приобрести насосное оборудование было очень непросто. Ничего, как говорится, вполне обходились. Не отказываются от нее многие и по сей день – за ее безотказность и полную энергонезависимость.

Перемещение потока теплоносителя в этой системе обусловлено воздействием естественных сил гравитации, возникающих из-за разности плотности разогретого и остывшего теплоносителя. Кроме того, этому же способствует и особое расположение отдельных элементов контура отопления.

Проще понять принцип поможет расположенная ниже схема:

Вначале посмотрим на верхнюю часть схемы. Цифрами на ней обозначено следующее :

1 – котел отопления.

2 – труба подачи, и, в частности – ее вертикальный так называемые разгонный участок большого диаметра, обычно устанавливаемый непосредственно от котла.

3 – прибор теплообмена – радиатор. На схеме условно показан самый нижний радиатор в системе. Он обязательно должен располагаться с превышением относительно котла. Эта величина разницы высот показана буквой h .

4 – труба «обратки».

При нагреве теплоносителя в котле плотность жидкости меняется – горячая вода всегда имеет плотность (Ргор ), которая меньше, чем у остывшей (Рохл ). Естественно, это уже придает потоку направление вверх, по разгонному участку. От верхней точки все трубы прокладываются с небольшим уклоном вниз (в зависимости от диаметра – от 5 до 10 мм на метр длины трубы). Это – второй фактор , способствующий естественному потоку.

И, наконец, смотрим на нижнюю часть схемы. Отбросим верхний «красный» участок – оставим только «обратку» от последнего радиатора до котла. Здесь уже разницы в плотности нет – вода отдала свое тепло на последней батарее, и с примерно таким же уровнем температуры течет в сторону котельной. Но вот то самое превышение по высоте, о котором было сказано выше, делает свое дело. Перед нами – не что иное, как обычные сообщающиеся сосуды. Вполне понятно, что любая гидравлическая система с жидкостью равной плотности и температуры будет стремиться к равновесию. То есть, в данном случае – к равенству уровней в обоих «сосудах». Получается, что таким расположением, даже если не предусмотрен уклон (а он все равно обычно задается даже на этом участке), создаётся направленный ток теплоносителя в сторону котла. Чем значительнее это превышение «h » , тем больше естественно создаваемый напор. Правда, эта высота даже в самой крупной системе все же не должна превышать 3 метров.

Консолидированное действие всех этих взаимосвязанных факторов и создает устойчивую циркуляцию в отопительном контуре.

Достоинства системы с естественной циркуляцией теплоносителя следующие:

  • Надежность и безотказность – никаких сложных механизм или узлов не предполагается, и долговечность всей системы, в принципе , зависит исключительно от состояния труб контура и радиаторов.
  • Полная независимость от электропитания. Не предполагается, естественно, и никаких затрат на потреблённую электроэнергию.
  • Отсутствие насосного оборудования – это еще и бесшумная работа системы.
  • Система с естественной циркуляцией обладает очень полезным качеством саморегуляции. Что это означает? Допустим, температура в помещениях дома близка к оптимальной. Теплоотдача на радиаторах идет не столь интенсивно, теплоноситель остывает меньше, стало быть, и разница в плотности становится менее ощутима. Это ведет к «успокоению» потока. Похолодало. Вода в батареях охлаждается сильнее, растет разница в плотности горячего и остывшего теплоносителя, и потому интенсивность его циркуляции самопроизвольно возрастает. Таким образом, система как бы сама постоянно стремится к оптимальному балансу температур. Это свойство существенно упрощает регулировку системы, так, что зачастую не приходится устанавливать дополнительных термостатических приборов в помещениях.
  • Если появится желания, то любую систему с естественной циркуляцией можно без особого труда оснастить еще и насосным узлом.

Всё это замечательно, но и весьма серьезных недостатков у такой системы – порядочно.

  • Ожидаются немалые сложности с монтажом контуров. Во-первых, должны применяться трубы довольно большого диаметра, что и утяжеляет всю конструкцию, и делает ее более дорогой. Причем на различных участках размеры труб должны правильно варьироваться. Во-вторых, обязательно должен соблюдаться уклон труб, и иногда это становится в силу особенностей помещений немалой проблемой. В-третьих, система будет корректно работать только при верхней подаче теплоносителя в радиаторы, то есть о скрытой подводке труб придется забыть.

  • Существуют ограничения по удалённости радиаторов от котельной, если рассматривать в плане. В противном случае гидравлическое сопротивление трубопроводов и арматуры могут превысить создаваемый естественный напор теплоносителя, и на удаленных участках циркуляция замрет .
  • Малые показатели давления в трубах практически полностью лишают возможности использовать современные термостатические приборы для точной регулировки температуры на радиаторах. Система «теплых полов» при естественной циркуляции невозможна в принципе.
  • Система получается довольно инертной. Чтобы она заработала в «штатном режиме», потребуется первичная работа котла на большой мощности, иначе циркуляция не пойдет .
  • Энергоэффективность такой системы – не самая лучшая. Часть выработанной энергии растрачивается именно на создание условий для обеспечения циркуляции. Это обстоятельно делает нежелательным применение контуров с естественной циркуляцией, если установлен электрический котел – потери обойдутся слишком дорого.

Но , тем не менее , система с естественной циркуляцией - вполне жизнеспособна, и применяется довольно часто. Выше говорилось, что она не рассчитана на большие дома. Следует правильно понимать, что здесь имеется в виду «раскинутость » здания в плане – удаленность радиаторов от котла в горизонтальной проекции не может быть больше 25, максимум – 30 метров. Да и попробуйте соблюсти уклон на таком значительном расстоянии!

А вот для компактного в плане дома, даже в два этажа, система подойдет вполне. Практикой доказано, что естественная циркуляция, без применения какого бы то ни было насосного оборудования, справится с высотой разгонного участка до 10 метров. А это, согласитесь, немало. Скажем, если «отдать» на этаж по 3 метра высоты, и с учетом расположения котельной ниже уровня радиаторов (например, в полуподвальном или подвальном помещении), то для двухэтажного дома возможностей хватит даже с запасом.

Пример открытой двухтрубной системы отопления с естественной циркуляцией для двухэтажного дома приведен на иллюстрации ниже:

В самой нижней точке системы отопления расположен котел (поз.1). Как уже говорилось, он должен находиться ниже радиаторов первого этажа на величину h. В непосредственной близости от котла в магистраль «обратки» врезана труба водопровода (поз. 2), которая обеспечивает первичное заполнение системы или ее подпитку по мере необходимости – при постепенном испарении теплоносителя.

От котла вверх проложена «разгонная» труба полдачи большого диаметра. Она проложена до открытого расширительного бака, установленного в водочном помещении (поз. 3).Бак в данном случае сделан большого объема и расположен примерно по центру здания. Дело в том, что в показанной схеме он исполняет еще одну интересную функцию – становится подобием коллектора, от которого в разные стороны расходятся стояки подачи. К этим стокам подключены радиаторы (поз. 4) и второго, и первого этажа, от которых , в свою очередь, опускаются трубы «обратки», замыкающиеся на обратном коллекторе, ведущем к котлу. На каждом из радиаторов установлены вентили (поз. 5), позволяющие и перекрывать это участок (например, для проведения профилактических и ремонтных работ), и довольно точно регулировать теплоотдачу батареи.

Выше уже упоминалось, что очень важное значение имеет правильный подбор диаметров труб для каждого из участков системы. Это в идеале требует специальных расчетов , хотя многие опытные мастера без проблем подбирают нужные диаметры, основываясь на практике многолетней работы.

На данной схеме диаметры обозначены буквами латинского алфавита. Участки труб с показанными диаметрами ограничены точками врезки ответвлений (тройников) или радиаторов.

a - ДУ 65 мм

b - ДУ 50 мм

c - ДУ 32 мм

d - ДУ 25 мм

е - ДУ 20 мм

(ДУ – диаметр условного прохода трубы).

Система отопления с принудительной циркуляцией

С этой системой подробных объяснений, наверное, и не потребуется. Циркуляция теплоносителя в ней обеспечивается установкой насосного узла (одного или даже нескольких, если система сильно разветвленная и требует различных значений напора на отдельных своих участках).

Установка насосного оборудования сразу дает немало важных преимуществ :

  • Исчезают ограничения для систем отопления, вызванные как этажностью здания, так и его размерами. Все зависит от параметров установленного насоса.
  • Появляется возможность использовать для монтажа контуров трубы со значительно меньшим диаметром – а это и проще в сборке, и дешевле. Нет требований к обязательному соблюдению уклона труб.
  • Принудительная циркуляция позволяет плавно вводить систему в эксплуатацию, без «пикового» нагрева в начале работы. Да и в ходе работы значение температуры теплоносителя в контуре можно поддерживать в очень широком диапазоне. То есть даже при небольших уровнях нагрева циркуляция не остановится, что вполне вероятно в системе с естественным током жидкости. Это открывает широкие возможности точной регулировки как всей системы в целом , так и ее отдельных участков.
  • Исходя из вышесказанного – нет большой разницы в температурах на патрубке «обратки» и подачи котла. А это приводит к меньшему износу теплообменников, продлевает «активную жизнь» оборудования.
  • Система не налагает никаких ограничений ни по способу прокладки труб, ни по подключаемым приборам теплообмена. То есть вполне можно использовать скрытые прокладки, любые радиаторы или конвекторы, «теплые полы» или тепловые завесы.
  • Стабильнее показатели давления теплоносителя в трубах подачи позволяют применять любые современные термостатические регуляторы нагрева на радиаторах или конвекторах.

Есть и недостатки , о которых тоже необходимо помнить.

  • Создание системы, особенно если она отличается разветвлённостью и разноплановостью используемых приборов теплообмена, потребует тщательных расчетов для каждого из участков. Необходимо добиться полной «гармонии» работы всех контуров. Это обычно достигается установкой гидравлической стрелки.

Что такое гидрострелка в системе отопления?

Система отопления – это сложный «организм», который требует согласованности в работе всех его участков. Добиться такой «гармонии» позволяет несложное, но очень эффективное устройство – , о которой подробно рассказывается в отдельной публикации нашего портала.

Впрочем, недостатком это назвать сложно, так как любая система отопления должна создаваться с опорой на предварительные расчеты .

  • Главный же недостаток – выраженная энергозависимость. То есть при перебоях в сети электропитания систему парализует. Если в населённом пункте где ведется строительство, такие явления случаются довольно часто, придется думать о приобретении источника бесперебойного питания.

Очень часто прибегают к другому способу. Систему делают «гибридной», то есть с возможностью работы как при принудительной циркуляции теплоносителя, так и при естественной. В этом случае насос обвязывается по специальной схеме с использованием байпаса-перемычки. Хозяин имеет возможность при необходимости переключить с помощью кранов направление потока – через насос или напрямую по трубе «обратки» .

В некоторых насосных узлах даже предусмотрен автоматический клапан, который самостоятельно откроет проход через прямой участок, если насос по каким-либо причинам остановился.

Полезная информация по циркуляционным насосам.

Чтобы система отопления работала корректно и максимально эффективно, к выбору оптимальной модели насоса следует подходить с умом. Подробнее об устройстве , о разнообразии моделей, о проведении расчетов требуемых характеристик – в специальной статье нашего портала.

Различия двухтрубных систем по схемам разводки

Возможные различия в вертикальной разводке

Начнем с «вертикали». Если дом планируется в несколько уровней, то может быть применена или система стояков, или поэтажная разводка.

  • Система стояков была наглядно продемонстрирована на схеме выше. Там, правда, показана верхняя подача от расширительного бака открытого типа. Но это – частности . Даже если циркуляция будет обеспечиваться насосным оборудованием, то это ничего в принципе не меняет. Наоборот, появляется возможность применить схему с нижней подачей теплоносителя в стояки, которые при этом становятся подобием вертикальных коллекторов .

При небольшой этажности (как раз для частного дома, где редко бывает более двух этажей), такая система показывает высокую эффективность. Контуры, отходящие вверх от основного коллектора (проложенного, например, в подвале или вдоль пола первого этажа), не отличаются большой длиной и разветвленностью, то есть и их гидравлический расчет , и регулировка на отопительных приборах тоже будет несложна.

К таким схемам есть смысл прибегать, когда помещения на первом и втором (и более) этажах расположены симметрично, то есть радиаторы будут устанавливаться ровно один над другим. В противном случае особого смысла в этом не наблюдается.

Явным недостатком является то, что для каждой группы стояков придётся пробивать проход в межэтажном перекрытии. Это и лишние заботы, в том числе по утеплению, гидроизоляции и декоративной отделке, и ослабление конструкции. И еще один очевидный «минус» - вертикальные стояки практически невозможно расположить скрытно. Для многих хозяев это фактор имеет решающее значение.

  • Поэтому очень часто поступают таким образом. Вертикальная пара стояков (подача и «обратка») - всего одна. Убрать ее с глаз – задача несложная. А вот на каждом из этажей выполняется собственная горизонтальная разводка труб по радиаторам отопления.

Различия горизонтальных разводок по этажу

Теперь – о горизонтальных схемах разводки при одноэтажном строительстве, или же в пределах одного отдельно взятого этажа.

  • Прежде всего, схема может различаться расположением трубы подачи.

Она может располагаться сверху (обычно под потолком), и в таком случае подача теплоносителя в радиаторы отопления осуществляется только сверху.

К сожалению, такой подход может быть единственно возможным при оборудовании системы отопления с естественной циркуляцией теплоносителя. Как мы уже видели ранее, общая «дирекция» потока жидкости должна соблюдаться сверху → вниз. То есть расположить подачу ниже радиатора не получится – полноценной циркуляции через него может и не случиться. Увы, таковы издержки это системы.

Нет слов, такое расположение трубы капитально портит общий интерьер, так как замаскировать ее в районе потолка – задача непростая, да и от вертикального участка, проложенного от нее уже непосредственно к радиатору – тоже никуда не деться.

В этом плане намного выгоднее схема с нижней подачей, для которой нет никаких ограниченний, если в контуре установлен циркуляционный насос. Разместить такую разводку скрытно – особого труда не составит. Например, ее можно спрятать под декоративным покрытием пола, а иногда даже трубы и вовсе заливаются стяжкой.

Одним словом, именно такой принцип расположения труб подачи и «обратки» видится оптимальным.

  • Очень серьезные различия могут быть по организации направления циркуляционного потока теплоносителя.

На схеме нижа показана схема, в которой на условных трех этажа показаны три возможных варианта прокладки контуров к радиаторам отопления.

  • Начнем с условного «первого этажа». Здесь применена схема тупиковой разводки, или, как ее еще иначе называют, со встречным потоком теплоносителя. Все приборы теплообмена при таком подходе разбивается на ветки – их количество может различаться (на примере показаны две). В каждой из таких веток труба подачи проложена до конечного радиатора (тупика), а навстречу ей движется поток охлажденного теплоносителя по трубе «обратки».

Тупиковая схема пользуется большой популярностью, так как она требует минимального количества труб и не столь сложна в монтаже. Но есть у нее и весьма серьезные недостатки. Так, в пределах даже одной небольшой тупиковой ветки с несколькими радиаторами приходится использовать трубы различного диаметра (с постепенным его уменьшением к тупиковой батарее). Кроме того, в обязательном порядке предстоит балансировка этого выделенного контура с помощью специальных вентилей, чтобы не допустить замыкания потока через ближайший к коллектору радиатор.

  • На «втором этаже» показана схема с попутным движением теплоносителя. Она имеет еще одно название – петля Тихельмана . Для такой разводки применяются трубы одного диаметра. Утверждают, что такое расположение обеспечивает равное значение давления на входе в каждый из радиаторов, что предельно упрощает балансировку этого контура. Появляется возможность очень точной установки температурных режимов на каждой батарее. Правда, расход труб при монтаже такой схемы, безусловно, возрастает.

Правда, многие опытные мастера вовсе не в полном восторге от преимуществ системы с попутным движением теплоносителя. Мало того, приводятся теоретические раскладки, что некоторые достоинства – серьезно преувеличены, и расчёты показывают далеко не столь безоблачную картину.

Какой вывод из этого сравнения? Советы даются следующие:

При небольших размерах контура по периметру (если он не превышает 30 ÷ 35 метров), оптимальным решение действительно станет петля Тихельмана . То есть ее преимущества будут показаны только на весьма ограниченном по общей длине замкнутом контуре.

Вполне подойдет она и при больших размерах контура, но только если планируется очень «бюджетная» система, для которой не находится возможностей приобретения термостатических приборов для точной регулировки температуры в каждом из помещений. Действительно, разброс давления на точках входа в батареи – невелик. Но вот гидравлическое сопротивление будет уже весьма значительным, потребуются трубы увеличенного диаметра, то есть никакого преимущества над тупиковой системой в этом плане уже не остается . Напротив, сложность монтажа и большой расход труб делает попутную разводку серьезно проигрышной.

Если периметр здания (этажа) превосходит 35 метров, то намного выгоднее будет разбить систему на несколько (две или более) тупиковых веток . Да, потребуется произвести гидравлический расчет для каждой из них. Но это оправдается и меньшими затратами, и меньшими потерями тепла при транспортировке теплоносителя. Ну а для регулировки в любом случае не обойтись без термостатических клапанов.

  • На условном «третьем этаже» - коллекторная или лучевая схема разводки. От общего коллекторного узла (который обычно стараются разместить ближе к геометрическому центру этажа) к каждому из радиаторов прокладывается отдельная «тупиковая линия» – труба подачи и «обратки».

Подобная схема позволяет использовать трубы минимального диаметра, правда, расход их может быть весьма значительным. На иллюстрации разводка показана вдоль стен, но на практике прокладку отдельных контуров чаще осуществляют по кратчайшему расстоянию, используя скрытую разводку под поверхностью пола.

Точность регулировки каждого отдельно взятого радиатора здесь достигает максимума. Правда, сложность монтажа с необходимостью последующей отделки и большой расход материалов пока еще ограничивают широкое распространение подобного подхода к разводке системы.

Первые шаги в расчетах – определение общей мощности системы отопления и требуемой теплоотдачи радиаторов

Любая система отопления – это весьма сложный «организм», и каждый из ее элементов должен функционировать в тесной связи с другими. Обеспечивается такой «унисон » проведением точных расчётов каждого из участков.

В масштабе одной публикации рассмотреть все тонкости проведения расчетов – просто невозможно. Наверное, есть смысл собрать целый цикл статей, посвященных проектированию того или иного участка или узла двухтрубных систем различных разновидностей. И это будет в ближайших планах редакции.

Но начинать с чего-то все равно необходимо. И этим началом станет предварительны расчёт общей мощности системы отопления и необходимой теплоотдачи радиаторов для каждого из помещений.

На чем строится расчет ?

Почему эти две указанных выше параметра собраны вместе? Все объясняется просто.

Планирование системы отопления правильнее будет начинать с оценки количества тепла, которое необходимо подать в каждое из помещений строящегося или уже имеющегося дома. Это позволит сразу наметить количество и характеристики приборов теплообмена, то есть виртуально расставить радиаторы по комнатам.

Общее количество тепловой энергии, необходимое в масштабах дома (то есть сумма всех значений рассчитанных для отдельных помещений) покажет требуемую мощность котельного оборудования.

Имея предварительный план расстановки радиаторов, можно определиться с выбором предпочтительной схемы системы отопления, с особенностями разводки труб по помещениям . Это содает базу для гидравлических расчетов , определения диаметров труб, скорости потока теплоносителя, характеристик насоса, производительности коллекторных узлов и т.п . И так до самого конца. Но начало, как видите, идет именно от потребностей каждого из помещений.

Существует довольно распространенная практика принимать необходимую тепловую мощность для обогрева помещения, равную 100 Вт / 1 м² площади. Увы, такой подход точностью не отличается, так как совершенно не учитывает прогноз возможных тепловых потерь, которые потребуют компенсации за счет системы отопления. Поэтому предлагаем иной, намного более подробный алгоритм, в котором принимается во внимание множество нюансов.

Заранее пугаться не надо – с нашим онлайн-калькулятором никаких трудностей в выполнении расчета вас не ожидает.

Мало того, калькулятор поможет читателю заранее оценить преимущества той или иной схемы подключения радиаторов к трубам, их размещения на стене. А если планируется приобретение и установка разборных батарей – то можно сразу подсчитать и необходимое количество секций.

Знакомимся с калькулятором, а ниже будет дан ряд пояснений по работе с ним.